首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Wild relatives of common wheat, Triticum aestivum, and related species are an important source of disease and pest resistance and several useful traits have been transferred from these species to wheat. C-banding and in situ hybridization analyses are powerful cytological techniques allowing the detection of alien chromatin in wheat. C-banding permits identification of the wheat and alien chromosomes involved in wheat-alien translocations, whereas genomic in situ hybridization analysis allows determination of their size and breakpoint positions. The present review summarizes the available data on wheat-alien transfers conferring resistance to diseases and pests. Ten of the 57 spontaneous and induced wheat-alien translocations were identified as whole arm translocations with the breakpoints within the centromeric regions. The majority of transfers (45) were identified as terminal translocations with distal alien segments translocated to wheat chromosome arms. Only two intercalary wheat-alien transloctions were identified, one induced by radiation treatment with a small segment of rye chromosome 6RL (H25) inserted into the long arm of wheat chromosome 4A, and the other probably induced by homoeologous recombination with a segment derived from the long arm of a group 7 Agropyron elongatum chromosome with Lr19 inserted into the long arm of 7D. The presented information should be useful for further directed chromosome engineering aimed at producing superior germplasm.Contribution No. 96-55-J from the Kansas Experimental Station, Kansas State University, Manhattan, KS 66506-5502, USA.  相似文献   

2.
Summary A monogenic dominant male sterility is used for hybrid production in autumn and winter cauliflower. The ratio of male sterile plants in the backcross progenies of autumn cauliflower was 1:1 over five years (1987–1991). However, a significant deficit of male sterile plants was observed in the winter type over the same period.The influence of the temperature on the male sterile phenotype was studied within backcross progenies planted inside polythene tunnels. Six classes of phenotype were defined during the flowering period (from May to November). At low temperature, some male sterile plants developed partial to complete male fertility, whereas at high temperature, male fertile plants became male sterile.Segregation among the progenies of self-pollinated unstable male sterile plants did not deviate from the expected 3:1 ratio. Plants homozygous for the male sterility allele have been revealed by test crosses with a male fertile plant.For use in seed production, stable male sterile plants are vegetatively maintained; however, crossing lines isogenic except at the MS locus would allow male sterile plants to be raised from seed.  相似文献   

3.
G. J. Jellis 《Euphytica》1992,63(1-2):51-58
Summary The potato has more characters of economic importance that need to be considered by the breeder than any other temperate crop. In Europe these include resistance to at least twelve major diseases and pests. Highest priority has been given to resistance to late blight (Phytophthora infestans), virus diseases (particularly those caused by potato leafroll virus and potato virus Y) and potato cyst nematode (Globodera rostochiensis andG. pallida). Useful sources of resistance are available and early generation screening techniques have been developed to allow positive selection for multiple resistance and the breeding value of clones used as parents to be determined. Progress in restriction fragment length polymorphism technology should result in more efficient selection in the future.  相似文献   

4.
Summary Calli of resistant, intermediary and susceptible wheat (Triticum aestivum L.) varieties were selected using culture filtrates of Fusarium graminearum and F. culmorum and the regenerants were evaluated for resistance up to R3. Czapek-Dox broth medium was inoculated with mycelia of Fusarium isolates and incubated for 2–6 weeks. Filtrates were added to MS callus growing medium, then 5 weeks-old calli were transferred onto this medium (MST) for 4–5 weeks. MST containing 30% filtrate was found to be suitable for selection. Resistant calli were transferred again to fresh MST for further two selection cycles. The surviving calli produced less fertile regenerated lines (R0) than the non-selected ones. Among 18 R1 lines tested for Fusarium-resistance in the seedling stage by artificial inoculation in the greenhouse, two (11.1%) were significantly more resistant, one (5.6%) was more susceptible than the original cultivar and the rest (83.3%) behaved similarly to the donor plants. Among unselected R3 lines of three varieties, practically the same number of resistant plants were found as among the related selected ones. When the R3 selfed generations obtained through double-layer and culture filtrate selection techniques were tested for Fusarium-resistance, 35.7% of the lines were found to be more resistant than the original cultivars, none was more susceptible and 64.3% had a reaction similar to that of the source materials. Thus, inheritance of the disease reaction was not stable in all cases. Success of in vitro selection for Fusarium-resistance depended also on the genotype, and toxin analysis showed that although being effective, the selective media contained deoxynivalenol only exceptionally. In selecting wheat for Fusarium-resistance in vitro, the culture filtrate technique proved better than the double-layer procedure.  相似文献   

5.
Summary The effect of an autumn Russian wheat aphid, Diuraphis noxia (Mordvilko), infestation on winter wheat, Triticum aestivum L., was investigated using osmotic potential, fructan content and field survival measurements to estimate coldhardiness. An average infestation of 147 aphids per plant, under simulated hardening conditions, increased the osmotic potential of Froid and Brawny (more or less coldhardy varieties, respectively) seedlings by 0.236 and 0.345 MPa, respectively. A natural field infestation averaging 9.7 aphids per plant reduced fructan contents of Froid and Brawny seedlings by 22.60 and 59.10 g kg-1 dry wt., respectively. Similar trends occurred after a natural freeze period. Field survival and yield results indicate that the autumn infestation reduced the winter survivability of Brawny by 54% and reduced grain yields by 1217 kg ha-1; survival and yield of infested Froid were not significantly affected. PI 372129, a D. noxia resistant winter wheat genotype was not affected by an infestation in regard to these parameters. These studies suggest that coldhardiness in Froid and Brawny was reduced by D. noxia though only the less hardy Brawny had a significantly reduced winter survivability and grain yield. Therefore, the effects of an autumn D. noxia infestation on some winter wheat genotypes may interact with a winter climate and increase the potential for winterkill.  相似文献   

6.
Wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, harbors rich genetic resources for wheat improvement. They include many agronomic traits such as abiotic stress tolerances (salt, drought and heat), biotic stress tolerances (powdery mildew, rusts, and Fusarium head blight), grain protein quality and quantity, and micronutrient concentrations (Zn, Fe, and Mn). In this review, we summarize (1) traits and controlling genes identified and mapped in T. dicoccoides; and (2) the genes transferred to cultivated wheat from T. dicoccoides. These genes, controlling important agronomic traits such as disease resistance, high protein and micronutrient content, should contribute to wheat production and food nutrition. However, most of the rich genetic reservoir in wild emmer remains untapped, highlighting the need for further exploration and utilization for long-term wheat breeding programs.  相似文献   

7.
The inheritance of Fusarium head blight (FHB) resistance was investigated in eight western European wheat lines using a half-diallel of F1 crosses. The parents and F1 crosses were point-inoculated, with a highly aggressive isolate of Fusarium graminearum, in replicated field and glasshouse trials. Type II resistance was assessed by measuring the % FHB spread and % wilted tips. There was a good correlation between the two disease parameters, % FHB spread area under the disease progress curve (AUDPC) and % wilted tips AUDPC (r = 0.86, P < 0.01). Correlation coefficients between the field and glasshouse environments were r = 0.46 (P < 0.01) for % FHB spread AUDPC and r = 0.40 (P < 0.05) for % wilted tips AUDPC. Both general combining ability (GCA) and specific combining ability (SCA) effects influenced the inheritance of FHB resistance, suggesting that in this set of parents both additive and non-additive (dominance or epistatic) effects influence the inheritance of type II FHB resistance. Highly significant GCA-by-environment (P < 0.0001) and SCA-by-environment (P < 0.005) interactions were also observed. Specific combinations of western European wheat varieties were identified with type II FHB resistance at a level equal to or more resistant than the winter wheat variety ‘Arina’.  相似文献   

8.
When challenged with Fusarium oxysporum f. sp. vasinfectum (Fov) from vegetative compatibility groups (VCGs) 01111 and 01112 in glasshouse tests, Gossypium australe Mueller and Gossypium sturtianum Willis accessions showed a variety of disease responses ranging from highly resistant to highly susceptible. Under high disease pressure G. sturtianum accession Gos-5275 was significantly more resistant than the commercial G. hirsutum cultivars that are designated standards for Fusarium resistance by Australian cotton breeders. Under low disease pressure G. sturtianum accession Gos-5250 was more susceptible than a highly susceptible commercial cultivar. A series of glasshouse tests was performed at two locations (Indooroopilly, QLD. and Canberra, ACT), and under low and high disease pressure. In these tests, a hexaploid cross (Gos-5271) generated from a Fusarium-resistant G. sturtianum (Gos-5275) and a Fusarium-susceptible G. hirsutum L. (CPI-138969) was significantly more resistant to Fusarium wilt than its G. hirsutum parent. Thus G. sturtianum, with a diploid genome and a range of responses to Fov challenge, has the potential to provide the basis for the elucidation of the genetic basis of resistance to Fusarium wilt in cotton species. In addition, resistant accessions of G. sturtianum are identified as a potential source of Fusarium wilt resistance genes for cotton breeding. In the glasshouse tests used to assess the resistance of various Gossypium accessions to Fusarium wilt disease, the scoring of vascular browning was found to give a more reliable indication of disease severity than the scoring of foliar symptoms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Leaf rust, caused by Puccinia triticina, is considered one of the most important diseases of wheat. In South Africa the genes Lr29, Lr34, Lr35 and Lr37 confer effective resistance to leaf rust, qualifying them for use in cultivar improvement. To study possible secondary effects of these genes, a collection of BC6 lines containing each of the genes singly, was evaluated for breadmaking quality. The recurrent parent Karee, and Thatcher NILs used as resistance donors in the primary crosses, as well as Thatcher, were included as checks. The presence of Lr29, Lr34, Lr35 and Lr37 caused a significant increase in flour protein and water absorption. For most of the other characteristics the NILs performed statistically similar to the recurrent parent. Some sib lines performed significantly better than others, emphasising the value of selecting for improved quality among backcross lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Summary Pathogenicity of 20 isolates of 12 Fusarium species recovered from triticale seed against seedlings of 14 varieties of winter cereals (triticale, wheat, and rye) was tested. The most pathogenic inoculum was a mixture of isolates (a composite isolate) of all the species. The following species were individually the most pathogenic: F. avenaceum, F. culmorum, F. sambucinum var. coeruleum, and F. graminearum. Winter triticale was more resistant to seedling blight than rye but more susceptible than wheat.Also reactions of 31 winter and 12 spring varieties of cereals to head inoculation with a composite isolate of 4 Fusarium spp. (F. avenaceum, F. culmorum, F. graminearum, and F. sambucinum var. coeruleum) was studied. In comparison to other cereals of similar type winter and spring wheat appeared to be the most susceptible while winter rye reaction was comparable to winter triticale. Spring and winter triticale varieties responded to head infection intermediately.There was no significant correlation between seedling and head reactions to infection with Fusarium spp. for winter rye and triticale. For winter wheat a negative trend was found. The above findings imply that screening of cereals at the seedling stage can not be used to predict the resistance to head blight. Nevertheless, resistance at the stage is highly desirable to prevent excessive damage of the crops due to the seedling blight incited by Fusarium spp..  相似文献   

11.
C. Planchon 《Euphytica》1979,28(2):403-408
Summary Net photosynthesis, transpiration, and resistances to CO2 and water vapour transfer of two cultivars of each of four types (Triticum durum, Triticum aestivum. hexaploid Triticale, octaploid Triticale) were analysed. Hexaploid triticales have the highest net photosynthesis and the best water efficiency. Water efficiency was defined by the CER/transpiration ratio measured under saturating irradiance corresponding to full stomatal opening. Cultivated bread and durum wheat cultivars (Capitole, Champlein, Bidi 17) are characterised by a low CER associated with a large flag leaf area and a high mesophyll resistance. There is a close correlation between CER., flag leaf area, mesophyll resistance and total chlorophyll content.  相似文献   

12.
Summary In controlled inoculation studies with Septoria nodorum and Pyrenophora tritici-repentis, estimates of the relative proportion of each pathogen demonstrated differences in the responses of cultivars to pathogen mixtures that were not apparent from measurements of diseased leaf areas. Under field conditions estimates of the relative proportion of S. nodorum, P. tritici-repentis and S. tritici varied between field screening locations in Western Australian but also between lines within locations. Lines with known resistance to P. tritici-repentis and S. tritici, but susceptible to S. nodorum, could not be distinguished from susceptible lines on the basis of leaf area diseased or grain weight depression when S. nodorum was present in the disease complex. Such conditions, while suitable for the selection of combined resistance to these pathogens, were unsuitable for identifying resistance to individual pathogens. As symptoms were similar, the proportion of diseased leaf area sporulating with each pathogen provided a means of measuring the variation in disease development induced on lines varying in resistance. Knowledge of the components of disease and their relative importance were essential in understanding varietal response information under mixed infections of these leaf spot pathogens.  相似文献   

13.
Summary With the aim of making the point on feasibility and relative success of alien transfers into durum wheat via chromosome engineering, three transfer works, differing in origin and content of the alien introduction and in the transfer strategy adopted, are described. For the transfer of a powdery mildew resistance gene, Pm13, originating from Aegilops longissima and previously transferred to common wheat chromosome 3B, as well as for that of the leaf rust resistance gene Lr19 and its associated Yp (yellow pigment) gene, deriving from Ag. elongatum and introduced into 7A, the common wheat recombinants were employed as donors, from which the alien segments were homologously transferred into durum genotypes. On the other hand, for the transfer of common wheat chromosome ID seed storage protein genes, ph1 mediated homoeologous recombination was repeatedly induced. This resulted in loss of individuals, including potentially desirable recombinants, probably due to imbalances created by the ph1 condition. However, recovered Gli-D1/Glu-D3 tetraploid recombinants exhibited normal transmission and fertility. Preliminary evidence indicates a normal behaviour also for Glu-D1 5+10 putative recombinants. Similarly, there was no negative impact from the transfer of the Pm13 gene, which has been successfully pyramided into Pm4a durum varieties. On the contrary, transfer of the Ag. elongatum segment showed normal female but almost no male transmission in one durum genotype. This in spite of the fact that the alien segment, proved to be, through in situ hybridization, considerably longer than previously believed, should contain an Sd-1 gene, causing preferential transmission in common wheat. While its behaviour is being checked in other durum genotypes, shortening of the alien segment, through ph1 induced recombination, is also being carried out. Possible causes of the severe negative selection that this alien transfer seemingly encounters at the tetraploid level are discussed.  相似文献   

14.
Banana and plantain are among the most important food crops in developing countries but production is threatened by increasing virulent forms of Fusarium oxysporum f. sp. cubense. Chemical control is not economically effective and,therefore, breeding programs are necessary. Traditional field studies of new genotype resistance to this disease are time-consuming and destructive. Therefore,we developed a rapid and non-destructive procedure to differentiate field-grown banana resistant from susceptible clones. This procedure implicates application of culture filtrates of Fusarium oxysporum f. sp. cubense race 1 onto banana leaves. The relationship between duration of the fungal in vitro incubation, and the fungal culture fresh mass, the culture filtrate absorbency, and the Gross Michel (susceptible cultivar)leaf lesion area (after application of the culture filtrate) were similar and at 24day-incubation the highest values of the recorded indicators were observed. A comparison between Gross Michel and FHIA-01(resistant) was also performed. The most relevant differences between cultivars were observed at 48 hours after application of the culture filtrate, and in the middle-aged leaves. The position of the culture filtrate application in the leaf limb (distal, middle, proximal) was not determinant. A wider comparison among banana cultivars confirmed previous results informed by other researchers using different systems to study this plant-fungus interaction. Such a confirmation validates the effectiveness of the procedure described here to select rapid and non-destructively banana resistance to this disease at field level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The introgression of desirable genes or alleles from the wild relatives of hexaploid wheat can be a valuable source of genetic variation for wheat breeders to enhance modern varieties. The UK Group 1 bread making variety Shamrock is an example where the introgression of genetic material from wild emmer (Triticum dicoccoides) has been used to develop a modern cultivar. A striking character of Shamrock is its unique viridescent colour compared to other UK wheats, a trait that coincides with a non-glaucous phenotype. A doubled haploid population segregating for the trait (Shamrock × Shango) was examined to map the location of Vir, and analyse any associated pleiotropic effects. The viridescence gene located to the distal end of the short arm of chromosome 2B. QTL analysis of productivity traits shows an association between Vir and a significant delay in senescence, resulting in an extension of the grain filling period. A stable yield QTL, accounting for up to a quarter of the variation in one case, was also identified at or near Vir, indicating significant yield benefits either by linkage or pleiotropy.  相似文献   

16.
Summary Seedling resistance to wheat stem rust was determined in populations of wild emmer wheat, Triticum dicoccoides, and characterized by means of ecological factors and allozyme genotypes. Reactions to wheat stem rust were studied in 102 single plant accessions of T. dicoccoides from ten populations by inoculation with Puccinia graminis tritici race 14, isolate GSR-739. Six populations displayed different degrees of response polymorphism with reactions ranging from high resistance to complete susceptibility, whereas four populations contained only susceptible plants. In some of the accession, unexplained intrasib variation in resistance and intraplant variation of infection-types were found. Resistance to stem rust was negatively correlated with two ecological factors, altitude and number of Sharav (hot-dry) days which are unfavorable to disease development. Variation in stem rust response was shown to exist in ecogeographic regions where climatic variables enhanced the development of the fungus, conceivably maintained by natural selection. Likewise, allozyme genotypes, single or in multiple loci combinations, appeared to be associated with resistance or susceptibility to rust. Such association need to be verified by genetic studies in order to become established as useful markers.  相似文献   

17.
Susan Eapen  P. S. Rao 《Euphytica》1985,34(1):153-159
Summary Callus cultures were initiated from inflorescence explants of wheat, rye and triticale on MS medium supplemented with 2 mgl-1 2,4-D+5% CW or 2 mgl-1 2,4-D+0.5 mgl-1 BA. On transfer of the cultures to medium supplemented with 15% CW+0.2 mgl-1 NAA or 1 mgl-1 BA+0.1 mgl-1 IAA, shoot buds and embryoids were produced. Full fledged plantlets obtained on MS medium supplemented with NAA were transferred to the field. Cytological analysis showed the plants to be diploid. However, the regenerated plantlets were shorter, produced fewer tillers and had lower fertility compared to the control.Abbreviations BA Benzyladenine - CW coconut water - IAA indoleacetic acid - NAA -naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

18.
Summary Crosses of wild barley (Hordeum vulgare ssp. spontaneum and Hordeum vulgare ssp. agriocrithon) with Hordeum vulgare ssp. vulgare were used to select high yielding grain types under dryland Mediterranean conditions. No special difficulties were faced in making the crosses, in eliminating the brittle rachis genes from the grain types or in selecting 6-rowed types in crosses between 2-rowed wild barley and 6-rowed ssp. vulgare varieties. Brittle rachis genotypes, present in the segregating populations were used in developing self-reseeding permanent pastures for dry areas. The best selections were tested in seven trials during 1989–92 and some of them outyielded their parents and also the best improved check variety by 13–22%. Indications for transgressive segregation were obtained for grain yield, straw yield, total biological yield, harvest index and volume weight. The crude protein content of some of the selections was significantly higher than that of the checks. For breeding programs aiming at large seeds, special ssp. spontaneum lines should be used as parents. High grain yield was positively correlated with high straw yield, total biological yield, earliness in heading date, high harvest index and negatively with volume weight. It was concluded that unexploited useful genes, even when not directly observed in wild barley, could be transfered easily into high yielding genotypes by breeding.  相似文献   

19.
Summary A new source of resistance to wheat powdery mildew caused by Erysiphe graminis has been transferred to hexaploid bread wheat, Triticum aestivum, from the wild tetraploid wheat, Triticum dicoccoides. The donor was crossed to bread wheat and the pentaploid progeny was then self-pollinated. Plants having a near stable hexaploid chromosome complement were selected in the F3 progeny and topcrossing and backcrossing of these to a second wheat cultivar to improve the phenotype was undertaken. Monosomic analysis of early backcross lines showed the transferred gene to be located on chromosome 4A. The gene has been designated Pm16.  相似文献   

20.
Summary Among the cultivars of bread wheat, durum wheat and barley grown in the South of Italy, genetic variation for adaptation to the high temperature and drought stress conditions typical of the Mediterranean environment has been found.The basic data have been extrapolated from 5 years of Italian national network cultivar trials, where 20–30 cultivars were grown in replicated plot trials in 30–50 locations per year, including some where stress strongly affected grain yield.After careful identification of the most representative years and testing sites it was possible to characterise the cultivars on the basis of the grain yield in stress conditions and the Fischer & Maurer (1978) susceptibility index and to find genotypic differences sufficiently repeatable in years.The cultivars giving the best yield under stress associated with low susceptibility indices were in bread wheat: Etruria, Spada, Pandas, Centauro, Oderzo, Costantino and Gladio, in durum wheat: Aldura, Arcangelo, Adamello, Vespro and Capeiti, in barley: Fleuret, Barberousse, Jaidor, Express, Trebbia, Georgie, Dahlia, Criter and Magie.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号