首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In nature, key molecular processes such as communication, replication, and enzyme catalysis all rely on a delicate balance between molecular and supramolecular chirality. Here we report the design, synthesis, and operation of a reversible, photoresponsive, self-assembling molecular system in which molecular and supramolecular chirality communicate. It shows exceptional stereoselectivity upon aggregation of the molecules during gel formation with the solvent. This chirality is locked by photochemical switching, a process that is subsequently used to induce an inverted chiral supramolecular assembly as revealed by circular dichroism spectroscopy. The optical switching between different chiral aggregated states and the interplay of molecular and supramolecular chirality offer attractive new prospects for the development of molecular memory systems and smart functional materials.  相似文献   

2.
Electron transmission experiments demonstrate a large asymmetry in the scattering probability of polarized electrons by thin organized films of chiral molecules. This large asymmetry results from the interaction of the electron's wavefunction with many scatterers (molecules) in the organized monolayer structure and represents a manifestation of quantum interference on the scale of supramolecular lengths.  相似文献   

3.
The bromination of chiral crystalline sam ples of 4,4'-dimethylchalcone was reinvestigated. In the presence of the optically active reaction product, (+)-or (-)-chalcone dibromide, crystallization from solutions of the achiral chalcone is specifically directed toward one-handedness. A feedback mechanism can thus be envisaged where optically active compounds are formed, generate additional material of the same chirality, and communicate this chirality to other regions, simply by cycles of solidification, reaction, and liquefaction.  相似文献   

4.
Supramolecular Materials: Self-Organized Nanostructures   总被引:1,自引:0,他引:1  
Miniaturized triblock copolymers have been found to self-assemble into nanostructures that are highly regular in size and shape. Mushroom-shaped supramolecular structures of about 200 kilodaltons form by crystallization of the chemically identical blocks and self-organize into films containing 100 or more layers stacked in a polar arrangement. The polar supramolecular material exhibits spontaneous second-harmonic generation from infrared to green photons and has an adhesive tape-like character with nonadhesive-hydrophobic and hydrophilic-sticky opposite surfaces. The films also have reasonable shear strength and adhere tenaciously to glass surfaces on one side only. The regular and finite size of the supramolecular units is believed to be mediated by repulsive forces among some of the segments in the triblock molecules. A large diversity of multifunctional materials could be formed from regular supramolecular units weighing hundreds of kilodaltons.  相似文献   

5.
A disk-shaped molecule with chiral tails is shown to form long fibers of molecular diameter and micrometer length by self-assembly in chloroform. The molecules are derived from crown ethers and contain a phthalocyanine ring. In the fibers, they have a clockwise, staggered orientation that leads to an overall right-handed helical structure. These structures, in turn, self-assemble to form coiled-coil aggregates with left-handed helicity. Addition of potassium ions to the fibers leaves their structure intact but blocks the transfer of the chirality from the tails to the cores, leading to loss of the helicity of the fibers. These tunable chiral materials have potential in optoelectronic applications and as components in sensor devices.  相似文献   

6.
An object spinning at the surface of a liquid creates a chiral vortex. If the spinning object is itself chiral, its shape modifies the characteristics of the vortex; interactions between that vortex and other vortices then depend on the chirality of the objects that produce them. This paper describes the aggregation of millimeter-sized, chiral magnetized plates floating at a liquid-air interface and rotating under the influence of a rotating external magnetic field. This external field confines all the plates at densities that cause the vortices they generate to interact strongly. For one set of plates investigated, plates of one chirality attract one another, and plates of the other chirality repel other plates of both chiralities.  相似文献   

7.
Zahn S  Canary JW 《Science (New York, N.Y.)》2000,288(5470):1404-1407
Stereodynamic complexes of copper were found to undergo inversion of a helical chiral element upon oxidation or reduction. The amino acid methionine was derivatized by the attachment of two chromophores to the nitrogen atom. The resultant ligands formed stable complexes with Cu(I) and Cu(II) salts. For a derivative of a given absolute chirality, the complexes afford nearly mirror image circular dichroism spectra. The spectral changes originate from reorientation of the nitrogen-attached chromophores due to a conformation interconversion driven by the exchange of a carboxylate for a sulfide ligand. The electrically induced chirality inversion coupled with strong interactions with polarized light is unique and may lead to novel chiral molecular devices.  相似文献   

8.
Noyori R 《Science (New York, N.Y.)》1990,248(4960):1194-1199
As molecular recognition continues to gain importance in the biological and physical sciences as well as in the technologies of molecular electronics and optics, so has the need for efficient syntheses of chiral molecules. Chemists are fulfilling this need through use of chiral organometallic molecules. These chiral metal complexes precisely discriminate between enantiotopic atoms, groups, or faces in achiral molecules and catalyze production of a broad array of natural or unnatural substances of excellent enantiomeric purity. Because of their ability to efficiently multiply chirality, even on an industrial level, these catalysts promise to exert a general impact on molecular science and engineering.  相似文献   

9.
Differences in the two-dimensional packing arrangements of racemic and enantiomeric crystalline self-assemblies on the water surface of amphiphilic activated analogs of lysine and glutamic acid have been used to prepare oligopeptides of homochiral sequence and oligopeptides of single handedness from chiral nonracemic mixtures. The crystalline structures on the water surface were determined by grazing incidence x-ray diffraction and the diastereomeric composition of the oligopeptides by matrix-assisted laser desorption time-of-flight mass spectrometry with enantio-labeling. These results suggest that reactivity of ordered clusters at interfaces might have played a role in the generation of early homochiral biopolymers.  相似文献   

10.
Multishell helical gold nanowires were recently imaged by electron microscopy. We show theoretically that the contact with the gold tips at either end of the wire plays a crucial role and that local minima in the string tension rather than the total wire free energy determine the nanowire stability. Density functional electronic structure calculations of the simplest and thinnest coaxial gold and silver wires of variable radius and chirality were carried out. We found a string tension minimum for a single-tube gold nanowire that is chiral and consists of seven strands, in striking agreement with observation. In contrast, no such minimum was found for silver, where the s-d competition leading to surface reconstruction is lacking.  相似文献   

11.
Observations of intermolecular excimers in several pi-conjugated polymers and exciplexes of these polymers with tris(p-tolyl) amine are reported. It is shown that the luminescence of conjugated polymer thin films originates from excimer emission and that the generally low quantum yield is the result of self-quenching. Thus, in sufficiently dilute solution, the "single-chain" emission has a quantum yield of unity. Exciplex luminescence and exciplex-mediated charge photogeneration have much higher quantum yields than the excimer-mediated photophysical processes. These results provide a basis for understanding and controlling the photophysics of conjugated polymers in terms of supramolecular structure and morphology.  相似文献   

12.
Sodium chlorate (NaClO(3)) crystals are optically active although the molecules of the compound are not chiral. When crystallized from an aqueous solution while the solution is not stirred, statistically equal numbers of levo (L) and dextro (D) NaClO(3) crystals were found. When the solution was stirred, however, almost all of the NaClO(3) crystals (99.7 percent) in a particular sample had the same chirality, either levo or dextro. This result represents an experimental demonstration of chiral symmetry breaking or total spontaneous resolution on a macroscopic level brought about by autocatalysis and competition between L- and D-crystals.  相似文献   

13.
Time-resolved x-ray imaging shows that the magnetization dynamics of a micron-sized pattern containing a ferromagnetic vortex is determined by its handedness, or chirality. The out-of-plane magnetization in the nanometer-scale vortex core induces a three-dimensional handedness in the planar magnetic structure, leading to a precessional motion of the core parallel to a subnanosecond field pulse. The core velocity was an order of magnitude higher than expected from the static susceptibility. These results demonstrate that handedness, already well known to be important in biological systems, plays an important role in the dynamics of microscopic magnets.  相似文献   

14.
A molecule or larger body is chiral if it cannot be superimposed on its mirror image (enantiomer). Electromagnetic fields may be chiral, too, with circularly polarized light (CPL) as the paradigmatic example. A recently introduced measure of the local degree of chiral dissymmetry in electromagnetic fields suggested the existence of optical modes more selective than circularly polarized plane waves in preferentially exciting single enantiomers in certain regions of space. By probing induced fluorescence intensity, we demonstrated experimentally an 11-fold enhancement over CPL in discrimination of the enantiomers of a biperylene derivative by precisely sculpted electromagnetic fields. This result, which agrees to within 15% with theoretical predictions, establishes that optical chirality is a fundamental and tunable property of light, with possible applications ranging from plasmonic sensors to absolute asymmetric synthesis.  相似文献   

15.
Thin interdigitated films composed of a long-chain, water-insoluble chiral acid (p-pentadecylmandelic acid of absolute configuration R) and a water-soluble chiral base (phenylethylamine, R') were constructed at the air-solution interface. The (R, R') structure was characterized to near-atomic resolution by grazing-incidence x-ray diffraction (GIXD). The two diastereomeric systems, (R, R') and (R, S'), demonstrate similar surface pressure-molecular area isotherms, but their structures are completely different on the molecular level, as monitored by GIXD. Complementary data on these two architectures were provided by atomic force microscopy.  相似文献   

16.
Helical polyacetylene synthesized with a chiral nematic reaction field   总被引:1,自引:0,他引:1  
Helical polyacetylene was synthesized under an asymmetric reaction field consisting of chiral nematic (N*) liquid crystals (LCs). The chiral nematic LC was prepared by adding a chiroptical binaphthol derivative as a chiral dopant to a mixture of two nematic LCs. Acetylene polymerizations were carried out using the catalyst titanium tetra-n-butoxide-triethylaluminum dissolved in the chiral nematic LC solvent. The polyacetylene film was shown by scanning electron microscopy to consist of clockwise or counterclockwise helical structure of fibrils. A Cotton effect was observed in the region of the pi --> pi* transition of the polyacetylene chain in circular dichroism spectra. The high electrical conductivities of approximately 1500 to 1800 siemens per centimeter after iodine doping and the chiral helicity of these films may be exploited in electromagnetic and optical applications.  相似文献   

17.
The thermal stability of the electric field induced poled order in a new class of second-order optically nonlinear polymers, "donor-imbedded" side-chain polyimides containing no flexible connectors or tethers to the nonlinear optical (NLO) chromophore, is investigated. In these polymers, the electron-donor part of the chromophore is a diaryl-substituted amine that is incorporated as a part of the polymer backbone. The donorimbedded systems used in this study have exceptional chemical stabilities at elevated temperatures (350 degrees C) and impressive poled order stability at extremely high temperatures (300 degrees C). In both respects, they were significantly more stable than a true side-chain polyimide with a similar NLO-active chromophore covalently linked to the polymer backbone by a flexible tether group.  相似文献   

18.
The chemisorption of specific optically active compounds on metal surfaces can create catalytically active chirality transfer sites. However, the mechanism through which these sites bias the stereoselectivity of reactions (typically hydrogenations) is generally assumed to be so complex that continued progress in the area is uncertain. We show that the investigation of heterogeneous asymmetric induction with single-site resolution sufficient to distinguish stereochemical conformations at the submolecular level is finally accessible. A combination of scanning tunneling microscopy and density functional theory calculations reveals the stereodirecting forces governing preorganization into precise chiral modifier-substrate bimolecular surface complexes. The study shows that the chiral modifier induces prochiral switching on the surface and that different prochiral ratios prevail at different submolecular binding sites on the modifier at the reaction temperature.  相似文献   

19.
Tying knots and linking microscopic loops of polymers, macromolecules, or defect lines in complex materials is a challenging task for material scientists. We demonstrate the knotting of microscopic topological defect lines in chiral nematic liquid-crystal colloids into knots and links of arbitrary complexity by using laser tweezers as a micromanipulation tool. All knots and links with up to six crossings, including the Hopf link, the Star of David, and the Borromean rings, are demonstrated, stabilizing colloidal particles into an unusual soft matter. The knots in chiral nematic colloids are classified by the quantized self-linking number, a direct measure of the geometric, or Berry's, phase. Forming arbitrary microscopic knots and links in chiral nematic colloids is a demonstration of how relevant the topology can be for the material engineering of soft matter.  相似文献   

20.
Niu C  Lu YZ  Lieber CM 《Science (New York, N.Y.)》1993,261(5119):334-337
Pulsed laser ablation of graphite targets combined with an intense, atomic nitrogen source has been used to prepare C-N thin film materials. The average nitrogen content in the films was systematically varied by controlling atomic nitrogen flux. Rutherford backscattering measurements show that up to 40 percent nitrogen can be incorporated on average into these solids under the present reaction conditions. Photoelectron spectroscopy further indicates that carbon and nitrogen form an unpolarized covalent bond in these C-N materials. Qualitative tests indicate that the C-N solids are thermally robust and hard. In addition, strong electron diffraction is observed from crystallites within the films. Notably, analysis of these diffraction data show that the only viable structure for the C-N crystallites is that of beta-C(3)N(4), a material predicted theoretically to exhibit superhardness. The experimental synthesis of this new C-N material offers exciting prospects for both basic research and engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号