首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Economic losses due to infection with Bovine viral diarrhea virus (BVDV) have prompted introduction of organized control programs. These programs primarily focus on the removal of persistently infected (PI) animals, the main source of BVDV transmission. Recently, persistent BVDV infection was demonstrated experimentally in white-tailed deer, the most abundant wild ruminant in North America. Contact of cattle and white-tailed deer may result in interspecific BVDV transmission and birth of persistently infected offspring that could be a threat to control programs. The objective of this study was to assess the potential for interspecific BVDV transmission from persistently infected cattle cohabitated with pregnant white-tailed deer. Seven female and one male white-tailed deer were captured and bred in captivity. At approximately 50 days of gestation, two cattle persistently infected with BVDV 1 were cohabitated with the deer. In a pen of approximately 0.8 ha, both species shared food and water sources for a period of 60 days. Transmission of BVDV as indicated by seroconversion was demonstrated in all exposed adult deer. Of the seven pregnancies, four resulted in offspring that were infected with BVDV. Persistent infection was demonstrated in three singlet fawns by immunohistochemistry and ELISA on skin samples, PCR, and virus isolation procedures. Furthermore, two stillborn fetuses were apparently persistently infected. This is the first report of BVDV transmission from cattle to white-tailed deer using a model of natural challenge. Under appropriate circumstances, BVDV may efficiently cross the species barrier to cause transplacental infection and persistently infected offspring in a wildlife species.  相似文献   

2.
Bovine viral diarrhea virus (BVDV) infections cause substantial economic losses to the cattle industries. Persistently infected (PI) cattle are the most important reservoir for BVDV. White-tailed deer (Odocoileus virginianus) are the most abundant species of wild ruminants in the United States and contact between cattle and deer is common. If the outcome of fetal infection of white-tailed deer is similar to cattle, PI white-tailed deer may pose a threat to BVDV control programs. The objective of this study was to determine if experimental infection of pregnant white-tailed deer with BVDV would result in the birth of PI offspring. Nine female and one male white-tailed deer were captured and housed at a captive deer isolation facility. After natural mating had occurred, all does were inoculated intranasally at approximately 50 days of pregnancy with 10(6) CCID(50) each of a BVDV 1 (BJ) and BVDV 2 (PA131) strain. Although no clinical signs of BVDV infection were observed or abortions detected, only one pregnancy advanced to term. On day 167 post-inoculation, one doe delivered a live fawn and a mummified fetus. The fawn was translocated to an isolation facility to be hand-raised. The fawn was determined to be PI with BVDV 2 by serial virus isolation from serum and white blood cells, immunohistochemistry on skin biopsy, and RT-PCR. This is the first report of persistent infection of white-tailed deer with BVDV. Further research is needed to assess the impact of PI white-tailed deer on BVDV control programs in cattle.  相似文献   

3.
Infections with bovine viral diarrhea virus (BVDV) of the genus pestivirus, family Flaviviridae, are not limited to cattle but occur in various artiodactyls. Persistently infected (PI) cattle are the main source of BVDV. Persistent infections also occur in heterologous hosts such as sheep and deer. BVDV infections of goats commonly result in reproductive disease, but viable PI goats are rare. Using 2 BVDV isolates, previously demonstrated to cause PI cattle and white-tailed deer, this study evaluated the outcome of experimental infection of pregnant goats. Pregnant goats (5 goats/group) were intranasally inoculated with BVDV 1b AU526 (group 1) or BVDV 2 PA131 (group 2) at approximately 25–35 days of gestation. The outcome of infection varied considerably between groups. In group 1, only 3 does became viremic, and 1 doe gave birth to a stillborn fetus and a viable PI kid, which appeared healthy and shed BVDV continuously. In group 2, all does became viremic, 4/5 does aborted, and 1 doe gave birth to a non-viable PI kid. Immunohistochemistry demonstrated BVDV antigen in tissues of evaluated fetuses, with similar distribution but reduced intensity as compared to cattle. The genetic sequence of inoculated viruses was compared to those from PI kids and their dam. Most nucleotide changes in group 1 were present during the dam’s acute infection. In group 2, a similar number of mutations resulted from fetal infection as from maternal acute infection. Results demonstrated that BVDV may cause reproductive disease but may also be maintained in goats.  相似文献   

4.
Bovine viral diarrhea virus (BVDV) is an important pathogen of domestic cattle. Serologic, experimental, and individual case studies explored the presence and pathogenesis of the virus in wild ungulates; however, there remain large gaps in knowledge regarding BVDV infection in nonbovine species. Live twins were born from a white-tailed deer (Odocoileus virginianus) doe infected with noncytopathic BVDV during its first trimester of pregnancy. The twins died at 1 day of age from trauma unrelated to the infection, and tissues were collected for histologic and immunohistochemical examination. The most significant histologic abnormality was diffuse depletion of B-lymphocytes in both fawns. The BVDV antigen was distributed widely throughout many tissues and cell types, most notably epithelium and vascular endothelium, consistent with that reported in cattle. In contrast to cattle, lymphocytes exhibited only very rare positive staining.  相似文献   

5.
Bovine viral diarrhea virus (BVDV) is one of the most relevant pathogens affecting today's cattle industries. Although great strides have been made in understanding this virus in cattle, little is known about the role of wildlife in the epidemiology of BVDV. While persistently infected cattle are the most important reservoir, free-ranging ungulates may become infected with BVDV as demonstrated by serosurveys and experimental infections. Therefore, free-ranging wildlife may maintain BVDV as the result of an independent cycle and may serve as a reservoir for the virus. Systematic studies on prevalence of BVDV-specific antibodies or frequency of persistent BVDV infection in North American wildlife are sparse, and no information is available from the southeastern United States. The objective of this study was to evaluate blood and skin samples from hunter-harvested white-tailed deer (Odocoileus virginianus) for evidence of BVDV infection. Virus-neutralizing antibodies were detected in 2 of 165 serum samples. Skin biopsy immunohistochemistry (IHC) was performed on samples from 406 deer using a BVDV-specific monoclonal antibody (MAb) (15c5), and BVDV antigen was detected in one sample. A similar IHC staining pattern was obtained using a second BVDV MAb (3.12F1). Viral antigen distribution in the skin sample of this deer resembled that found in persistently infected cattle and in a previously described persistently infected white-tailed deer; thus, the deer was presumed to be persistently infected. Evidence of BVDV infection in free-ranging white-tailed deer should encourage further systematic investigation of the prevalence of BVDV in wildlife.  相似文献   

6.
Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle worldwide. Infection of a pregnant animal may lead to persistent infection of the foetus and birth of a persistently infected (PI) calf that sheds the virus throughout its life. However, BVD viruses are not strictly species specific. BVDV has been isolated from many domesticated and wild ruminants. This is of practical importance as virus reservoirs in non-bovine hosts may hamper BVDV control in cattle. A goat given as a social companion to a BVDV PI calf gave birth to a PI goat kid. In order to test if goat to goat infections were possible, seronegative pregnant goats were exposed to the PI goat. In parallel, seronegative pregnant goats were kept together with the PI calf. Only the goat to goat transmission resulted in the birth of a next generation of BVDV PI kids whereas all goats kept together with the PI calf aborted. To our knowledge, this is the first report which shows that a PI goat cannot only transmit BVD virus to other goats but that such transmission may indeed lead to the birth of a second generation of PI goats. Genetic analyses indicated that establishment in the new host species may be associated with step-wise adaptations in the viral genome. Thus, goats have the potential to be a reservoir for BVDV. However, the PI goats showed growth retardation and anaemia and their survival under natural conditions remains questionable.  相似文献   

7.
Identifying reservoirs and transmission routes for bovine viral diarrhea virus (BVDV) are important in developing biosecurity programs. The aim of this study was to evaluate BVDV transmission by the hematophagous horn fly (Haematobia irritans). Flies collected from four persistently infected cattle were placed in fly cages attached to principal (n?=?4) and control (n?=?4) BVDV-naïve calves housed individually in isolation rooms. Flies were able to feed on principal calves, but a barrier prevented fly feeding from control calves. Flies were tested for BVDV by RT-PCR and virus isolation at time of collection from PI cattle and after 48 h of exposure on BVDV-naïve calves. Blood samples were collected from calves and tested for BVDV infection. Virus was isolated from fly homogenates at collection from PI animals and at removal from control and principal calves. All calves remained negative for BVDV by virus isolation and serology throughout the study. Bovine viral diarrhea virus may be detected in horn flies collected from PI cattle, but horn flies do not appear to be an important vector for BVDV transmission.  相似文献   

8.
Bovine viral diarrhoea virus (BVDV) is the most prevalent infectious disease of cattle. It causes financial losses from a variety of clinical manifestations and is the subject of a number of mitigation and eradication schemes around the world. The pathogenesis of BVDV infection is complex, with infection pre- and post-gestation leading to different outcomes. Infection of the dam during gestation results in fetal infection, which may lead to embryonic death, teratogenic effects or the birth of persistently infected (PI) calves. PI animals shed BVDV in their excretions and secretions throughout life and are the primary route of transmission of the virus. These animals can usually be readily detected by virus or viral antigen detection assays (RT-PCR, ELISA), except in the immediate post-natal period where colostral antibodies may mask virus presence. PI calves in utero (the ‘Trojan cow’ scenario) currently defy detection with available diagnostic tests, although dams carrying PI calves have been shown to have higher antibody levels than seropositive cows carrying non-PI calves.Acute infection with BVDV results in transient viraemia prior to seroconversion and can lead to reproductive dysfunction and immunosuppression leading to an increased incidence of secondary disease. Antibody assays readily detect virus exposure at the individual level and can also be used in pooled samples (serum and milk) to determine herd exposure or immunity. Diagnostic tests can be used to diagnose clinical cases, establish disease prevalence in groups and detect apparently normal but persistently infected animals. This review outlines the pathogenesis and pathology of BVD viral infection and uses this knowledge to select the best diagnostic tests for clinical diagnosis, monitoring, control and eradication efforts. Test methods, types of samples and problems areas of BVDV diagnosis are discussed.  相似文献   

9.
Data were obtained from a questionnaire administered to a random sample of Canadian and United States white-tailed deer (WTD) farmers. Reproductive indices and survival of fawns from birth until 1 y of age were examined. Major factors in limiting herd increase were a low reproductive rate (88 fawns per 100 does exposed to bucks) and a 30% mortality of fawns from birth until 1 y of age. The latter figure differs from reported mortality rates in fallow deer and red deer/wapiti. The unacceptably high neonatal mortality on WTD farms was determined to be as important to herd productivity as failure to produce a live fawn. Industry wide, "benchmark" estimates of reproductive performance, mortality rates, and productivity are provided, allowing farmers to compare their herds against these "benchmarks" to identify areas needing improvement.  相似文献   

10.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

11.
Bovine viral diarrhea virus (BVDV), a Flaviviridae pestivirus, is arguably one of the most widespread cattle pathogens worldwide. Each of its two genotypes has two biotypes, non-cytopathic (ncp) and cytopathic (cp). Only the ncp biotype of BVDV may establish persistent infection in the fetus when infecting a dam early in gestation, a time point which predates maturity of the adaptive immune system. Such fetuses may develop and be born healthy but remain infected for life. Due to this early initiation of fetal infection and to the expression of interferon antagonistic proteins, persistently infected (PI) animals remain immunotolerant to the infecting viral strain. Although only accounting for some 1% of all animals in regions where BVDV is endemic, PI animals ensure the viral persistence in the host population. These animals may, however, develop the fatal mucosal disease, which is characterized by widespread lesions in the gastrointestinal tract. Cp BVD virus, in addition to the persisting ncp biotype, can be isolated from such animals. The cp viruses are characterized by unrestrained genome replication, and their emergence from the persisting ncp ones is due to mutations that are unique in each virus analyzed. They include recombinations with host cell mRNA, gene translocations and duplications, and point mutations. Cytopathic BVD viruses fail to establish chains of infection and are unable to cause persistent infection. Hence, these viruses illustrate a case of “viral emergence to extinction” – irrelevant for BVDV evolution, but fatal for the PI host.  相似文献   

12.
13.
Reproductive efficiency is imperative for the maintenance of profitability in both dairy and cow-calf enterprises. Bovine viral diarrhea virus is an important infectious disease agent of cattle that can potentially have a negative effect on all phases of reproduction. Reduced conception rates,early embryonic deaths, abortions, congenital defects, and weak calves have all been associated BVDV infection of susceptible females. In addition, the birth of calves PI with BVDV as a result of in utero fetal exposure is extremely important in the perpetuation of the virus in an infected herd or spread to other susceptible herds. Bulls acutely or PI with BVDV may bea source of viral spread through either natural service or semen used in artificial insemination. Management practices including elimination of PI cattle, biosecurity measures and strategic use of vaccination can be implemented to reduce the risk of BVDV related reproductive losses.Development of vaccines and vaccine strategies capable of providing better protection against fetal infection would be of benefit.  相似文献   

14.
Bovine viral diarrhea (BVD) is one of the economically important diseases of cattle. For many years, different types of vaccines have been commercially available, yet this disease is hard to control in high-density population areas. Detection and isolation of bovine viral diarrhea virus (BVDV) from any potential reservoir is vital, especially when considering virus eradication from a herd or locale. One potential source is wild ruminants. Ear notches and lymph nodes were collected from the wild population of white-tailed deer (Odocoileus virginianus) during deer hunting season in Indiana and tested for BVDV with a commercial BVD antigen capture enzyme-linked immunosorbent assay. Two samples out of 745 collected samples were positive, and subsequently cp and ncp BVDV was isolated from 1 ear notch and 1 lymph node. These isolates were genotyped as type 1a and 1b based on sequence analysis of the 5' untranslated region (UTR). The results of the present study indicate that the prevalence of BVDV in the white-tailed deer population of Indiana is about 0.3%. Wild ruminants infected with BVDV should be taken into consideration during an eradication program of BVDV from the livestock population.  相似文献   

15.
Bluetongue was first reported in the United States in 1948 in sheep in Texas. The virus has now been isolated from sheep in 19 States. When the disease first occurs in a flock, the morbidity may reach 50 to 75% and mortality 20 to 50%. In subsequent years, the morbidity may be only 1 to 2% with very few deaths. Difference in breed susceptibility has not been observed. Natural bluetongue infection has not been observed in Angora or dairy goats. Bluetongue virus was first isolated from cattle, in Oregon, in 1959. The virus has now been isolated from cattle in 13 States. In cattle, the disease is usually inapparent but can cause mild to severe clinical disease and neonatal losses. Natural clinical bluetongue has also been reported in bighorn sheep, exotic ruminants in a zoo, mule deer, and white-tailed deer. Serological evidence of exposure to the virus has also been found in other species of ruminants in the wild. Inoculation of virulent bluetongue virus, vaccine virus, or natural disease can cause congenital deformities and neonatal losses in calves, lambs, and white-tailed deer fawns. Culicoides is considered the important insect vector of bluetongue. The virus has also been isolated from sheep keds and cattle lice. U.S. field strains of the virus fit into four serologic groups. No cross reactions were found between bluetongue and epizootic haemorrhagic disease of deer viruses. Cattle are considered significant virus reservoirs. It is necessary to use washed erythrocytes, rather than whole blood, and to inoculate susceptible sheep, rather than embryonated chicken eggs, to detect longer-term viraemia in cattle.  相似文献   

16.
Bovine viral diarrhoea virus (BVDV) is an endemic pathogen worldwide and eradication strategies focus on the identification and removal of persistently infected (PI) animals arising after in utero infection. Despite this, acute infections with BVDV can persist for months or years after the removal of the PI source despite repeated screening for PIs and tight biosecurity measures. Recent evidence for a prolonged duration of viraemia in the testicles of bulls following acute BVDV infection suggests the possibility of a form of chronic persistence that may more closely resemble the persistence strategies of hepatitis C virus (HCV). To investigate the potential for virus transmission from infected and recovered cattle to virus naïve hosts we established an acute infection of 5 BVDV-naïve calves and monitored animals over 129 days. Infectious BVDV was detected in white blood cells between days 3 and 7 post-challenge. The animals seroconverted by day 21 post-infection and subsequently were apparently immune and free from infectious virus and viral antigen.Animals were further monitored and purified white blood cells were stimulated in vitro with phytohaemagglutinin A (PHA) during which time BVDV RNA was detected intermittently.Ninety-eight days following challenge, blood was transferred from these apparently virus-free and actively immune animals to a further group of 5 BVDV-naïve calves and transmission of infection was achieved. This indicates that BVDV-infected, recovered and immune animals have the potential to remain infectious for BVDV-naïve cohorts for longer than previously demonstrated.  相似文献   

17.
本研究从疑似牛病毒性腹泻病毒(bovine viral diarrhea virus,BVDV)感染牛的分泌物与排泄物中分离鉴定1株牛病毒性腹泻病毒,并进行E2基因序列分析。结果表明,分离株病毒命名为JN株;Reed-Muench法测定分离株病毒TCID50为10-7.5/0.1 mL;病毒中和试验结果表明,BVDV JN分离株可被BVDV阳性血清特异性中和,而不能被BVDV阴性血清中和;分离株病毒E2基因序列测序结果表明,该分离毒株属于BVDVⅠa亚型。  相似文献   

18.
19.
Knowing how bovine viral diarrhoea virus (BVDV) infection spreads via indirect contacts is required in order to plan large-scale eradication schemes against BVDV. In this study, susceptible calves were exposed to BVDV by an unhygienic vaccination procedure, by ambient air and from contaminated pens. Primary BVDV infection was observed in two calves vaccinated with a vaccine against Trichophyton spp that had been contaminated by smearing nasal secretion from a persistently infected (PI) calf on the rubber membrane and penetrating it twice with a hypodermic needle. Four other calves, housed in pairs in two separate housing units near a PI calf for one week--at distances of 1.5 and 10 m, respectively--became infected without having direct contact with the PI calf. Furthermore, two of the three calves housed in a pen directly after removal of a PI calf, but without the pen being cleaned and disinfected, also contracted primary BVDV infection, whereas two calves that entered such a pen four days after removal of another PI calf, did not. In herds where most animals are seronegative to BVDV, indirect airborne transmission of BVDV or contact with a contaminated housing interior may be an important factor in spreading of the virus, once a PI animal is present. However, the spreading of BVDV within herds can be stopped by identifying and removing PI animals and also by ensuring that susceptible breeding animals do not become infected during this procedure. In contrast, injectables contaminated with BVDV may prove to be a significant vector for spreading the infection, not only within an infected herd but, most importantly, also between herds. In our opinion, it is questionable whether medicine bottles, once opened and used within an infected herd, should be used in other herds. In any case, prior knowledge of a herd's BVDV status will help practising veterinarians and technicians to undertake appropriate hygienic measures.  相似文献   

20.
Wet BVDSim (a stochastic simulation model) was developed to study the dynamics of the spread of the bovine viral-diarrhoea virus (BVDV) within a dairy herd. This model took into account herd-management factors (common in several countries), which influence BVDV spread. BVDSim was designed as a discrete-entity and discrete-event simulation model. It relied on two processes defined at the individual-animal level, with interactions. The first process was a semi-Markov process and modelled the herd structure and dynamics (demography, herd management). The second process was a Markov process and modelled horizontal and vertical virus transmission. Because the horizontal transmission occurs by contacts (nose-to-nose) and indirectly, transmission varied with the separation of animals into subgroups. Vertical transmission resulted in birth of persistently infected (PI) calves. Other possible consequences of a BVDV infection during the pregnancy period were considered (pregnancy loss, immunity of calves). The outcomes of infection were modelled according to the stage of pregnancy at time of infection. BVDV pregnancy loss was followed either by culling or by a new artificial insemination depending on the modelled farmer’s decision. Consistency of the herd dynamics in the absence of any BVDV infection was verified. To explore the model behaviour, the virus spread was simulated over 10 years after the introduction of a near-calving PI heifer into a susceptible 38 cow herd. Different dynamics of the virus spread were simulated, from early clearance to persistence of the virus 10 years after its introduction. Sensitivity of the model to the uncertainty on transmission coefficient was analysed. Qualitative validation consisted in comparing the bulk-milk ELISA results over time in a sample of herds detected with a new infection with the ones derived from simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号