首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 28 毫秒
1.
小光斑激光雷达数据估测森林树高研究进展   总被引:1,自引:0,他引:1  
小光斑激光雷达可以同时获得森林的垂直及水平结构参数,因光斑直径较小,可以做到森林单木结构参数的准确估计,进而推广到样方甚至更大区域森林结构参数的估计,近年来在林业中得到广泛应用。文中主要从树高估计方面对小光斑激光雷达在林业中的应用进行研究,通过对先前类似文献进行归纳总结发现,在小光斑激光雷达估测森林树高方面仍存在着一些问题,从而限制了森林树高估测精度的提高,如点云分类算法、点云密度、森林郁闭度、单木的准确分割等,还对小光斑激光雷达估计森林树高中所存在的问题进行了概括,并提出了改进建议。  相似文献   

2.
李春干  李振 《林业科学》2021,57(10):23-35
目的: 针对当前森林参数估测模型受研究区条件、森林类型限制不具备普适性的问题,从森林三维结构分析描述出发,构建森林参数估测多元乘幂模型式,并测试其在不同森林类型不同森林参数估测中的表现,检验其推广能力,以期发现一个适用于不同森林类型不同森林参数估测的模型结构式,为激光雷达森林参数的一致性估测提供实践案例。方法: 以面积2.21万km2的南亚热带丘陵山地区域为研究区,以面积法为基础,将刻画森林冠层三维结构的7个离散回波LiDAR变量进行组合,构建5个森林参数估测多元乘幂模型式,通过383块样地测试5个模型式在不同森林类型(杉木林、松树林、桉树林和阔叶林)不同森林参数(蓄积量、断面积和平均直径)估测中的表现。结果: 以激光雷达点云平均高、冠层覆盖度、叶面积密度变动系数、激光雷达点云高度变动系数、50%分位数密度为变量的模型结构式表现最好;4种森林类型蓄积量估测模型的决定系数(R2)分别为0.667、0.769、0.764和0.602,相对均方根误差(rRMSE)变化范围为18.53%~36.32%,平均预估误差(MPE)变化范围为3.37%~6.95%;4种森林类型断面积估测模型的R2分别为0.572、0.582、0.706和0.568,rRMSE变化范围为16.11%~30.82%,MPE变化范围为3.27%~5.89%;4种森林类型平均直径估测模型的R2分别为0.574、0.501、0.709和0.240,rRMSE变化范围为10.07%~29.01%,MPE变化范围为1.83%~5.55%;最优普适性模型式的R2与各森林类型各森林参数最优模型的R2的相差小于5%,rRMSE和MPE的相差均小于7%。结论: 本研究提出的模型式变量具有明确的生物物理意义和林学解析意义,可准确刻画林分冠层三维结构,在不同森林类型不同森林参数估测中均取得较好效果,具有良好的普适性,有利于提高不同森林类型估测结果的可比性,可用于机载激光雷达大区域森林资源动态监测。  相似文献   

3.
基于机载激光雷达点云和随机森林算法的森林蓄积量估测   总被引:1,自引:0,他引:1  
目的: 基于机载激光雷达点云数据提取的森林高度参数和郁闭度,结合分层地面样地调查数据,采用随机森林算法构建森林蓄积量估测模型,分析机载激光雷达点云数据在森林蓄积量反演方面的潜力,为森林蓄积量高效准确估测提供方法依据。方法: 以直径30 m的地面样圆离散点云数据为数据源,经数据校准等预处理后,利用LiDAR360软件提取森林高度参数(最大高、平均高等)和郁闭度,并将数据随机分成训练数据(70%)和验证数据(30%)。采用随机森林算法构建森林蓄积量估测模型,对仅用高度参数建模以及联合高度参数和郁闭度建模结果进行比较;同时运用R软件VSURF工具包筛选建模变量,对筛选后变量的建模结果进行分析。结果: 仅用高度参数建模的估测精度为R2=0.75、RMSE=40.07 m3·hm-2、MAE=29.21 m3·hm-2、MRE=49.40%,联合高度参数和郁闭度建模的估测精度为R2 =0.79、RMSE=36.23 m3·hm-2、MAE=26.16 m3·hm-2、MRE=38.35%。通过变量筛选,建模参数从24个减少至7个,可极大提高运算效率,同时R2未变化,RMSE从36.23 m3·hm-2升至36.50 m3·hm-2,rRMSE从31.92%升至32.97%,MAE从26.16 m3·hm-2降至26.08 m3·hm-2,MRE从38.35%降至38.05%。结论: 机载激光雷达点云数据可以提取森林的垂直结构信息(高度参数)和水平结构信息(郁闭度),具备三维结构参数提取能力。采用随机森林算法,增加林分郁闭度信息可显著提高森林蓄积量估测精度。通过变量筛选,虽然能够降低参数数量,但对模型精度具有一定影响,在建模精度要求较高的情况下,建议使用全变量进行蓄积量估测;而在数据量较大的情况下,建议使用筛选变量进行蓄积量估测。基于机载激光雷达点云数据估测森林蓄积量显著优于光学遥感数据,可为森林蓄积量高效准确估测提供方法依据,能够满足大范围森林蓄积量快速反演需求。  相似文献   

4.
地形对大光斑激光雷达森林回波影响研究   总被引:5,自引:0,他引:5       下载免费PDF全文
利用三维激光雷达森林回波波形模型模拟了地形对波形的影响,并用ICEsat GLAS的数据对模拟结果进行了验证.结果表明坡度对大光斑激光雷达波形影响较大,随着坡度的增大,地面回波和树冠回波都展宽,波形长度也随之增加,同时地面的波峰和植被的波峰值都降低,来自地面的回波明显减少,并逐渐与靠近地面的回波发生信息混叠.鉴于二者的关系呈近似线性正相关,在实际的森林参数反演中可望通过减去一个含有坡度或地形起伏度的因子进行地形效应纠正.  相似文献   

5.
小光斑激光雷达数据估测森林生物量研究进展   总被引:1,自引:0,他引:1  
小光斑激光雷达可以直接获取森林的垂直和水平结构参数,因此广泛应用于森林树高、生物量和郁闭度等结构参数估计。本文主要分析小光斑激光雷达在森林生物量估测中的应用,根据研究尺度的不同,分别对小光斑激光雷达在单木、样方水平森林生物量的反演技术和方法进行详细分析,并对小光斑激光雷达与其他类型遥感数据进行融合,共同用于森林生物量研究的潜能进行阐述,通过对上述分析得出小光斑激光雷达用于森林生物量研究中存在的问题进行总结并对其未来的研究进行展望。  相似文献   

6.
遥感技术被广泛应用于我国森林资源,森林生态环境的监测中。区别于传统光学遥感技术的是激光雷达(Lidar)属于主动遥感,对森林的空间结构,特别是对森林高度的探测能力有着巨大的优势。文中介绍了激光雷达测量树高的原理、特点和应用,对激光雷达在测量树高上的应用研究进行回顾,对激光雷达森林高度的测量应用前景进行了分析和展望。  相似文献   

7.
目的

探究如何有效利用机载激光雷达冠层高度模型(CHM)自动区划小班,提高小班区划工作效率。

方法

在高光谱影像树种信息的辅助下,使用机载激光雷达数据生成的CHM进行两种空间尺度的分割和优化来自动区划小班。先对1 m空间分辨率CHM数据进行过分割,再对降尺度处理并平滑后的5 m空间分辨率CHM数据进行欠分割,结合两种尺度分割结果并优化得到最终区划结果。将自动区划结果与人工区划小班、数字正射影像(DOM)屏幕勾绘小班以及主伐作业小班为三类参考小班对比,采用最终测量精度(UMA)准则的圆度(RO),紧致度(CO),形状指数(SI),最小包络圆短半径(RE),椭圆度(EF)和形状因子(P2A)8个指标,及自动区划小班与参考小班的交并比(IOU)指标,定量评价自动区划小班边界勾绘的准确程度。并利用样地实测数据和CHM数据计算自动区划结果平均胸径、平均树高和冠层平均高的可解释性方差,验证自动区划结果的内部一致性和外部差异性精度。

结果

自动区划结果与参考小班的UMA形状、面积等特征较接近,与人工区划小班最相近。自动区划小班与人工区划、屏幕勾绘、主伐作业小班交并比大于70%的比例分别为46%,37%,43%,交并比大于50%的比例分别为61%,54%,55%。自动区划结果平均胸径可解释性方差为97%,平均树高可解释性方差为98%,和人工区划小班相同,说明其内部一致性高且和相邻小班差异大。冠层平均高可解释性方差为84.81%,比人工区划小班提高了1.77%。

结论

利用两种空间尺度的CHM与高光谱树种分类图的分割和优化方法自动区划的小班在内部一致性及边界的精准度方面有明显优势,更符合小班边界处林木的分布情况,小班边界准确,且工作效率高,有助于森林的精细化管理。

  相似文献   

8.
机载激光雷达可准确获取林分高生长量,实现林分高生长量在更广阔空间尺度上的年生长监测。为实现杉木(Cunninghamia lanceolata)人工林年生长量监测,通过直升飞机搭载的机载激光雷达系统获取试验区林分点云数据,通过重采样得到10 m×10 m、20 m×20 m和30 m×30 m分辨率的冠层高度模型;分别设置100、200、300和400个随机点,并提取不同分辨率下的杉木林分冠层年高生长量,共获取12个处理;通过比较不同处理杉木林分年高生长量差异,选择最优的重采样分辨率;结合数字正射影像,提取杉木林分不同小班年高生长量。结果表明,400随机点数且分辨率为10 m×10 m处理下获取的数据较准确,出现异常的概率较小。2016—2017年,杉木林分年高生长量均值为0.80 m。总体上,杉木林分年高生长量增长阶段为12~15年,最大值约为2.61 m;下降阶段为15~20年,波动阶段为20~27年,最小值约为0.19m。通过机载激光雷达数据获取冠层高生长量,能有效监测杉木林分高生长情况,可为森林资源管理与监测提供参考。  相似文献   

9.
为提高森林单木材积估测精度和效率,选取贵州省织金县城郊典型马尾松林为研究对象,基于机载激光雷达点云和样地调查数据,以提取的树高、冠幅、树冠投影面积和树冠体积等单木结构参数为变量,构建基于机载激光雷达点云数据的马尾松单木材积估测模型。结果表明:1)基于点云数据提取的马尾松单木树高和冠幅因子与实际调查数据之间存在良好的相关性,决定系数R2在0.7以上,精度相对较高,可用于构建马尾松单木材积模型。2)在经典非线性CAR模型基础上,利用枚举法对树高、冠幅、树冠投影面积、树冠体积等4个变量组合构建的11个模型中,包含树高、冠幅及树冠体积三个林分因子的模型表现最佳,R2为0.774 1。3)树高、冠幅及树冠体积被确定为马尾松单木材积估测的关键因子,其中,树高的贡献最大且与单木材积呈极显著正相关关系(P<0.001)。利用机载激光雷达点云数据提取单木结构参数,并基于非线性CAR模型构建单木材积模型估测马尾松单木材积的方法是可行的,该方法不仅能满足森林资源调查的精度要求,且能有效提高调查效率。  相似文献   

10.
针对传统森林资源二类调查方法周期长且费时费力,难以满足新形势下森林资源动态监测需求的问题,以南京市六合区内3个林场为研究区,利用平均点密度1点/m2的激光雷达数据提取特征变量,结合二类调查数据,使用SMLR与Boruta两种算法进行因子筛选,对比SMLR,SVM与RF这3种建模方法,估测森林蓄积量。结果表明:1)高度因子是影响森林蓄积量的主要特征参数;2)SVM和RF这算法在模型拟合与验证精度方面均表现较优,SVM算法在混交林方面表现略逊色于RF这算法,SMLR方法表现不佳。结果表明,利用激光雷达提取因子与森林蓄积量进行建模有较好的结果,稀疏性机载激光雷达对森林资源调查有较好的适用性,为今后森林资源调查提供了新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号