首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the phenology and litterfall dynamics of the mangrove Bruguiera gymnorrhiza(L.)Lamk along the Okukubi River, Okinawa Island, Japan.Over 3 years, this species showed the highest litterfall of leaves and stipules in summer and the lowest litterfall in winter. From Kendall's coefficient of concordance, the monthly changes in leaf, stipule, and branch were strongly and significantly concordant among years. Leaf and stipule litterfall could be governed by monthly maximum wind speed, monthly day length, and monthly mean air temperature. Branch litterfall depended on monthly maximum wind speed and monthly rainfall, and increased exponentially with increasing monthly maximum wind speed. Mean total litterfall was 11.8 Mg ha~(-1)yr~(-1), with the largest component being leaf litterfall(65.8 %). Annual leaf litterfall per plot was almost constant regardless of the tree density of the plot. Mean leaf longevity was 18 months.Flower and mature propagule litterfall might be influenced by monthly mean air temperature, monthly day length and monthly mean air temperature. The average development periods from flower buds to flowers and flower buds to mature propagules were 1 and 8 months, respectively.Except for leaf and branch, all vegetative and reproductive organ litterfall had clear annual cycles. B. gymnorrhiza showed a positive correlation between leaf production and reproductive organ production.  相似文献   

2.
We evaluated the phenology and litterfall dynamics of the mangrove Bruguiera gymnorrhiza (L.) Lamk along the Okukubi River, Okinawa Island, Japan. Over 3 years, this species showed the highest litterfall of leaves and stipules in summer and the lowest litterfall in winter. From Kendall’s coefficient of concordance, the monthly changes in leaf, stipule, and branch were strongly and significantly concordant among years. Leaf and stipule litterfall could be governed by monthly maximum wind speed, monthly day length, and monthly mean air temperature. Branch litterfall depended on monthly maximum wind speed and monthly rainfall, and increased exponentially with increasing monthly maximum wind speed. Mean total litterfall was 11.8 Mg ha?1 yr?1, with the largest component being leaf litterfall (65.8 %). Annual leaf litterfall per plot was almost constant regardless of the tree density of the plot. Mean leaf longevity was 18 months. Flower and mature propagule litterfall might be influenced by monthly mean air temperature, monthly day length and monthly mean air temperature. The average development periods from flower buds to flowers and flower buds to mature propagules were 1 and 8 months, respectively. Except for leaf and branch, all vegetative and reproductive organ litterfall had clear annual cycles. B. gymnorrhiza showed a positive correlation between leaf production and reproductive organ production.  相似文献   

3.
Rates of weight loss and nutrient (N and P) release patterns were studied in the leaf litter of the dominant tree species (Ailanthus grandis, Altingia excelsa, Castanopsis indica, Duabanga sonneriatioides, Dysoxylum binectariferum, Mesua ferrea, Shorea assamica, Taluma hodgsonii, Terminalia myriocarpa and Vatica lancefolia) of a tropical wet evergreen forest of northeast India. Nitrogen and phosphorus mineralization rate and decay pattern varied significantly from species to species. In general, the decay pattern, characterized by using a composite polynomial regression equation, exhibited three distinct phases of decay during litter decomposition—an initial slow decay phase (0.063% weight loss day−1), followed by a rapid decay phase (0.494% weight loss day−1) and a final slow decay phase (0.136% weight loss day−1). The initial chemical composition of the litter affected decomposition rates and patterns. Species like D. sonneriatoides, D. binectariferum, and T. hodgsonii with higher N and P content, lower carbon and lignin content, and lower C:N ratio and lignin:N ratio exhibited relatively faster decomposition rates than the other species, for example M. ferrea, C. indica and A. grandis. A slow decay rate was recorded for species such as M. ferrea, C. indica, and A. grandis. The initial N and P content of litter showed significant positive correlations with decay rates. Carbon and lignin content, lignin:N, and C:N showed significant negative correlations with decay rates. Soil total N and P, and rainfall, soil temperature, and soil moisture had positive correlations with decay rates. The rapid decomposition rates observed in comparison with other different forest litter decay rates confirm that tropical wet evergreen forest species are characterized by faster decomposition rates, indicating a faster rate of organic matter turnover and rapid nutrient cycling.  相似文献   

4.
The cycling of Zn, Mn and Fe through production, decomposition, and export of litter was studied at the Itacurussá Experimental Forest, a red mangrove forest in Southeast Brazil. The total litterfall was 8.69 t ha-1 yr-1. The heaf litter represented 56% to 100% of the total litterfall. The metal concentrations in the fallen leaves were: Mn = 230 ± 50 g g-1; Fe = 116 ± 44 g g-1 and Zn = 5.5 ± 1.0 g g-1 (n = 15). The average transfer rates of heavy metals from canopy to sediment through leaf fall were: 1.39 kg ha-1 yr-1 for Mn, 0.70 kg ha-1 yr-1 for Fe, and 0.03 kg ha-1 yr-1 for Zn. These rates represent 4.5%, 4.0%, and 57.0% of the total forest biomass reservoir for Zn, Fe and Mn, respectively. There was no accumulation of the metals in the first 10 days of decomposition, and since the residence time of leaves in the sediments was less than 6 days, litter exported from the forest had relatively low metal concentrations. Since 7% of the leaf fall (0.42 t ha-1 yr-1) is exported to the sea, we estimated an average export of heavy metals throught leaf detritus as: Mn = 0.097 kg ha-1 yr-1, Fe = 0.049 kg ha-1 yr-1 and Zn = 0.002 kg ha-1 yr-1. The export of metals through leaf fall represents less than 0.01% of the total sediment reservoir. We conclude that mangrove ecosystems are probably efficient biogeochemical barriers to the transport of metal contaminants in tropical coastal areas.  相似文献   

5.
为探讨红树林树种生长与叶片元素含量特征,比较木榄(Bruguiera gymnorrhiza)、角果木 (Ceriops tagal)、正红树(Rhizophora apiculata)、红海榄(R. stylosa)、白骨壤(Avicennia marina)和桐 花树(Aegiceras corniculatum)6个树种成活率、生长量、叶片元素含量及化学计量。结果表明,栽植 120 d后,6种红树树种的成活率均在85%以上;苗高净生长量在2.60~10.32 cm之间,地径净生长量在 8.62~16.92 mm之间,以桐花树和正红树的生长较快。白骨壤的叶片N含量最高,角果木K含量较高,红海榄Ca含量较高;6种红树叶片N/P值均小于14,属于N制约型植物;叶片化学元素K/P、N/K、Ca/K、Ca/Mg和K/Mg的值存在一定程度的差异。PCA分析结果表明,6种红树树种均能较好地各聚为一类,每个树种对其生长量因子、叶片元素含量因子和化学计量因子响应不同。  相似文献   

6.
We investigated the dynamics of litterfall and litter decomposition of Sasa dwarf bamboo (Sasa senanensis) and trees to clarify the characteristics of organic matter and nitrogen cycling between plant and soil in a natural cool-temperate mixed forest ecosystem dominated by an understory vegetation of Sasa. Mean annual Sasa litterfall over the 3-year study period was 164 g m?2 year?1, which accounted for approximately 29% of total litterfall. Litter decomposition of Sasa leaf and Sasa culm was significantly slower than that of tree leaf during first and second years. The slow decomposition rates of both Sasa litter types were caused by a significantly higher silicate than in tree leaf. Nitrogen concentration in litter increased as decomposition progressed, especially in Sasa leaf and tree leaf. As a result of the slow decomposition of both Sasa litter types, 111 and 73% of nitrogen to the initial amounts were retained in Sasa leaf and Sasa culm after 3 years, respectively. The amounts of retained nitrogen in Sasa leaf, Sasa culm, and tree leaf after 3 years were 1.29, 0.47, and 3.92 g N m?2, respectively, indicating that the differences of litter decomposition rates among the litter types influence on the nitrogen cycling in forest ecosystem through the differences of the nitrogen release from litter.  相似文献   

7.
UV-B辐射对亚热带森林凋落叶分解的影响   总被引:3,自引:0,他引:3  
采用分解袋法研究自然和UV-B辐射滤减2种环境下6种亚热带代表性树种(杉木、马尾松、木荷、香樟、青冈和甜槠)凋落叶的分解情况。结果表明:除个别分解阶段外,各树种凋落叶在2种UV-B辐射环境下的干质量剩余率均存在显著差异,且随着分解时间延长,差异逐渐加大;与对照相比,UV-B辐射滤减显著降低了6个树种凋落叶的分解速率(P<0.01),降幅为33.3%~69.6%,对香樟凋落叶分解的影响最小,对杉木凋落叶分解的影响最大;UV-B辐射处理和凋落物类型对凋落叶的分解速率均有极显著影响(P<0.001),以UV-B辐射的影响更强烈;自然和UV-B辐射滤减环境下凋落叶的分解速率均与C∶N呈显著负相关(P<0.05)。  相似文献   

8.
This paper describes the development of a logistic model to predict the probability of surface fire spread in Brazilian rainforest fuels from outdoor experimental measurements. Surface fires spread over litter composed mostly of dead leaves and twigs. There were 72 individual outdoor experiments in eighteen sites. The fire propagated in 49% of the experiments. In each experiment, the litter height, litter temperature, unburned litter mass, wet and dry litter mass, soil temperature, wet and dry soil mass, ambient wind velocity, ambient air temperature, ambient air relative humidity and duration of fire spread were measured. Using these data, the rate of fire spread, litter bulk density, litter and soil moisture content, litter load and litter residue fraction were determined. For the sake of analysis, experimental results were classified into two groups: one for which the fire propagated and the other one for which the fire self-extinguished. Analyses of a logistic regression model showed that the relevant parameters for fire propagation are litter height and litter moisture content. Concerning the probability of successful fire propagation, the model showed a true positive rate of 71% and a true negative rate of 84%. The outdoor experiments also served to gather data to improve the understanding of surface fires and to provide input data for future computer simulations.  相似文献   

9.
A field study was conducted in the moist deciduous forests of the Western Ghats (India) to test the following three hypotheses: (1) Litter production in tropical forests is a function of the floristic composition, density, basal area and disturbance intensity; (2) Decay rate constants of tropical species is an inverse function of the initial lignin/nitrogen ratio; (3) Decomposition rates in tropical forests are faster than temperate forests.

Litter fall was estimated by installing 63 litter traps in the moist deciduous forests of Thrissur Forest Division in the Western Ghats at three sites. Litter fall followed a monomodal distribution pattern with a distinct peak during the dry period from November–December to March–April.Dillenia pentagyna, Grewia tiliaefolia, Macrosolen spp.,Xylia xylocarpa, Terminalia spp.,Lagerstroemia lanceolata, Cleistanthus collinus, Bridelia retusa, andHelicteres isora were the principal litter producing species at these sites. The annual litter fall ranged from 12.18 to 14.43 t ha−1. Structural attributes of vegetation such as floristic composition, basal area, density and disturbance intensity did not directly influence litter fall rates.

Leaf litter decay rates for six dominant tree species were assessed following the standard litter bag technique. One hundred and eight litter bags per species containing 20 g samples were installed in the forest floor litter layer at the same three sites selected for the litter fall quantification exercise. The residual litter mass decreased linearly with time for all species. In general, less disturbed sites and species adapted to higher nitrogen availabilities exhibited relatively higher decay rate coefficients (k). The rapid organic matter turnover observed in comparison with published temperate forest litter decay rates confirms that tropical moist deciduous forest species are characterised by faster decomposition rates.

Mean concentrations of N, P and K in the litter were profoundly variable amongst the dominant species. Initial nitrogen content of the leaf litter varied from 0.65 to 1.6%, phosphorus from 0.034 to 0.077% and potassium from 0.25 to 0.62%.C. collinus, an understorey shrub consistently recorded the lowest litter concentrations for all nutrients. The overriding pattern is one of higher nutrient levels in the overstorey leaf litter and lower concentrations in the understorey litter. Furthermore, as decomposition proceeded, the nitrogen concentration of the residual biomass increased.  相似文献   


10.
凋落物是森林生态系统的重要组成部分,其分解过程是森林生态系统养分循环的重要环节。准确测定凋落物的分解动态,对研究森林生态系统的格局和过程非常重要。本文的工作在贡嘎山高山生态系统观测试验站开展,对海拔3 000 m的峨眉冷杉(Abies fabri)林进行定位观测,并对峨眉冷杉林凋落物分解过程进行了长期测定。研究结果表明:(1)凋落物的分解速率是阔叶>针叶>枯枝,峨眉冷杉林的阔叶、针叶和枯枝等凋落物分解一半所需要的时间分别为6.8年、10.5年和14.5年,分解95%所需时间分别为29.3年、45.6年和63.1年;(2)无论阔叶还是针叶、枯枝,其有机碳含量均随着时间的推移而下降,而有机碳分解率均随着时间而增高;利用指数衰减模型,获得凋落物有机碳的分解系数是阔叶>针叶>枯枝;(3)在每年凋落物输入峨眉冷杉林林地时,其中的阔叶、针叶和枯枝已经开始分解,当年可释放的有机碳分别为52.18 kg·hm^-2、4.32 kg·hm^-2和0.67 kg·hm^-2,各类凋落物每年有机碳释放总量为61.13 kg·hm^-2,占凋落时有机碳量的6.58%。  相似文献   

11.
The decay rates of Japanese Konara Oak (Quercus serrata Murray) and Japanese Red Pine (Pinus densiflora Sieb. et Zucc.) leaf litter were monitored for one year. It aimed to compare the decomposition of leaf litter using microcosms set up in the field (FM) and in the greenhouse (GM), with the litterbag (LB) method as control. Results showed that incubation setting affected the decay rate (k), respiration rates and the changes in the concentrations of nitrogen (N). Thek value ofQuercus in FM was higher than LB, while thek value ofPinus was higher in the LB than in FM. The decay ratesk for both species, however, were significantly lower in GM than FM and LB, clearly suggesting that decay rate was inhibited in the greenhouse. Significant differences in microclimatic variables and soil biological activities (soil respiration) existed between greenhouse and field microcosms, hence, the decay rates were affected. The N concentrations for both litter types increased as decomposition proceeded. Decomposition studies using laboratory microcosm approach alone may lead to erroneous conclusions especially if no appropriate field studies are conducted along with it. Part of this paper was presented at the XXth International Union of Forestry Research Organization (IUFRO) World Congress, August 6–12, 1995, Tampere, Finland.  相似文献   

12.
Do rates of litter decomposition tell us anything we really need to know?   总被引:3,自引:0,他引:3  
Results of several long-term studies of non-woody litter decomposition in forests indicate that we need to rethink why and how we measure rates of litter decomposition. Effects on litter decomposition rates were postulated to explain some of the nutritional effects of factors such as tree species, forest harvesting and fertilization. However, the accumulated experimental evidence indicates that litter decomposition rates do not mediate these responses. Many studies have reported litter mass loss becoming extremely slow at values considerably below 100%, indicating that early decay rates may not accurately foreshadow the entire decay process. Exclusion of soil faunal activities from current measurements of decomposition rates seriously reduces the likelihood that we are properly modeling decomposition. Finally, the use of regression and correlation analyses to determine which climate or initial litter quality factors control decay rate has led to many unwarranted and potentially misleading conclusions. These concerns are illustrated with examples from a suite of litter decomposition studies in British Columbia, Canada. Insights into nutrient cycling and carbon storage in ecosystems are more likely to arise from measuring the mass and nutrient content of annual litter input and determining the maximum decomposition limit and nutrient content at that stage, than by measuring early rates of decay. Improved predictions of relative decay rates of plant litters are likely to arise from a holistic approach based on plant life attributes rather than correlations based on individual initial litter chemistry parameters. Finally, a better understanding of the fate of faecal material of soil fauna is necessary before we can accurately predict and model litter decomposition.  相似文献   

13.
Litterfall and decomposition were studied in agroforestry systems involving large cardamom (Amomum subulatum) and mandarin (Citrus reticulata) in the Sikkim Himalaya, India. There were stands with N2-fixing trees (Alnus nepalensis over large cardamom, and Albizia stipulata over mandarin agroforestry) or without them (native non-symbiotic mixed tree species) in both systems. The total annual litter (litter + crop residue) production was higher in the Alnus-cardamom than in the forest-cardamom stand and in the mandarin than in the Albizia-mandarin stand. The ratio of litter production to floor litter was higher in the N2-fixing stands than in the non-N2-fixing stands, indicating a faster litter turnover in the former. Tree litterfall occurred throughout the year, but with marked peaks during November to April. Total soluble polyphenolics of fresh litter were higher in N2-fixing species than in mixed tree species and crops. Half-life values for ash-free mass were shortest in the leaves of N2-fixing species. N loss was higher from N2-fixing Alnus and Albizia leaves, whereas P loss was faster and nearly equal in Alnus leaf litter and cardamom residue in cardamom, and Albizia leaf litter and crop residue in mandarin agroforestry systems. The P turnover in N2-fixing Alnus and Albizia twigs was faster than in the twigs of mixed tree species. The N2-fixing tree species increased the N and P cycling through production of more above-ground litter and influenced greater release of these nutrients.  相似文献   

14.
杉木观光木混交林凋落物热值及灰分含量的季节动态分析   总被引:4,自引:0,他引:4  
通过对福建三明 2 7年生杉木观光木混交林和杉木纯林凋落物的热值、灰分含量及其季节动态的分析表明 ,混交林中杉木凋落物各组分的干重热值介于 2 0 6 37~ 2 1 96 0kJ·g-1之间 ,观光木凋落物各组分干重热值介于 19 6 35~ 2 0 0 5 8kJ·g-1之间 ,杉木纯林凋落物各组分的干重热值介于 2 0 70 5~ 2 1 90 8kJ·g-1之间 ,各树种凋落物均以叶、花的热值较高 ,而果、枝的热值较低。观光木凋落物各组分的灰分含量高于杉木。杉木落叶灰分含量季节间变化均较小 ;而观光木落叶灰分含量的变化模式为 :夏季 >秋季 >春季 >冬季。杉木落叶干重热值和去灰分热值季节变化模式均为 :冬季 >秋季 >春季 >夏季 ,而观光木落叶则均为 :冬季 >夏季 >秋季 >春季  相似文献   

15.
通过对帽儿山白桦和山杨天然次生林凋落物产量、林地枯落物现存量及其周转时间进行研究,结果表明:(1)白桦林和山杨林的年凋落量分别为435g!m-2和464g!m-2,两种林型凋落物的主要组分均为叶,占60%以上,其次为枝和碎屑,繁殖器官最少;(2)白桦林总枯落物现存量为1 421g!m-2,林地枯落物、小枝、未分解层和半分解层现存量各占1/3;山杨林总枯落物现存量为1 647g!m-2,林地枯落物小枝、未分解层和半分解层现存量比例分别为25%、45%和30%;(3)白桦林小枝、叶、碎屑周转时间分别为17.4a、1.6a和8.1a;山杨林小枝、叶、碎屑周转时间分别为6.9a、12.5a和11.5a,白桦和山杨林总体周转时间接近,分别为3.3a和3.5a。  相似文献   

16.
Perennial pigeonpea is receiving considerable attention in India as a multi-purpose species for agroforestry systems. Its multiple uses include food, fodder, manure and firewood. Data on perennial pigeonpea, together with relevant information on shorter-duration genotypes, are reviewed in this paper. Growth of perennial pigeonpea, like that of medium-duration grain types (150 to 190 days) in intercropping systems with cereals, is slow during the first 3 to 4 months. Therefore, it requires minimum sacrifice in terms of yield of annual crops in the system during the first year and offers many of the benefits of tree species in subsequent years. Total dry matter production potential of perennial pigeonpea in peninsular India is more than 15 t ha−1 year−1 consisting of about 2.0 t of grain, 3.0 t of leaf litter, 9.0 t of stems and 1.0 t of residue made up of podwalls and twigs. In addition, pigeonpea improves soil fertility by nutrient cycling and biological nitrogen fixation. Susceptibility of pigeonpea to diseases and negative effects on growth of annual crops are the potential constraints in the semi-arid tropics. Some pertinent areas for further research are proposed. Submitted as ICRISAT Journal Article No. 917 for ‘Agroforestry Systems’.  相似文献   

17.
Eamus D  Myers B  Duff G  Williams D 《Tree physiology》1999,19(10):665-671
Seasonal variations in carbon assimilation of eight tree species of a north Australian tropical savanna were examined over two wet seasons and one dry season (18 months). Assimilation rates (A) in the two evergreen species, Eucalyptus tetrodonta F. Muell. and E. miniata A. Cunn. ex Schauer, were high throughout the study although there was a 10-20% decline in the dry season compared with the wet season. The three semi-deciduous species (Erythrophleum chlorostachys (F. Muell.) Baillon, Eucalyptus clavigera A. Cunn. ex Schauer, and Xanthostemon paradoxus F. Muell.) showed a 25-75% decline in A in the dry season compared with the wet season, and the deciduous species (Terminalia ferdinandiana Excell, Planchonia careya (F. Muell.) Kunth, and Cochlospermum fraseri Planchon) were leafless for several months in the dry season. Generally, the ratio of intercellular CO(2) concentration to ambient CO(2) concentration (C(i):C(a)) was larger in the wet season than in the dry season, indicating a smaller stomatal limitation of photosynthesis in the wet season compared with the dry season. In all species, the C(i):C(a) ratio and A were essentially independent of leaf-to-air vapor pressure difference (LAVPD) during the wet season, but both parameters generally declined with increasing LAVPD in the dry season. The slope of the positive correlation between A and transpiration rate (E) was less in the wet season than in the dry season. There was no evidence that high E inhibited A. Instantaneous transpiration efficiency was lowest in the wet season and highest during the dry season. Nitrogen-use efficiency (NUE) was higher in the wet season than in the dry season because the decline in A in the dry season was proportionally larger than the decline in foliar nitrogen content. In the wet season, evergreen species exhibited higher NUE than semi-deciduous and deciduous species. In all species, A was linearly correlated with specific leaf area (SLA) and foliar N content. Foliar N content increased with increasing SLA. All species showed a decline in midday leaf water potential as the dry season progressed. Dry season midday water potentials were lowest in semi-deciduous species and highest in the deciduous species, with evergreen species exhibiting intermediate values.  相似文献   

18.
Litter fall from upper storey trees in agroforestry systems contributes to nutrient cycling for the benefit of all components of the system besides serving as mulch. This study examined the seasonal changes in the quantity and quality of leaf litter fall from three sub-tropical fruit trees viz: avocado (Persea americana L.), mango (Mangifera indica L.) and litchi (Litchi chinensis L.) which have potential for use in agroforestry. Leaf litter production was estimated using nylon mesh litter traps erected over five randomly selected trees of each species in a completely randomised design. Litter quality was determined by analysing ash content and polyphenol, carbon, cellulose, lignin and nutrient concentrations over a 2?year period (2007?C2008). Total annual leaf litter production during the study period (dry matter basis) was 8.3, 6.3 and 5.6?t?ha?1?year?1 for litchi, mango and avocado, respectively. In both years, leaf litter fall was greatest during autumn and lowest during winter in all species. There were no significant differences in S, Ca, Mg and Mn concentrations in the leaf litter, but polyphenol, N, P and K concentrations differed significantly (P?<?0.05) between species. It was concluded that litter quality from all three tree species was low and would require appropriate management to improve its quality.  相似文献   

19.
We examined the mycobiota associated with Vismia guianensis leaf litter in three Atlantic Forest remnants of Brazil's semiarid region. Among the study sites, two remnants were protected forest reserves, whereas the third was influenced by major anthropogenic activities. Eighteen litter samples were collected in wet and dry seasons and were processed by particle filtration technique. A total of 4750 fungal isolates of 142 taxa were identified. Species richness was higher in litter samples collected during wet season.Nonmetric multidimensional scaling multivariate analysis showed differences in the composition of fungal communities among the sampling sites and the seasons. Analysis of similarity showed that the differences were statistically significant(R = 0.85; P = 0.0001). Our findings revealed that spatial and temporal heterogeneity, and human activities had significant impacts on the saprobic fungi of V. guianensis leaf litter.  相似文献   

20.
Studies on litterfall and decomposition provide estimations of decomposition rates of different ecosystems.This is key information to understanding ecosystem dynamics and changes in a scenario of global warming.The objective of this research was to assess litterfall production,the potential deposition of macro and micronutrients through leaf and twig fall as well as macronutrient—use efficiency in three forest ecosystems at different altitudes: a pine forest mixed with deciduous species(S1); a Quercus spp.forest(S2); and,a Tamaulipan thornscrub forest(S3).Total annual litterfall deposition was 594,742 and 533 g m~(-2) for S1,S2 and S3.Leaf litter was higher (68%) than twigs(18%),reproductive structures(8%) or miscellaneous material(6%).Micronutrient leaf deposition was higher for Fe followed by Mn,Zn and Cu.Macronutrient leaf deposition was higher for Ca followed by K,Mg and P.Even though P deposition in leaves and twigs was lower than other macronutrients,its nutrient use efficiency was higher than Ca,Mg or K.Altitude and species composition determine litter and nutrient deposition,with higher values at mid-altitudes(550 m).Altitude is an important factor to consider when analyzing litter production as well as nutrient deposition as shown in this study.Litter production and nutrient deposition are expected to change in a scenario of global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号