首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小兴安岭天然针阔混交林择伐后土壤呼吸动态变化   总被引:6,自引:2,他引:4  
采用LI-8100土壤CO2排放通量全自动测量系统,针对小兴安岭带岭林业局东方红林场不同择伐强度的针阔混交林样地,测定林地生长季土壤呼吸速率以及10cm土深处的温度和湿度,探讨生长季土壤呼吸的日变化、季节变化和年通量。结果表明:土壤呼吸日变化动态与土壤温度日变化动态基本一致,呈明显的单峰曲线。采伐强度不同间接影响着土壤呼吸速率。研究表明:针阔混交林土壤呼吸速率均值在0.6—8.2μml·m^-2·s^-1之间,高于同纬度其他地区;雨季(6月、7月、8月、9月)土壤呼吸明显大于旱季(5月、10月、11月);针阔混交林生态系统土壤呼吸不同月份通量值在1.68~18.82mol·m^-2之间,最大值和最小值分别出现在7月和11月。与北半球温带森林生态系统土壤呼吸变化趋势基本一致。2006年针阔混交林生态系统土壤呼吸通量为84.37mol·m^-2,与朝鲜半岛硬阔混交林土壤呼吸相似,但比一些热带地区的结果偏大。  相似文献   

2.
樟树人工林土壤呼吸的动态变化   总被引:4,自引:0,他引:4  
以长沙市城市森林中的樟树人工林为研究对象,用LI-COR-6400-09测定樟树人工林生长期土壤呼吸的日变化、全年的季节变化,并分析其与土壤温度因子之间的关系.结果表明:土壤呼吸的日变化呈单峰曲线,最高值出现在15:00~20:00,最低值均出现在早晨5:00~6:00,与5cm处土壤温度变化相一致,呈显著正相关;季节变化呈不规则的曲线格局,年均土壤呼吸速率为443.52mg·m^-2h^-1,最大值为976.54mg·m^-2h^-1,出现在7月下旬5cm处土壤温度最高时,最小值为23.13mg·m^-2h^-1,出现在1月下旬5cm处土壤温度最低时;樟树人工林土壤呼吸的季节变化与土壤温度呈显著的指数相关,拟合方程为Rs=0.1598e0.1355t,R2=0.949,P〈0.000,土壤温度可以分别解释土壤呼吸变化的94.9%;土壤呼吸温度敏感性Q10值为3.88.  相似文献   

3.
近年来的研究表明非生长季生物活动和生物地球化学循环仍然十分活跃。本研究利用Licor-8100测定了2010-2013年期间的非生长季辽东山区落叶松人工林土壤呼吸速率,分析了非生长季内土壤呼吸速率变化规律及其对土壤温度的响应,并且估算了非生长季土壤CO2释放量。结果表明,2010-2011年土壤呼吸速率平均值为0.6±0.06μmol CO2·m-2·s-1,最小值出现在1月中旬;2011-2012年平均值为0.42±0.02μmol CO2·m-2·s-1,最小值出现在2月初;2012-2013年平均值为0.48±0.05μmol CO2·m-2·s-1,最小值出现在1月末。指数模型能够很好地模拟土壤呼吸速率随10 cm深度土壤温度变化的规律,表明土壤温度能够很好地解释土壤呼吸速率的变异规律。2010-2011、2011-2012和2012-2013年土壤CO2释放量分别为137、92和100 g C·m-2。  相似文献   

4.
太岳山油松人工林土壤呼吸组分及其影响因子   总被引:3,自引:0,他引:3  
采用挖壕法测定无根和有根样地的土壤呼吸,确定太岳山油松人工林群落土壤呼吸中异养呼吸和根系自养呼吸的贡献率及其影响因子。结果表明:对照与挖壕样方土壤温度和湿度均呈显著的季节变化;2010和2011年土壤呼吸速率和异养呼吸速率均值分别为2.71和2.22μmol·m-2s-1,2010和2011年异养呼吸速率比土壤呼吸速率分别下降了13.7%和21.1%;2010—2011年土壤自养呼吸速率为0.01~0.89μmol·m-2s-1,自养呼吸速率均值为0.49μmol·m-2s-1,2年间自养呼吸速率贡献率为0.2%~37.7%,年均自养呼吸速率贡献率为20.2%;土壤呼吸速率、异养呼吸速率与土壤2,5和10cm深处土壤温度均呈显著指数相关(P0.001),而土壤呼吸速率、异养呼吸速率与5cm深处土壤湿度的相关性并不显著(P0.05);利用2cm深处土壤温度拟合土壤呼吸速率和异养呼吸速率时,异养呼吸速率的温度敏感系数Q10值略高;土壤温度和湿度的双变量模型可以很好地解释土壤呼吸速率和异养呼吸速率的季节变化,拟合方程的R2值为0.70~0.78。  相似文献   

5.
刘颖  韩士杰  林鹿 《林业研究》2009,20(4):367-371
2004年5月至9月,研究了长白山白桦林土壤呼吸以及根系呼吸对土壤呼吸的贡献随土壤温度和土壤湿度的季节变化,研究结果表明:土壤总呼吸、断根土壤呼吸和根系呼吸在生长季内有相似的季节变化趋势,夏季潮湿而且温度较高,呼吸速率也较高,春季和秋季温度较低,呼吸速率也较低。2004年5月至9月,土壤总呼吸、断根土壤呼吸和根系呼吸的平均值分别为4.44,2.30和2.14μmol·m^-2s^-1,三者与土壤温度均呈指数相关,与土壤湿度呈线性相关,三者的Q10值分别为2.82,2.59和3.16,这与其他学者的结果相似。根系呼吸是土壤呼吸的一个重要组成部分,2004年5月至9月,根系呼吸对土壤总呼吸的贡献在29.3~58.7%之间。根据Q10模型估算的土壤总呼吸、断根土壤呼吸和根系呼吸的全年平均值分别为1.96、1.08和0.87μmol·m^-2s^-1,即741.73、408.71和329.24gC·m^-2·a^-1,全年根系对土壤总呼吸的贡献为44.4%。土壤呼吸和土壤温度之间的关系模型是了解和预测长白山白桦林生态系统潜在的随森林管理和气候变化而变化的有用工具。  相似文献   

6.
选择青海湖高寒湿地植物群落为研究对象,分析了湿地不同植物群落土壤呼吸生长季高峰日变化特征及温湿度因子的影响,利用土壤碳通量测量系统LI-8100A测定了6种植物群落土壤呼吸速率日变化,通过实测的温度因子以及一次降水前后土壤表层湿度的变化研究了其对土壤呼吸速率的影响,结果表明:6种不同群落土壤呼吸速率日变化都呈单峰曲线,在生长季高峰芨芨草、芨芨草+马莲花、马莲花、华扁穗、苔草(台地)、苔草(洼地)土壤呼吸速率的日最高值分别为4.51μmol·m-2·s-1、12.22μmol·m-2·s-1、13.40μmol·m-2·s-1、2.55μmol·m-2·s-1、5.28μmol·m-2·s-1,3.89μmol·m-2·s-1。群落呼吸速率峰值出现在14:00~16:00,谷值出现在3:00~6:00。10点过后,土壤呼吸速率上升趋势明显。土壤呼吸与群落地下5cm地温有着良好的相关性,随着温度升高,土壤呼吸值增大,当土壤温度达到最大值时,土壤呼吸值也随之达到最大。湿度对于土壤呼吸速率的响应比较明显,在一次降水前后除了苔草(洼地),其余群落土壤呼吸速率随着土壤表层湿度的升高而降低。  相似文献   

7.
黄土高原地区柠条人工林土壤呼吸   总被引:4,自引:0,他引:4  
2005—2008年用红外气体分析法测定柠条人工林地的土壤呼吸。结果表明:柠条林地土壤呼吸具有明显的日变化特征,最大值出现在14:00左右,最低值出现在凌晨;柠条林地3—12月的土壤呼吸总量为814.9~1224.7gC·m-2,表现出明显的季节变化和年际变化;土壤呼吸与土壤温度呈显著指数正相关,方程的决定系数R2为0.31~0.67,由拟合的指数方程系数计算出柠条林2005,2006,2007和2008年的Q10值分别为2.02,1.70,1.76和1.75,生长季和非生长季的Q10值分别为0.64和2.11;2005和2006年土壤呼吸速率与土壤水分呈极显著线性相关(P0.01),方程的决定系数R2在0.30左右,而2007和2008年则不显著(P0.05);生长季(5—9月)土壤水分起主要作用,可以解释土壤呼吸季节变化的55%,非生长季土壤温度起主要作用,可以解释土壤呼吸季节变化的37%;4个双因子模型可以解释土壤呼吸季节变化的51%~83%。  相似文献   

8.
[目的]研究土壤呼吸对气候变暖和干旱的响应,阐明全球气候变化与土壤碳排放之间的反馈关系。[方法]采用红外辐射增温和林内穿透雨减少技术模拟气候变暖和干旱,通过LI-8100土壤CO2通量测定系统对生长季土壤呼吸速率进行观测,分析了干旱年不同处理(对照、增温+减雨、增温、减雨)对土壤呼吸速率的影响。[结果]显示:生长季,以上4种处理的土壤呼吸速率分别为1.78、1.84、2.02和2.01μmol·m~(-2)·s~(-1),5 cm土壤温度和土壤湿度分别可以解释土壤呼吸速率变异的68.2%87.5%和51.0%66.6%。干旱期,以上4种处理的土壤呼吸速率均低于生长季,增温处理降低了土壤呼吸速率与土壤温度的相关性,但增加了土壤呼吸速率与土壤湿度的相关性。[结论]干旱年内,土壤温度和湿度是影响该区土壤呼吸速率的主要环境因子,干旱期增温处理引起土壤湿度对土壤呼吸的限制作用削弱了气候变暖与土壤碳排放之间的正反馈作用。  相似文献   

9.
以内蒙古大青山华北落叶松成熟林为研究对象,对生长季林地土壤呼吸速率及土壤温度、湿度进行定位监测,分析了土壤呼吸速率变化特征与土壤水热因子之间的相互作用规律。结果表明:(1)林地土壤呼吸速率有明显的季节动态变化和日变化规律。生长季5~9月土壤呼吸速率大小表现为:7月﹥8月﹥9月﹥5月﹥6月;月平均呼吸速率值区间在1.272~3.702μmol·m-2 s-1,平均值为2.323μmol·m-2 s-1。生长初期5月、中期7月和末期9月的单日呼吸速率变化均呈单峰曲线,峰值在12:00~16:00出现,最小值在03:00~06:00出现。(2)生长季林地土壤呼吸速率对土壤湿度的敏感性高于土壤温度,与土壤0~15 cm层湿度之间具有极显著的指数相关关系(P﹤0.01),与温度之间存在显著的线性关系(P﹤0.05)。土壤呼吸速率与土壤温度、湿度之间具有极显著的复合线性关系(P﹤0.01),线性模型对生长季土壤呼吸碳通量的预测具有参考意义。  相似文献   

10.
不同强度采伐5年后杉阔混交人工林土壤呼吸速率差异   总被引:1,自引:0,他引:1  
【目的】比较不同采伐强度下闽北杉阔混交人工林土壤及其各组分的呼吸速率差异,揭示土壤总呼吸速率季节变化的主要影响因子,以期为区域森林采伐对土壤呼吸速率的影响研究提供科学依据。【方法】以闽北杉阔混交人工林为研究对象,2011年8月实施了不同蓄积量采伐强度(中度择伐34.6%、强度择伐48.6%、极强度择伐67.6%、皆伐)作业试验,并与未采伐对照;2016年7月—2017年7月运用Li-8100 A土壤碳通量自动测量系统,对土壤及其各组分的呼吸速率、土壤5 cm深处的温度和湿度开展了为期1年的定位观测。【结果】未采伐和各种强度择伐5年后,土壤总呼吸速率最大值都出现在7月份,最小值出现在1—3月份;皆伐5年后,土壤总呼吸速率最大值出现在6月份,最小值出现在11月份;各种强度采伐林地的矿质土壤呼吸速率与未采伐林地无显著差异( P >0.05);各种强度择伐林地的凋落物和根系呼吸速率都与未采伐林地无显著差异( P >0.05),而皆伐林地的凋落物和根系呼吸速率都显著低于未采伐林地( P <0.05),分别比未采伐林地(1.45和1.11 μmol ·m^-2 s^-1 )减少了0.93和0.53 μmol ·m^-2 s^-1;各种强度择伐林地的土壤总呼吸速率与未采伐林地无显著差异( P >0.05),而皆伐林地的土壤总呼吸速率显著低于未采伐林地( P <0.05),比未采伐林地(4.39 μmol ·m^-2 s^-1 )减少了1.64 μmol ·m^-2 s^-1;中度、强度和极强度择伐林地5 cm深处的土壤温度与未采伐林地没有显著差异( P >0.05),而皆伐使林地土壤温度显著升高( P <0.05),比未采伐林地(18.52 ℃)增加了4.7 ℃;中度、强度择伐林地的5 cm深处土壤湿度与未采伐没有显著差异( P >0.05),而极强度择伐和皆伐使林地土壤湿度显著降低( P <0.05),分别比未采伐林地(30.67%)减少了2.17%和3.98%;土壤总呼吸速率的土壤温度指数模型拟合效果最优,能解释未采伐和各种强度择伐林地土壤总呼吸变化的77.8%~83.3%以及皆伐林地土壤呼吸变化的35.5%;未采伐、中度、强度和极强度择伐林地土壤总呼吸的温度敏感性参数Q 10 为1.77~2.72,皆伐林地的 Q 10 为1.49。【结论】不同强度采伐5年后,各种强度择伐林地土壤及其各组分的呼吸速率与未采伐林地没有显著差异;皆伐使凋落物呼吸速率、根系呼吸速率和土壤总呼吸速率都显著降低;各种强度择伐没有改变土壤总呼吸速率的季节变化规律,但皆伐使土壤总呼吸速率最大和最小出现时间有所提前;研究区土壤温度是土壤总呼吸速率季节变化的主要影响因子。  相似文献   

11.
华北石质山区刺槐人工林的土壤呼吸   总被引:5,自引:0,他引:5  
2006年1-12月,利用Li-8100土壤呼吸自动观测系统及AR5土壤温度湿度自动观测系统观测土壤呼吸速率、土壤温度及湿度,分析华北石质山区35年生刺槐林土壤呼吸速率时间变化规律及其影响机制.结果表明:1)刺槐林土壤呼吸速率日内变化特征不明显,但日际及季节变化明显,全年呈现出单峰变化趋势,且与土壤温度的日际及季节变化趋势基本一致.具体表现为: 1-3月土壤呼吸速率较低,日际变化略有波动,从4月开始逐渐上升 ,直至7月达到最大值,而后开始逐渐下降,直至11月约降低至1-3月时的水平,并保持到1 2月.全年土壤呼吸速率平均值为2.50 μmol·m-2s-1,主要生长季(4-10月 )土壤呼吸速率明显高于非主要生长季(1、2、11及12月),二者分别为3.63与0.90 μmo l·m-2s-1 .2) 刺槐林地土壤呼吸速率与表层0 cm、地下5、10、15和20 cm 深度处土壤温度都存在极显著的指数相关关系(p<0.01),且与土深20 cm处温度的相关性最好.上述不同深度处的Q10值分别是2.20、2.28、2.34、2.40和2.48. 3)刺槐林地土壤含水量与土壤呼吸速率的相关关系不明显.  相似文献   

12.
本研究对鄂尔多斯高原沙化灌丛群落油蒿土壤呼吸日变化和季节变化进行了野外定位观测,并对其环境驱动因子进行了初步的探讨.结果表明:油蒿群落两个不同生长期土壤呼吸日变化及其对温度因子的响应存在差异.营养生长期,土壤呼吸日变化不明显,且土壤呼吸速率和温度日变化无显著的相关关系;而在生殖生长期,土壤呼吸日变化非常明显,气温及0-10 cm土壤温度日变化与土壤呼吸速率相关显著(P<0.05).整个生长季期间,土壤呼吸高峰期出现在7-8月,与该段时间水热因子条件最佳且配置较好密切相关.荒漠灌丛生态系统中,降雨是土壤呼吸出现激发现象的控制因素.降雨对土壤产生的干湿交替作用能够显著提高土壤呼吸速率.生长季期间,土壤呼吸速率变化与气温及0-10 cm土壤含水量变化的相关性显著(P<0.05).通过逐步回归发现,0-10 cm土壤含水量的变化能够说明生长季土壤呼吸速率变化的41.9% (P<0.05).图3表2参34.  相似文献   

13.
长沙樟树人工林生长季土壤呼吸特征   总被引:2,自引:1,他引:1  
用LI-COR-6400-09测定并研究湖南长沙樟树人工林生长季节土壤呼吸速率的日变化及季节变化规律,分析土壤呼吸与土壤水热因子的关系.结果表明:樟树林生长季土壤呼吸速率日变化呈单峰曲线,与5 cm深处土壤温度日变化相一致,2者呈显著指数相关,P=0.003;樟树林土壤呼吸速率季节变化显著,呈不规则曲线波动,平均呼吸速率为4.0 μmol CO2·m-2s-1,与5 cm深处土壤温度之间呈显著指数相关,拟合方程为Y=O.324 2e0.1064x,R2=0.903,P=0.001,与5 cm土壤湿度呈显著二次曲线相关,模拟方程为Y=-0.026 1w2 1.869w-28.406,R2=0.436,P=0.05,土壤温度和湿度可以分别解释土壤呼吸变化的90.3%和43.6%;由拟合的指数方程计算出樟树林生长季节的Q10值为2.9,4-6、7-8和9-10月Q10.值分别为3.08,1.59和2.72,呈现Q10.值随土壤温度升高而下降的趋势;土壤呼吸速率同时受土壤湿度的影响,当土壤湿度小于35.8%时,土壤呼吸与土壤湿度呈正相关,但当土壤含水量超过35.8%这个阈值,土壤湿度就成了土壤呼吸的抑制因子.  相似文献   

14.
择伐对生长季针阔混交林土壤分室呼吸的影响   总被引:3,自引:0,他引:3  
采用LI-8100土壤CO2排放通量全自动测量系统和与之配套的土壤温度、湿度传感器,对小兴安岭带岭林业局东方红林场观测样地不同强度择伐后,测定林地生长季土壤分室呼吸速率以及10 cm土深处的温度和湿度,探讨生长季土壤各分室呼吸的年际变化.结果表明:枯枝落叶层土壤呼吸速率生长季平均值呈逐年增加的趋势,观测期内枯枝落叶层土壤呼吸速率均值与采伐强度呈二次相关的关系(R2=0.806);根系呼吸速率生长季平均值逐年变化较复杂,差异较大,观测期内根系呼吸速率均值与采伐强度亦呈二次相关的关系(R2=0.415);矿质土壤呼吸速率生长季平均值呈逐年增加的趋势,与采伐强度相关性不显著.土壤温度和湿度是影响土壤分室呼吸速率变化的2个重要因素.枯枝落叶层和矿质土壤层是控制择伐后林地土壤呼吸变化的关键组分.为降低择伐后林地CO2排放增加速率,应选用中小强度(52%以下)的择伐作业.  相似文献   

15.
【目的】从生态系统尺度揭示排水造林干扰对温带沼泽湿地碳源/汇功能的影响规律及其影响机制,以期为湿地碳汇管理提供科学依据。【方法】选取小兴安岭沼泽湿地排水造林后不同时期(10,30年)形成的人工兴安落叶松林及天然草丛沼泽为研究对象,采用静态箱-气相色谱法、碳/氮分析仪测定法与相对生长方程法,同步测定10,30年生人工兴安落叶松林及相应立地上天然草丛沼泽的土壤呼吸(CO_2、CH_4)碳排放量、植被净初级生产力与年净固碳量,并依据生态系统净碳收支平衡揭示排水造林对温带沼泽湿地碳源/汇的影响规律。【结果】排水造林改变了草丛沼泽CH_4排放的季节变化趋势,由单峰排放型转化为排放与吸收交替型,并使CH_4源/汇功能发生了转化,由草丛沼泽CH_4强排放源(年通量1.780 mg·m~(-2)h~(-1))转化为人工林CH_4弱吸收汇(年通量-0.006 mg·m~(-2)h~(-1));排水造林对草丛沼泽土壤CO_2排放年通量(168.07~220.43 mg·m~(-2)h~(-1))并无显著影响,10,30年生人工兴安落叶松林土壤CO_2排放年通量分别较草丛沼泽降低12.8%(P0.05)和提高14.3%(P0.05);排水造林改变了草丛沼泽CH_4和CO_2排放主控因子,即其CH_4主控因子由30~40 cm土壤温度转化为与土壤温度不相关,草丛沼泽土壤CO_2主控因子为气温及0~30 cm土壤温度,10和30年生人工林排水垄转化为气温及0~40 cm土层土壤温度、而排水渠转化为气温及地表温度(30年生人工林)或与气温及土壤温度均不相关(10年生人工林);10年生人工林植被净初级生产力和年净固碳量(10.51和4.68 t·hm~(-2)a~(-1))显著低于草丛沼泽(15.44和6.74 t·hm~(-2)a~(-1))31.9%和30.6%(P0.05),而30年生人工林植被净初级生产力和年净固碳量(14.40和6.39 t·hm~(-2)a~(-1))却与草丛沼泽相近(-6.7%和-5.2%,P0.05);10年生人工林碳汇(0.72 t·hm~(-2)a~(-1))显著低于草丛沼泽(2.08 t·hm~(-2)a~(-1))65.4%(P0.05),30年生人工林碳汇(1.20 t·hm~(-2)a~(-1))仍低于草丛沼泽但差异性不显著(-42.3%,P0.05)。【结论】10年生兴安落叶松人工林显著降低小兴安岭草丛沼泽湿地碳汇功能近2/3,其碳汇功能恢复至少需要30年以上时间,故应避免对温带沼泽湿地进行排水造林。  相似文献   

16.
2005年11月至2006年3月,利用Li-8100土壤呼吸自动观测系统及AR-A-ECH土壤温度湿度自动观测系统,观测了华北山区30年生侧柏和25年生栓皮栎林土壤呼吸速率与土壤温度及湿度,分析了非主要生长季土壤呼吸变化特征.结果表明:(1)晴或多云条件下,2种人工林林地土壤呼吸速率都明显高于阴天,但日变化均不明显;整个非主要生长季,土壤呼吸速率(SRR)呈现出明显的日际变化特征;2005年11月至2006年1月,SRR呈显著降低的趋势,在2月份,维持在相对较低水平,进入3月中旬则迅速回升,降雪使SRR均有不同程度的增加;整个非主要生长季,侧柏林地与栓皮栎林地的平均SRR分别为0.61、0.39μmol·m-2·s-1.(2)2种人工林林地地表及地下5、10、15、20 cm深处土壤温度与SRR都存在显著的指数相关关系(p《0.01),且5cm深处的土壤温度与SRR的相关性最好,侧柏和栓皮栎在该深处的Q10值分别是2.280和1.602;侧柏、栓皮栎林地SRR与土壤含水量分别呈显著的线性相关关系、多项式相关关系(P《0.01).这2种人工林林地SRR与5cm深处的土壤温度和土壤含水量均有很好的复相关关系(P《0.01),且比较偏相关系数表明:影响2种林地土壤呼吸速率的最主要土壤环境因子都是土壤温度.  相似文献   

17.
在吉林省敦化市13年生长白落叶松退耕还林林地上,对土壤进行对照(处理A)、去除凋落物(处理B)、去除凋落物并切根(处理C)3种处理,用CI-340光合作用系统对处理后的土壤进行呼吸观测。结果表明:5—9月生长季土壤平均呼吸速率(RS)为2.47μmol·m-2·s-1,凋落物平均呼吸速率(RL)为0.48μmol·m-2·s-1,自养呼吸速率(RA)为0.27μmol·m-2·s-1,异养呼吸速率(RH)为1.72μmol·m-2·s-1。RL、RA、RH占总RS的百分比依次为19.43%、10.93%、69.64%。在生长季节,3种处理的土壤呼吸速率和土壤温度均为单峰曲线,最大值出现在7月;土壤呼吸温度敏感指数Q10...  相似文献   

18.
用Li-820测定并研究内蒙古乌拉山天然油松林生长季土壤呼吸速率的日及季节变化规律,分析土壤呼吸与土壤水热因子的关系.结果表明:土壤呼吸速率有明显的日及季节变化规律.在季节变化尺度上,各月土壤呼吸平均速率大小为:8月>9月>7月>6月>5月,总体表现为:雨季和秋季的呼吸速率大于早春和夏季干旱月份.土壤呼吸速率日变化规律为:在干旱月份呈双峰曲线,雨季则呈单峰曲线.在旱季,土壤呼吸速率与土壤温度呈负相关关系,雨季则呈正相关关系.土壤呼吸速率与土壤水分含量之间的正相关关系极显著,相关回归方程为y =0.501e0.13x(R2=0.953),表明土壤水分含量是影响干旱区森林土壤呼吸作用的主导因子.  相似文献   

19.
以云南磨盘山国家森林公园云南松天然林和人工林为研究对象,采用LI-6400-09便携式土壤呼吸室对土壤呼吸速率进行连续定位观测。结果表明:(1)两种林分的土壤呼吸速率具有明显的季节变化,均呈单峰曲线趋势;云南松天然林土壤呼吸速率在1.58~4.23μmol·m-2s-1之间,变异幅度为2.68;人工林土壤呼吸速率在1.13~3.34μmol·m-2s-1之间,变异幅度为2.96。(2)土壤呼吸速率的季节变化与不同层次土壤含水量均显著正相关(p0.05),而与不同层次土壤温度的相关性仅在云南松人工林达到显著水平。(3)双因素关系模型拟合结果表明,土壤温度和含水量共同解释了云南松天然林和人工林土壤呼吸速率的80.8%~93.0%和84.2%~85.9%。(4)两种林分土壤呼吸速率与土壤有机质含量相关性不显著(p0.05),土壤全氮含量仅与云南松天然林土壤呼吸相关性显著(R2=0.712,p0.05),而土壤水解氮含量对两林分土壤呼吸的影响均达到显著水平(p0.05),土壤C/N则与两林分呈极显著(p0.01)的负相关关系。因此,与天然林相比,人工林土壤温度、湿度及土壤C、N养分含量等土壤环境因子都存在变化,从而导致云南松天然林和人工林土壤呼吸速率时空变化的差异性。  相似文献   

20.
利用Li-COR-8100测定并分析了辽东山区天然次生林生长季土壤呼吸特征、土壤呼吸年C释放量以及与土壤水热因子的相关关系。结果表明:天然次生林土壤呼吸速率日变化呈单峰曲线;土壤呼吸速率与地面10cm处土壤温度呈幂函数关系,关系式为y=0.3614e0.1219x(R2=0.702),土壤温度可以解释土壤呼吸变化的70.20%;该地区天然次生林土壤呼吸年均速率约1.14μmol/(m2.s),土壤向大气年释放C约为410.40~455.76 gC/m2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号