首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four hundred and twenty intestinal content samples (not including intestinal tissues) of freshwater fishes (60 silver carps, 100 carps, 100 crucian carps, 60 catfishes and 100 zaieuws) caught from one water reservoir were examined bacteriologically for the occurrence of C. perfringens. Isolates were examined by polymerase chain reaction (PCR) for genes encoding the four lethal toxins (alpha, beta, epsilon and iota) for classification into toxin types and for genes encoding enterotoxin and the novel beta2 toxin for further subclassification. C. perfringens could be isolated in 75 intestinal contents samples (17.9%) from freshwater fish including: 13 silver carps, 2 carps, 12 crucian carps, 40 zaieuws, and 8 catfishes. In 75 isolates, 58 strains (77.3%) were C. perfringens toxin type C (alpha and beta toxin positive), 13 strains (17.3%) were toxin type A (alpha toxin positive) and 4 strains (5.3%) were toxin type B (alpha, beta and epsilon toxin positive). In addition, the gene encoding for beta2 toxin was found in 47 strains (62.7%) of all the isolates, seven from type A, two from type B, and 38 from type C. The gene encoding for enterotoxin was not found in any isolate. These amplified toxin gene fragment were cloned and sequenced and compared with reference strains, the identity varied from 98.15% to 99.29%. This is the first report of C. perfringens alpha, beta, epsilon, beta2 toxins in freshwater fish and of beta, epsilon toxins in fish in general, and is the first discovery that the beta2 toxin could be detected in strains of type B. The origin of this bacterium and its importance to human food poisoning in freshwater fish is discussed.  相似文献   

2.
Samples of faeces were taken from 166 healthy domesticated reindeer (Rangifer tarandus tarandus) from three flocks in different reindeer husbandry districts in northern Norway and examined bacteriologically for the presence of Clostridium perfringens. The organism was isolated from 98 (59 per cent) of the reindeer. The isolates were classified into C perfringens toxin types by PCR analysis specific for the genes encoding the four major toxins (alpha, beta, epsilon and tau) and were subclassified by the detection of the genes encoding C perfringens beta2-toxin and enterotoxin. All the isolates belonged to C perfringens toxin type A. In addition, 15 of the 98 isolates were PCR-positive for the beta2-toxin gene, and two of the isolates had the the gene encoding for enterotoxin.  相似文献   

3.
In a pilot study the presence and frequency of Clostridium (C.) perfringens was investigated among apparently healthy farm animals in the Shandong province of China. 748 faecal samples were collected from 9 pig-, 4 sheep-, 7 cattle- and 5 rabbit farms. C. perfringens was isolated from 124 samples (16.6%). The isolates were classified into major toxin types by using PCR analysis detecting the genes encoding these toxins. All isolates were identified as C perfringens toxin type A. There are also some reports from different regions in China linking C. perfringens toxin type A strains to gastrointestinal diseases. Therefore further investigations about the epidemiologic role of C perfringens toxin type A strains in the Shandong region are necessary. Currently, cases of enterotoxemia from this region are investigated for the presence of C perfringens.  相似文献   

4.
Clostridium perfringens isolated from lambs with dysentery (n=117) were analysed by a DNA amplification technique, the polymerase chain reaction (PCR), in order to determine the prevalence of the alpha-, beta-, beta 2-, epsilon-, iota- and enterotoxin genes. The most prevalent toxin type of C. perfringens found was type B, containing the alpha-, beta-, and epsilon-toxin genes, representing 46% of the cases with clostridial dysentery. C. perfringens type C containing the alpha-, and beta-toxin genes was isolated in 20% and type D, which is characterized by the alpha- and epsilon-toxin genes, was isolated in 28% of all isolates. The recently discovered, not yet assigned beta 2-toxigenic type of C. perfringens was represented in 6% of all isolates. No C. perfringens type A containing the alpha-toxin alone and no type E, which harbours the ADP-ribosylating iota-toxin, were found in the diseased animals. None of the samples contained the enterotoxin gene. Only one type of C. perfringens was found in a given herd, revealing the epidemiological use of PCR toxin gene typing of C. perfringens. The animals originated from 79 different herds with sizes ranging from 30 to 250 animals, bred in the area of northern Greece.  相似文献   

5.
6.
Eleven Clostridium perfringens type C strains isolated from fatal cases of hemorrhagic enterotoxemia of Canadian calves, a piglet, and a foal were studied for the production of soluble antigens. All the isolates from calves and a foal failed to produce delta toxin, but were capable of producing large amounts of lethal beta toxin. A strain isolated from a piglet produced delta, but very little beta toxin. Other differences were relatively minor. The results indicated that young domestic animals may be susceptible to all subtypes of C. perfringens type C. A simple method of using blood agar plates coated with type A antiserum for demonstration of hemolytic patterns was found advantageous in differentiation of C. perfringens strains.  相似文献   

7.
Clostridium perfringens type D-producing epsilon toxin is a common cause of death in sheep and goats worldwide. Although anti-epsilon toxin serum antibodies have been detected in healthy non-vaccinated sheep, the information regarding naturally acquired antibodies in ruminants is scanty. The objective of the present report was to characterize the development of naturally acquired antibodies against C. perfringens epsilon toxin in goats. The levels of anti-epsilon toxin antibodies in blood serum of goat kids from two different herds were examined continuously for 14 months. Goats were not vaccinated against any clostridial disease and received heterologous colostrums from cows that were not vaccinated against any clostridial disease. During the survey one of these flocks suffered an unexpectedly severe C. perfringens type D enterotoxemia outbreak. The results showed that natural acquired antibodies against C. perfringens epsilon toxin can appear as early as 6 weeks in young goats and increase with the age without evidence of clinical disease. The enterotoxemia outbreak was coincident with a significant increase in the level of anti-epsilon toxin antibodies.  相似文献   

8.
Enterotoxemia caused by Clostridium perfringens type D in sheep is believed to result from the action of epsilon toxin (ETX). However, the sole role of ETX in the intestinal changes of the acute and chronic forms of enterotoxemia in goats remains controversial, and the synergistic action of other C. perfringens toxins has been suggested previously. The current study examined 2 goats that were found dead without premonitory clinical signs. Gross lesions at necropsy consisted of multifocal fibrinonecrotic enterocolitis, edematous lungs, and excess pleural fluid. Histologically, there were multifocal fibrinonecrotic and ulcerative ileitis and colitis, edema of the colonic serosa, and proteinaceous interstitial edema of the lungs. Clostridium perfringens type D carrying the genes for enterotoxin (CPE) and beta2 toxin (CPB2) was cultured from intestinal content and feces of 1 of 2 goats, while C. perfringens type D CPB2-positive was isolated from the other animal. When multiple colonies of the primary isolations from both animals were tested by Western blot, most of the isolates expressed CPB2, and only a few isolates from the first case expressed CPE. Alpha toxin and ETX were detected in ileal and colonic contents and feces of both animals by antigen capture enzyme-linked immunosorbent assay. CPB2, but not CPE, was identified in the small and large intestines of both goats by immunohistochemistry. These findings indicate that CPB2 may have contributed to the necrotic changes observed in the intestine, possibly assisting ETX transit across the intestinal mucosa.  相似文献   

9.
Clostridium perfringens is ubiquitous in the environment and the intestinal tracts of most mammals, but this organism also causes gas gangrene and enteritis in human and animal hosts. While expression of specific toxins correlates with specific disease in certain hosts, the other factors involved in commensalism and host pathogenesis have not been clearly identified. A multilocus sequence typing (MLST) scheme was developed for C. perfringens with the aim of grouping isolates with respect to disease presentation and/or host preference. Sequence data were obtained from one virulence and seven housekeeping genes for 132 C. perfringens isolates that comprised all five toxin types and were isolated from 10 host species. Eighty sequence types (STs) were identified, with the majority (75%) containing only one isolate. eBURST analysis identified three clonal complexes, which contained 59.1% of the isolates. Clonal complex (CC) 1 contained 31, predominantly type A isolates from diverse host species. Clonal complex 2 contained 75% of the bovine type E isolates examined in this study. Clonal complex 3 consisted predominantly of porcine type A and type C isolates. Interestingly, these porcine isolates (n=32) all carried consensus cpb2 and cna genes, encoding beta2 toxin and CpCna, a collagen binding protein, respectively. This compares to carriage of both these genes by only 3.6% of porcine isolates not present in clonal complex 3 (n=28). The data obtained indicates that MLST may be used to identify host species relationships with respect to these C. perfringens isolates.  相似文献   

10.
Necrotic enteritis (NE) and gangrenous dermatitis (GD) are important infectious diseases of poultry. Although NE and GD share a common pathogen, Clostridium perfringens, they differ in other important aspects such as clinical signs, pathologic symptoms, and age of onset. The primary virulence factors of C perfringens are its four major toxins (alpha, beta, epsilon, iota) and the newly described NE B-like (NetB) toxin. While neutralizing antibodies against some C perfingens toxins are associated with protection against infection in mammals, the serologic responses of NE- and GD-afflicted birds to these toxins have not been evaluated. Therefore, we measured serum antibody levels to C perfringens alpha-toxin and NetB toxin in commercial birds from field outbreaks of NE and GD using recombinant toxin-based enzyme-linked immunosorbent assay (ELISA). Initially, we used this ELISA system to detect antibody titers against C perfringens alpha-toxin and NetB toxin that were increased in birds experimentally coinfected with Eimeria maxima and C perfringens compared with uninfected controls. Next, we applied this ELISA to field serum samples from flock-mated birds with or without clinical signs of NE or GD. The results showed that the levels of antibodies against both toxins were significantly higher in apparently healthy chickens compared to birds with clinical signs of NE or GD, suggesting that these antitoxin antibodies may play a role in protection against NE and GD.  相似文献   

11.
Two Quarter Horse foals from different premises died from enterotoxemia. Clostridium perfringens toxins alpha and beta were demonstrated in the foal's intestines by mouse protection tests. Clostridium perfringens type C was isolated from the intestines of each foal. Histologic examination revealed hemorrhage, necrosis, and massive numbers of C perfringens.  相似文献   

12.
Due to the diminished use of growth-promoting antibiotics in the European Union, Clostridium perfringens induced necrotic enteritis and subclinical disease have become important threats to poultry health. A study was set up to genotypically and phenotypically characterise C. perfringens isolates from poultry flocks with different health status. Animals from healthy flocks were sampled by cloacal swabs, while intestinal and liver samples of animals suffering from necrotic enteritis were analysed. A total of 27 isolates was obtained from 23 broiler flocks without clinical problems and 36 isolates were obtained from 8 flocks with clinical problems. Using PFGE typing, high genetic diversity was detected between isolates from different flocks. Isolates derived from flocks where disease outbreaks occurred were clonal within each flock, but each flock harboured a different clone. All isolates were of toxin type A. Isolates from 5 out of 35 PFGE types carried the cpb2 gene, encoding the beta2 toxin, and isolates from 2 out of 35 PFGE types harboured the cpe gene, encoding the enterotoxin. In vitro alpha toxin production for all isolates was quantified by enzyme-linked immunosorbent assay. It was shown that in vitro alpha toxin production of C. perfringens isolates from diseased flocks was not higher than in vitro alpha toxin production from isolates derived from healthy flocks.  相似文献   

13.
Postmortem examination of a Boer buck kid that died peracutely revealed diffusely congested, edematous bowel. Clostridium perfringens Type A was isolated. Some isolates carried the gene for beta2 toxin, suggesting a role for beta2 toxin in caprine enterotoxemia, a common cause of death in growing kids.  相似文献   

14.
Currently, the factors/toxins responsible for Clostridium perfringens-associated avian enteritis are not well understood. To assess whether specific C. perfringens' toxinotypes are associated with avian enteritis, the isolates of C. perfringens from 31 cases of avian necrotic or ulcerative enteritis submitted between 1997 and 2005 were selected for retrospective analysis using multiplex PCR. C. perfringens was isolated from chickens, turkeys, quail, and psittacines. The toxinotypes of isolates from diseased birds were compared against the toxinotype of 19 C. perfringens isolates from avian cases with no evidence of clostridial enteritis. All C. perfringens isolates were classified as type A regardless of species or disease history. Although many isolates (from all avian groups) had the gene encoding the C. perfirngens beta2 toxin, only 54% produced the toxin in vitro when measured using Western blot analysis. Surprisingly, a large number of healthy birds (90%) carried CPB2-producing isolates, whereas over half of the cpb2-positive isolates from diseased birds failed to produce CPB2. These data from this investigation do not suggest a causal relationship between beta2 toxin and necrotic enteritis in birds.  相似文献   

15.
Enterotoxemia attributable to Clostridium perfringens type D in goats is difficult to diagnose because of a lack of specific clinical signs or postmortem lesions, on which to base the diagnosis. This report describes the clinical signs, postmortem lesions, and clinical responses to treatment and vaccination in 4 goat herds, in which a diagnosis of enterotoxemia was confirmed. Four clinical cases had the diagnosis confirmed on the basis of signs of diarrhea or sudden death and the isolation of C perfringens and epsilon toxin from the feces at the time of admission. The 10 necropsy cases were diagnosed on the basis of the isolation of C perfringens (not typed) or epsilon toxin from the intestinal contents of goats that died with clinical signs compatible with enterotoxemia and without lesions associated with a second serious disease. Enterocolitis was the most consistent lesion reported at necropsy in the 10 goats with enterotoxemia. Ovine enterotoxemia vaccines were of limited value in preventing enterotoxemia. These observations imply that naturally induced enterotoxemia in goats involves a different pathophysiologic mechanism than that associated with enterotoxemia in sheep.  相似文献   

16.
Typing of Clostridium perfringens strains by PCR-based determination of toxin genes proved to be a reliable method for diagnosis of enterotoxaemia in various animal species. We report the establishment and validation of three real-time fluorogenic (TaqMan) multiplex PCRs for the detection of C. perfringens alpha-, beta-, beta2-, epsilon-, entero- and iota-toxin genes. The composition of the PCRs was chosen with regard to robustness of the assays and in order to increase sensitivity compared to the conventional simplex PCRs. The combination of probe dyes selected for the real-time assays (FAM/TAMRA, Cy-5/BHQ-2 and VIC/TAMRA) as well as the designation of the chromosome-borne alpha-toxin as internal positive control allowed the creation of highly specific and sensitive, as well as time and cost effective PCRs. One hundred and three strains of C. perfringens isolated in Switzerland derived from clinical or suspected cases of enterotoxaemia in 10 different animal species were tested. The toxin genotypes were in agreement in both the conventional PCRs and the newly designed multiplex PCRs. Furthermore, the real-time PCR carried out as simplex allows to quantitate the copy numbers of plasmid-borne toxin genes in relation to the chromosomally located alpha-toxin gene.  相似文献   

17.
A total of 192 isolates of Clostridium perfringens were isolated from 99 broiler chickens and 93 capercaillies (Tetrao urogallus). Fifty of the isolates from broilers and 44 of the isolates from capercaillies were from birds with necrotizing enteritis, and the remainder were from birds without this disease. The isolates were tested for the production of three major toxins (alpha, beta, and epsilon) and four minor toxins (theta, gelatinase, mu, and nu). All isolates were found to be C. perfringens type A. Alpha toxin was produced in significantly larger amounts by isolates from birds with necrotizing enteritis than by isolates from birds without the disease, regardless of bird species. Isolates from broilers produced significantly more alpha toxin than did isolates from capercaillies.  相似文献   

18.
Clostridium perfringens type C is an important cause of enteritis and/or enterocolitis in several animal species, including pigs, sheep, goats, horses and humans. The disease is a classic enterotoxemia and the enteric lesions and associated systemic effects are thought to be caused primarily by beta toxin (CPB), one of two typing toxins produced by C. perfringens type C. This has been demonstrated recently by fulfilling molecular Koch's postulates in rabbits and mice. We present here an experimental study to fulfill these postulates in goats, a natural host of C. perfringens type C disease. Nine healthy male or female Anglo Nubian goat kids were inoculated with the virulent C. perfringens type C wild-type strain CN3685, an isogenic CPB null mutant or a strain where the cpb null mutation had been reversed. Three goats inoculated with the wild-type strain presented abdominal pain, hemorrhagic diarrhea, necrotizing enterocolitis, pulmonary edema, hydropericardium and death within 24h of inoculation. Two goats inoculated with the CPB null mutant and two goats inoculated with sterile culture media (negative controls) remained clinically healthy during 24h after inoculation and no gross or histological abnormalities were observed in the tissues of any of them. Reversal of the null mutation to partially restore CPB production also increased virulence; 2 goats inoculated with this reversed mutant presented clinical and pathological changes similar to those observed in goats inoculated with the wild-type strain, except that spontaneous death was not observed. These results indicate that CPB is required for C. perfringens type C to induce disease in goats, supporting a key role for this toxin in natural C. perfringens type C disease pathogenesis.  相似文献   

19.
Clostridium perfringens phospholipase C (Cp-PLC), also called alpha-toxin, is encoded by the plc gene and has been implicated in several diseases; however, only a few studies have described polymorphisms in this gene. The aim of this study was to analyze polymorphisms in the Cp-PLC nucleotide and amino acid sequences obtained from isolates from different regions and to compare them to Clostridium phospholipase C sequences deposited in the NCBI database. Environmental samples (sediment, poultry feed, sawdust) and stool samples (from poultry, bovine, swine, horse, caprine, bird, dog, rabbit, toucan) were collected from healthy and sick animals. A total of 73 isolates were analyzed with the majority of samples belonging to the toxin type A subtype and possessing the gene encoding for the beta-2 toxin. Comparison of plc gene sequences from respective isolates revealed a high genetic diversity in the nucleotide sequences of mature Cp-PLC. Sequence comparisons identified 30 amino acid substitutions and 34 isoforms including some isoforms with substitutions in amino acids critical to toxin function. Comparison of sequences obtained in this study to Cp-PLC sequences obtained from the NCBI database resulted in the identification of 11 common haplotypes and 22 new isoforms. Phylogenetic analysis of phospholipase C sequences obtained from other Clostridium species identified relationships previously described. This report describes a broad characterization of the genetic diversity in the C. perfringens plc gene resulting in the identification of various isoforms. A better understanding of sequences encoding phospholipase C isoforms may reveal changes associated with protein function and C. perfringens virulence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号