首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
辐射敏化剂对离子注入小麦生物学效应的影响   总被引:1,自引:1,他引:1  
韩榕  杨汉民 《核农学报》2003,17(2):85-89
采用中国科学院兰州近代物理研究所 2 0 0kV离子注入机产生的不同剂量Fe1+ ,对春小麦新品系 81 52 9种子进行注入并用辐射敏化剂后处理 ,研究其注入效应。结果表明 :①离子注入随注入剂量的增加染色体畸变率呈上升趋势 ;②不同辐射敏化剂后处理对萌发力、染色体畸变率影响程度不同 ;③不同辐射敏化剂对同一剂量Fe1+ 离子注入小麦的染色体畸变率影响的总趋势 :EDTA >秋水仙素 >咖啡因。  相似文献   

2.
~7Li离子束诱变紫松果菊的生物效应研究初报   总被引:1,自引:0,他引:1  
对紫松果菊的风干种子进行不同剂量的7Li离子束注入和γ射线照射处理 ,结果表明 ,与γ射线照射相比 ,7Li离子束注入处理具有损伤效应轻的特点。二者虽然在一定剂量范围都能够促进种子萌发 ,但对种子成苗的影响依诱变源和剂量不同而有所不同。7Li 1 0 9ions cm2 处理对幼苗形成有明显促进作用 ,随着7Li离子束剂量升高 ,幼苗生长受到一定程度的抑制 ,真叶的生长发育迟缓 ,成苗率明显下降。γ射线处理的种子成苗受到显著抑制 ,处理剂量越高 ,成苗率越低 ;当剂量高于 1 5 0Gy时 ,一般不能萌发真叶而导致幼苗死亡。在7Li离子束处理的M1代植株中出现花期、花径、花色、瓣形或瓣数的变异类型 ,变异主要发生在 1 0 11ions cm2 和 1 0 12ions cm2 两个剂量处理中 ,总体变异频率在 1 67%~ 6 67%之间。  相似文献   

3.
利用200kV 离子注入机产生的 Fe~+、Cu~+和 Zn~+3种重离子分别对黄豆种子进行直流注入,以扫描电镜X射线能谱分析法测定低能重离子的注入深度。测量定结果表明,Fe~+的最大注入深度未超过18μm,Cu~+、Zn~+的最大注入深度可达25μm。  相似文献   

4.
低能离子注入种子过程中的温度效应   总被引:1,自引:0,他引:1  
本文用玉米干种子作为实验材料,设打印纸覆盖、铝箔覆盖和不覆盖3个处理,研究了在低能离子注入种子的过程中,温度对种子发芽率的影响。研究结果表明3个处理中不能传递热量的打印纸覆盖的种子发芽率最高,不覆盖的种子的发芽率其次,而可以传递热量的铝箔覆盖的种子发芽率最低。温度能够显著影响注入后种子的发芽,靶室内的高温总体上降低了种子的生活力。文中对离子注入时的温度效应做了校正,并给出了校正后的种子发芽曲线。  相似文献   

5.
氮离子注入对同源四倍体水稻IR36萌发的影响   总被引:2,自引:3,他引:2  
通过分析氮离子注入对同源四倍体水稻种子萌发过程中吸水速率、膜透性、淀粉酶活性的影响来研究离子注入四倍体水稻的生理生化效应。结果显示:低剂量范围内(0~2×1016cm-2)N+注入对IR36(4N)存在刺激效应,发芽率、幼芽淀粉酶活性等与对照相比都有所提高。当注入剂量在2×1016~10×1016cm-2范围内,氮离子注入对IR36(4N)种子萌发起抑制作用,表现为种子存活率显著下降、淀粉酶活性下降、膜透性增大。氮离子注入IR36(4N)的适宜诱变剂量大约在6.0×1016~8.0×1016cm-2。  相似文献   

6.
采用室内培养皿法测试了马唐水提取液对2种高粱种子萌发和幼苗生长的化感作用。结果表明,马唐水浸提液不仅抑制高粱种子发芽,而且延迟种子萌发。对高粱幼苗的根长、苗高和鲜重也存在明显的抑制作用,并呈现出显著的浓度效应。同时2种高粱种子对马唐水提取液的敏感程度也不同,黄土甜高粱较笤帚高粱对马唐提取液更为敏感。  相似文献   

7.
用110 keV Fe~(1+)离子束对小麦种子进行注入处理,以扫描电镜-X射线能谱分析法测定Fe~(1+)离子的注入深度。测定结果表明:Fe~(1+)离子虽已进入种皮,但未达到胚部,最大注入深度为72μm。  相似文献   

8.
植物性脲酶抑制剂对作物营养和土壤特性的影响   总被引:6,自引:1,他引:6  
采用15N 尿素进行盆栽试验 ,研究了 4种植物材料 (P1、P2 、P3、P4 )作脲酶抑制剂对高粱和水稻营养效应及土壤特性的影响。结果表明 ,4种植物性脲酶抑制剂对水稻和P1对高粱生长、地上部干重有明显的提高作用 ,且植株叶绿素a b值变幅小。植物性脲酶抑制剂 (除P3外 )提高水稻叶片氨基酸含量 1 2 9%~ 2 5 1 %和植株氮素利用率 5 2 %~ 7 7% ,亦促进高粱植株对氮素的利用。 4种植物性脲酶抑制剂提高两种作物氮素表观利用率 4 3 %~ 1 9 2 %和水稻磷、钾吸收量 ,而对高粱磷、钾吸收有降低作用。植物性脲酶抑制剂能提高两种作物的土壤碱解氮含量。淹水条件下植物性脲酶抑制剂持续作用时间相对较短 ,水稻生长 3 6d ,土壤脲酶活性变化不大 ;高粱生长 48d ,土壤脲酶活性降低 1 0 5%~ 1 8 3 %。  相似文献   

9.
不同玉米自交系的抗旱力与超弱发光关系的研究   总被引:2,自引:3,他引:2  
本研究利用单光子分析法 ,对不同玉米自交系干种子和萌发种子的超弱发光值进行了测定 ,比较和分析了干旱胁迫 (PEG处理 )和非干旱胁迫 (水处理 )下 ,萌发时期玉米自交系种子的超弱发光规律与抗旱性的关系。结果表明 ,各玉米自交系干种子的超弱发光与其抗旱性相关不大 ;而在干旱胁迫和非干旱胁迫下 ,不同萌发时间的玉米自交系种子的超弱发光值存在明显差异。干旱胁迫使萌发种子的超弱发光值低于正常值 ,而不同基因型的超弱发光曲线在干旱和水处理条件下的拟合程度和发光衰减的起始时间不同 ,即抗旱自交系的曲线拟合程度高 ,发光衰减的起始时间较迟 ;非耐旱性自交系两处理曲线偏差较大 ,发光衰减的起始时间较早。我们认为 ,种子在萌动过程中 ,在干旱胁迫和正常水处理条件下发光曲线的拟合程度和发光衰减的起始时间可以作为鉴定品种抗旱性强弱的指标。  相似文献   

10.
~(60)Coγ辐射对野牛草干种子的刺激生长效应   总被引:10,自引:8,他引:10  
用不同剂量(25~300Gy)60Coγ射线辐射野牛草干种子,对辐射后干种子的发芽情况和幼苗的性状进行了室内和田间观测,结果表明:辐射可促进干种子萌发,特别是100Gy辐射剂量可明显提高种子的发芽率;对田间出苗率,幼苗的根长、高度而言,150Gy是其临界点;辐照剂量在100Gy以下对幼苗的茎叶和根系鲜重有促进作用;因而,从实验结果中我们初步确定促进野牛草种子萌发适宜的辐射剂量为100~150Gy。  相似文献   

11.
A collection of sorghum, including more than 12,000 Chinese landraces, has been constructed and maintained in China. However, the genetic diversity of Chinese sorghum landraces has not been fully investigated, and the origin of Chinese sorghum is still in dispute. In this study, the complete chloroplast genome sequence of sorghum line Tx623B was searched for simple sequence repeats (SSRs). 31 SSR loci with at least 10 mononucleotide repeats or five dinucleotide repeats were identified, and primer pairs for 27 loci were designed. Chloroplast DNA variation in cultivated sorghum was investigated by using these primer pairs on 185 Chinese sorghum landraces and 70 cultivated sorghum accessions from other countries. Among the 27 loci, 14 were polymorphic. The number of alleles per polymorphic locus ranged from 2 to 5 with an average of 2.79. Allelic data at 14 polymorphic loci were combined to give 12 haplotypes. The average allelic diversity index across the 14 polymorphic loci and corresponding haplotype diversity were markedly lower for Chinese sorghum landraces than were those for accessions from other countries. However, Chinese sorghum landraces shared a predominant allele at each polymorphic locus and a predominant haplotype with foreign accessions. Our results indicate that Chinese landraces experienced a severe maternal bottleneck during the introduction process with a predominant haplotype being present in 171 of 185 accessions analyzed. Except for one rare exception, haplotypes found in Chinese landraces were either identical or closely related to those found in foreign accessions and could not be separated clearly from them by cluster analysis. Our results are consistent with the hypothesis of African origin of Chinese sorghum.  相似文献   

12.
不同高粱种质对污染土壤中重金属吸收的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用重金属含量较高的污水污染土壤,以未污染土壤作对照,种植8个甜高粱品种、2个饲用高粱品种和1个粒用高粱品种,检测8种重金属在高粱植物体内不同器官的含量,以研究不同高粱种质对重金属的吸收特性。结果表明:甜高粱对汞(Hg)、镉(Cd)、锰(Mn)和锌(Zn)的吸收在两种土壤间差异显著,对钴(Co)、铬(Cr)、铅(Pb)和铜(Cu)的吸收差异不显著。Mn在甜高粱体内含量表现为未污染土壤高于污染土壤;而Zn含量在不同器官之间存在差异,未污染土壤叶中含量远高于穗,穗中含量远高于茎和根。不同重金属在甜高粱体内的储存部位不同,污染土壤上Hg、Cd、Co、Cr和Zn在根中积累量较高,Cu、Mn和Pb在穗中的积累量较高。甜高粱、饲用高粱和粒用高粱对重金属的吸收、运输及储存在品种之间差异较大,同一品种对不同重金属的吸收也存在差异。饲用高粱表现为叶部对Cr和Zn的储存量较高,而粒用高粱‘晋中0823’则显示了茎对多种重金属的储存能力。高粱根对土壤中重金属的富集系数较高,为0.02(Pb)~0.23(Cd),转移系数变幅为0.21(Co)~3.42(Pb)。对同一种重金属的吸收量品种间差异较大,甜高粱‘西蒙’根对Co、Cr、Cu、Mn、Pb和Zn具有高富集系数,粒用高粱‘晋中0823’茎对Hg、Cd、Mn、Pb和Zn富集系数较高。高粱对重金属的吸收能力与转移能力不同步,甜高粱‘绿能1号’具有对多种重金属的高转移能力,粒用高粱‘晋中0823’只对Zn有较高的转移能力。因此本文认为甜高粱对不同重金属的吸收和转移有选择性。对Zn吸收并转移到地上部后,首先储存在叶和穗中,当吸收量足够大时,茎和根也成为储存器官;对Mn的吸收与其他重金属的吸收存在竞争作用,Hg吸收后很少向地上部转移;而对Cu、Mn和Pb吸收后在穗部的储存量较大。饲用高粱与甜高粱相比对重金属的吸收未显示明显的不同,甜高粱‘西蒙’根对多种重金属具有强储存能力,而粒用高粱‘晋中0823’的茎秆显示了比甜高粱更强的储存能力,甜高粱‘绿能1号’对多种重金属的转移能力较强。所以,选择富集和转移能力均强的高粱品种能更有效地吸收土壤中的重金属,达到修复污染土壤的目的。  相似文献   

13.
Cookies were produced from different sorghum flours to determine their potential as vectors of antioxidants. Different sorghum cultivars and their flour extraction rates were evaluated for their effects on phenolic content and antioxidant activity of the cookies. Consumer acceptance of the sorghum cookies was compared with that of wheat flour cookies. For each sorghum cultivar, cookies of 100% extraction rate flours had two to three times more total phenolics compared with those of 70% extraction rate flours, while antioxidant activity was 22–90% higher. Cookies of the condensed tannin sorghum had two to five times more phenolics compared with those of condensed tannin‐free sorghum. Antioxidant activity was 145–227 μMol Trolox equivalents (TE)/g in cookies of condensed tannin sorghum compared with 10–102 μMol TE/g in those of condensed tannin‐free sorghum. The sorghum flours had slightly higher phenolic content and antioxidant activity values than their corresponding cookies. Cookies of the red tannin‐free sorghum flours (PAN 8564/8446) were equally liked as wheat flour cookies, except for texture. However, cookies of condensed tannin sorghum were least accepted compared with wheat flour cookies despite their high antioxidant activity.  相似文献   

14.
Abstract

Determination of the nutrient requirements of sorghum [Sorghum bicolor (L.) Moench] grown on acid soils is, a critical step in the development of plants which are adapted to these problem soils. Sorghum genotype, environment, and soil type interact with the uptake of elements and affect plant growth and production. This study compared the yields of a sorghum grain hybrid grown on a sandy loam soil at four acid pH levels. Nutrient concentrations in sorghum leaves on these soil regimes were also investigated. Grain yields declined 96% as soil pH decreased from 5.5 to 4.4. Leaf element analysis revealed that as pH decreased from 5.5 to 4.4, there was an increase in plant Al, Fe, Mn, K, P and a decrease in Cu, Zn, Mg, Ca. Interactions among several of these elements were readily apparent. Additional data involving different sorghum genotypes and different soil types are needed to establish a consistent pattern of element uptake on acid soils in relation to yield and plant production.  相似文献   

15.
The single kernel characterization system (SKCS) has been widely used in the wheat industry, and SKCS parameters have been linked to end‐use quality in wheat. The SKCS has promise as a tool for evaluating sorghum grain quality. However, the SKCS was designed to analyze wheat, which has a different kernel structure from sorghum. To gain a better understanding of the meaning of SKCS predictions for grain sorghum, individual sorghum grains were measured for length, width, thickness (diameter), and weight by laboratory methods and by the SKCS. SKCS predictions for kernel weight and thickness were highly correlated to laboratory measurements. However, SKCS predictions for kernel thickness were underestimated by ≈20%. The SKCS moisture prediction for sorghum was evaluated by tempering seven samples with varying hardness values to four moisture levels. The moisture contents predicted by SKCS were compared with a standard oven method and, while correlated, SKCS moisture predictions were less than moisture measured by air oven, especially at low moisture content. Finally, SKCS hardness values were compared with hardness measured by abrasive decortication. A moderate (r = 0.67, P < 0.001) correlation was observed between the hardness measurements. The SKCS predictions of kernel weight and diameter were highly correlated with laboratory measurement. Moisture prediction, however, was substantially lower by the SKCS than as measured by an air oven method. The SKCS should be suitable for measuring sorghum grain attributes. Further research is needed to determine how SKCS hardness predictions are correlated to milling properties of sorghum grain.  相似文献   

16.
The comparably low starch digestibility of cooked sorghum flours was studied with reference to normal maize. Four sorghum cultivars that represent different types of endosperm were used. Starch digestibilities of 4% cooked sorghum flour suspensions, measured as reducing sugars liberated following α-amylase digestion, were 15–25% lower than for cooked maize flour, but there were no differences among the cooked pure starches. After the flours were predigested with pepsin to remove some proteins, the starch digestibility of cooked sorghum flours increased 7–14%, while there was only 2% increase in normal maize; however, there was no effect of pepsin treatment on starch digestibility if the flours were first cooked and then digested. After cooking with reducing agent, 100 mM sodium metabisulfite, starch digestibility of sorghum flours increased significantly while no significant effect was observed for maize. Also, starch solubility of sorghum flours at 85 and 100°C was lower than in maize, and sodium metabisulfite increased solubility much more in sorghum than in maize. Differential scanning calorimetry results of the flour residue after α-amylase digestion did not show any peaks over a temperature range of 20–120°C, indicating that sorghum starches had all undergone gelatinization. These findings indicate that the protein in cooked sorghum flour pastes plays an important role in making a slowly digesting starch.  相似文献   

17.
Grain sorghum is often damaged by rain in the field and severely infected by grain mold, which includes Aspergillus infection and aflatoxin production. The objective of the study is to investigate the extent of aflatoxin production with Aspergillus infection in vitro in different sorghum genotypes with different pericarps, red, yellow, and white, the physical and chemical characteristics of grain during infection, and the changes in grain polyphenols and phytic acid in comparison to maize and groundnut. The physical characters and biochemical composition of sorghum grain contribute to make it less susceptible to Aspergillus infection and aflatoxin contamination compared to maize and groundnut. The lowest amounts of aflatoxin and ergosterol were observed in genotypes with red pericarp, whereas higher amounts of aflatoxin and ergosterol were found in white genotypes followed by maize and groundnut. All of the red genotypes differ in polyphenol composition and aflatoxin produced, showing resistance to mold damage. Another indication of resistance in red genotypes was the delayed peaking of aflatoxin production (9 days after infection). In red sorghum genotypes there was a significant, positive correlation existing between polyphenol content and aflatoxin produced at 3 and 6 days after infection, the r values being 0.589 and 0.513, respectively. The starch content decreased whereas the protein content in all sorghum genotypes increased during infection. Maximum phytic acid was observed in white sorghum genotypes. Phytic acid in yellow genotypes was found to have a significant negative correlation (r = -0.569) with aflatoxin produced.  相似文献   

18.
Brans of specialty sorghum varieties (high tannin, black, and black with tannin) were used to investigate the effects of sorghum phenolic compounds on starch digestibility of soft and hard sorghum endosperm porridges. Endosperms of varieties with the highest and lowest grain hardness index were mixed with brans of specialty sorghum varieties in the ratio of 85:15 and cooked into porridges with distilled water using a Rapid Visco Analyzer. Brans of condensed tannin containing sorghum varieties (high‐tannin and black with tannin sorghums) significantly (P < 0.05) decreased starch digestibility and estimated glycemic index (EGI) and increased resistant starch (RS) content of endosperm porridges. However, the addition of phenolic‐rich tannin‐free (mostly anthocyanins) black sorghum bran significantly (P < 0.05) increased starch digestibility and EGI but did not affect RS content of endosperm porridges. The disparate effects with black bran may, in part, result from its larger particle size and different bran structure compared with other sorghum varieties evaluated. Thus, our study showed that not only presence of phenolic compounds in the brans but also structural differences of specialty sorghum brans can have significant effects on starch digestibility.  相似文献   

19.
Identifying populations that have recently suffered a severe reduction in size is particularly important for their conservation as they are likely to suffer an increased risk of genetic erosion. We investigated the presence of recent bottlenecks in two wild sorghum populations from different eco-geographical conditions in Kenya employing 18 microsatellite markers. Microsatellite analysis showed high allelic diversity in the two populations, with a mean of 4.11 and 6.94 alleles per locus in the North-West wild sorghum population (NWWSP) and the South-East wild sorghum population (SEWSP), respectively. The mean observed heterozygosity was 0.34 and 0.56 in NWWSP and SEWSP, respectively. A large long-term effective populations size for both populations was observed assuming either an infinite allele model or a stepwise mutation model. There was no apparent loss of genetic variability for either of the populations. Test of heterozygosity excess indicated that a recent bottleneck in the two populations is highly unlikely. Furthermore, analysis of the allele frequency distribution revealed an L-shaped distribution which would not have been observed in case a recent bottleneck had reduced genetic variability in the two populations. The fact that most loci displayed a significant heterozygosity deficiency could be explained by population subdivision and the mixed mating system exhibited by wild sorghum populations. Furthermore, the possibility of a historical expansion of wild sorghum populations and presence of null alleles could not be ruled out.  相似文献   

20.

Background

The correct rate and timing of nitrogen (N) has the potential to improve sorghum productivity through modified grain yield components and quality. The impacts of in-season split application of N have little documentation.

Aim

An experiment was conducted to determine the optimum rate and timing of N to relate vegetative indices that govern nitrogen use efficiency and to maximize grain yield and quality under different soil types.

Methods

Pioneer 86P20 was grown in three environments on two different soil types following a completely randomized block design with nine N application treatments. Treatments included differing N rates applied at critical developmental stages of sorghum (planting, panicle initiation, and booting), accompanied with high temporal aerial phenotyping.

Results

Opportunities to increase grain protein content while using split N applications were observed, with panicle initiation identified as a critical developmental stage. In-season split application of N enhances grain yield under low soil mineral N. Split application of 31 kg N ha−1 each at the time of planting, panicle initiation, and booting emerged as optimum N treatment to increase protein content in sorghum. Vegetative indices, that is, normalized difference vegetation index and normalized difference red edge index are capable of predicting grain yield and protein content, respectively. Intra-panicle grain numbers and weights were altered significantly at different portions within panicles, with an opportunity to enhance yield potential at the bottom portion. The strong stay-green trait in this hybrid locked a large proportion of nitrogen in the leaves, which warrants the need for balancing stay-green and senescence in sorghum improvement programs.

Conclusions

Findings highlight that in grain sorghum remobilization of residual leaf N into grain is a target to increase yield and grain quality. An optimized stay-green trait balanced with senescence is recommended for enhancing sorghum yield potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号