首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botrytis grey mould (BGM) caused by Botrytis cinerea Pers. ex. Fr. is the second most important foliar disease of chickpea (Cicer arietinum L.) after ascochyta blight. An intraspecific linkage map of chickpea consisting of 144 markers assigned on 11 linkage groups was constructed from recombinant inbred lines (RILs) of a cross that involved a moderately resistant kabuli cultivar ICCV 2 and a highly susceptible desi cultivar JG 62. The length of the map obtained was 442.8 cM with an average interval length of 3.3 cM. Three quantitative trait loci (QTL) which together accounted for 43.6% of the variation for BGM resistance were identified and mapped on two linkage groups. QTL1 explained about 12.8% of the phenotypic variation for BGM resistance and was mapped on LG 6A. It was found tightly linked to markers SA14 and TS71rts36r at a LOD score of 3.7. QTL2 and QTL3 accounted for 9.5 and 48% of the phenotypic variation for BGM resistance, respectively, and were mapped on LG 3. QTL 2 was identified at LOD 2.7 and flanked by markers TA25 and TA144, positioned at 1 cM away from marker TA25. QTL3 was a strong QTL detected at LOD 17.7 and was flanked by TA159 at 12 cM distance on one side and TA118 at 4 cM distance on the other side. This is the first report on mapping of QTL for BGM resistance in chickpea. After proper validation, these QTL will be useful in marker-assisted pyramiding of BGM resistance in chickpea.  相似文献   

2.
Fusarium wilt (FW) and Ascochyta blight (AB) are two important diseases of chickpea which cause 100 % yield losses under favorable conditions. With an objective to validate and/or to identify novel quantitative trait loci (QTLs) for resistance to race 1 of FW caused by Fusarium oxysporum f. sp. ciceris and AB caused by Ascochyta rabiei in chickpea, two new mapping populations (F2:3) namely ‘C 214’ (FW susceptible) × ‘WR 315’ (FW resistant) and ‘C 214’ (AB susceptible) × ‘ILC 3279’ (AB resistant) were developed. After screening 371 SSR markers on parental lines and genotyping the mapping populations with polymorphic markers, two new genetic maps comprising 57 (C 214 × WR 315) and 58 (C 214 × ILC 3279) loci were developed. Analysis of genotyping data together with phenotyping data collected on mapping population for resistance to FW in field conditions identified two novel QTLs which explained 10.4–18.8 % of phenotypic variation. Similarly, analysis of phenotyping data for resistance to seedling resistance and adult plant resistance for AB under controlled and field conditions together with genotyping data identified a total of 6 QTLs explaining up to 31.9 % of phenotypic variation. One major QTL, explaining 31.9 % phenotypic variation for AB resistance was identified in both field and controlled conditions and was also reported from different resistant lines in many earlier studies. This major QTL for AB resistance and two novel QTLs identified for FW resistance are the most promising QTLs for molecular breeding separately or pyramiding for resistance to FW and AB for chickpea improvement.  相似文献   

3.
Ascochyta blight is a major fungal disease affecting chickpea production worldwide. The genetics of ascochyta blight resistance was studied in five 5 × 5 half-diallel cross sets involving seven genotypes of chickpea (ICC 3996, Almaz, Lasseter, Kaniva, 24B-Isoline, IG 9337 and Kimberley Large), three accessions of Cicer reticulatum (ILWC 118, ILWC 139 and ILWC 184) and one accession of C. echinospermum (ILWC 181) under field conditions. Both F1 and F2 generations were used in the diallel analysis. The disease was rated in the field using a 1–9 scale. Almaz, ICC 3996 and ILWC 118 were the most resistant (rated 3–4) and all other genotypes were susceptible (rated 6–9) to ascochyta blight. Estimates of genetic parameters, following Hayman’s method, showed significant additive and dominant gene actions. The analysis also revealed the involvement of both major and minor genes. Susceptibility was dominant over resistance to ascochyta blight. The recessive alleles were concentrated in the two resistant chickpea parents ICC 3996 and Almaz, and one C. reticulatum genotype ILWC 118. The wild Cicer accessions may have different major or minor resistant genes compared to the cultivated chickpea. High narrow-sense heritability (ranging from 82% to 86% for F1 generations, and 43% to 63% for F2 generations) indicates that additive gene effects were more important than non-additive gene effects in the inheritance of the trait and greater genetic gain can be achieved in the breeding of resistant chickpea cultivars by using carefully selected parental genotypes.  相似文献   

4.
Ascochyta blight (AB) caused by Ascochyta rabiei, is globally the most important foliar disease that limits the productivity of chickpea (Cicer arietinum L.). An intraspecific linkage map of cultivated chickpea was constructed using an F2 population derived from a cross between an AB susceptible parent ICC 4991 (Pb 7) and an AB resistant parent ICCV 04516. The resultant map consisted of 82 simple sequence repeat (SSR) markers and 2 expressed sequence tag (EST) markers covering 10 linkage groups, spanning a distance of 724.4 cM with an average marker density of 1 marker per 8.6 cM. Three quantitative trait loci (QTLs) were identified that contributed to resistance to an Indian isolate of AB, based on the seedling and adult plant reaction. QTL1 was mapped to LG3 linked to marker TR58 and explained 18.6% of the phenotypic variance (R 2) for AB resistance at the adult plant stage. QTL2 and QTL3 were both mapped to LG4 close to four SSR markers and accounted for 7.7% and 9.3%, respectively, of the total phenotypic variance for AB resistance at seedling stage. The SSR markers which flanked the AB QTLs were validated in a half-sib population derived from the same resistant parent ICCV 04516. Markers TA146 and TR20, linked to QTL2 were shown to be significantly associated with AB resistance at the seedling stage in this half-sib population. The markers linked to these QTLs can be utilized in marker-assisted breeding for AB resistance in chickpea.  相似文献   

5.
Ascochyta blight is a devastating disease of chickpea. Breeders have been trying to introduce resistance from wild Cicer into cultivated chickpea, however, the effort is hampered by the frequent genetic drag of undesirable traits. Therefore, this study was aimed to identify potential markers linked to plant growth habit, ascochyta blight resistance and days to flowering for marker-assisted breeding. An interspecific F2 population between chickpea and C. reticulatum was constructed to develop a genetic linkage map. F2 plants were cloned through stem cuttings for replicated assessment of ascochyta blight resistance. A closely linked marker (TA34) on linkage group (LG) 3 was identified for plant growth habit explaining 95.2% of the variation. Three quantitative trait loci (QTLs) explaining approximately 49% of the phenotypic variation were found for ascochyta blight resistance on LG 3 and LG 4. Flowering time was controlled by two QTLs on LG3 explaining 90.2% of the variation. Ascochyta blight resistance was negatively correlated with flowering time (r = −0.22, P < 0.001) but not correlated with plant growth habit.  相似文献   

6.
Resistance gene analog polymorphism (RGAP)is a targeted homology based method, which has been used in different crops to identify tightly linked markers for disease resistance genes and also to enrich the map with a different class of markers. In chickpea, using the RGA primers, which are designed based on the conserved motifs present in characterized R-genes, Bulk Segregant Analysis (BSA) was performed on a resistant bulk and a susceptible bulk along with parents for ascochyta blight resistance. Of all available RGAs and their48 different combinations, only one RGA showed polymorphism during BSA. This marker was evaluated in an F7:8 population of142 RILs from an interspecific cross ofC. arietinum (FLIP 84-92C) × C. reticulatum (PI 599072) and was mapped toCicer linkage map. The genomic location of chickpea RGA was compared with the locations of mapped chickpea R-genes. This is the first RGA marker mapped to chickpea linkage map. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Yellow mosaic disease (YMD) is one of the major diseases affecting mungbean (Vigna radiata (L.) Wilczek). In this study, we report the mapping of the quantitative trait locus (QTL) for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean. An F8 recombinant inbred line (RIL) mapping population was generated in Thailand from a cross between NM10-12-1 (MYMIV resistance) and KPS2 (MYMIV susceptible). One hundred and twenty-two RILs and their parents were evaluated for MYMIV resistance in infested fields in India and Pakistan. A genetic linkage map was developed for the RIL population using simple sequence repeat (SSR) markers. Composite interval mapping identified five QTLs for MYMIV resistance: three QTLs for India (qYMIV1, qYMIV2 and qYMIV3) and two QTLs for Pakistan (qYMIV4 and qYMIV5). qYMIV1, qYMIV2, qYMIV3, qYMIV4 and qYMIV5 explained 9.33%, 10.61%, 12.55%, 21.93% and 6.24% of variation in disease responses, respectively. qYMIV1 and qYMIV4 appeared to be the same locus and were common to a major QTL for MYMIV resistance in India identified previously using a different resistant mungbean.  相似文献   

8.
Fusarium wilt (FW; caused by Fusarium oxysporum f. sp. ciceris) and Ascochyta blight (AB; caused by Ascochyta rabiei) are two major biotic stresses that cause significant yield losses in chickpea (Cicer arietinum L.). In order to identify the genomic regions responsible for resistance to FW and AB, 188 recombinant inbred lines derived from a cross JG 62 × ICCV 05530 were phenotyped for reaction to FW and AB under both controlled environment and field conditions. Significant variation in response to FW and AB was detected at all the locations. A genetic map comprising of 111 markers including 84 simple sequence repeats and 27 single nucleotide polymorphism (SNP) loci spanning 261.60 cM was constructed. Five quantitative trait loci (QTLs) were detected for resistance to FW with phenotypic variance explained from 6.63 to 31.55%. Of the five QTLs, three QTLs including a major QTL on CaLG02 and a minor QTL each on CaLG04 and CaLG06 were identified for resistance to race 1 of FW. For race 3, a major QTL each on CaLG02 and CaLG04 were identified. In the case of AB, one QTL for seedling resistance (SR) against ‘Hisar race’ and a minor QTL each for SR and adult plant resistance against isolate 8 of race 6 (3968) were identified. The QTLs and linked markers identified in this study can be utilized for enhancing the FW and AB resistance in elite cultivars using marker-assisted backcrossing.  相似文献   

9.
A consensus genetic map of chickpea (Cicer arietinum L.) was constructed by merging linkage maps from 10 different populations, using STMS (Sequence-tagged Microsatellite Sites) as bridging markers. These populations derived from five wide crosses (C. arietinum × Cicer reticulatum) and five narrow crosses (Desi × Kabuli types) were previously used for mapping genes for several agronomic traits such as ascochyta blight, fusarium wilt, rust resistance, seed weight, flowering time and days to flower. The integrated map obtained from wide crosses consists of 555 loci including, among other markers, 135 STMSs and 33 cross-genome markers distributed on eight linkage groups and covers 652.67 cM. The map obtained from narrow crosses comprises 99 STMSs, 3 SCARs, 1 ASAP, fusarium resistance gene, 5 morphological traits as well as RAPD and ISSR markers distributed on eight linkage groups covering 426.99 cM. Comparison between maps from wide and narrow crosses reflects a general coincidence, although some discrepancies are discussed. Medicago truncatula cross-genome markers were BLASTed against the M. truncatula pseudogenome permitting assignments of chickpea linkage groups LGI, II, III, IV, V and VI on Medicago chromosomes 2, 5, 7, 1, 3 and 4, respectively. A marker detectable on Medicago chromosome 4 were also located on LGVIII, This consensus map is an important progress to assist breeders for selecting suitable markers to be used in marker-assisted selection (MAS).  相似文献   

10.
Quantitative trait loci (QTL) affecting resistance to south-western corn borer Diatraea grandiosella (SWCB) and sugarcane borer Diatraea saccharalis (SCB) have been identified previously in F2:3 lines and recombinant inbred lines (RILs) of tropical maize using restriction fragment length polymorphism (RFLP) analyses. Our objective was to determine whether QTLs identified in these generations are also expressed in test crosses (TC) of RILs. A population of 166 TC progenies was developed by crossing RILs from the cross CML131 (susceptible) × CML67 (resistant) with the unrelated, susceptible tester line CML216. Resistance to first-generation SWCB, measured as leaf-feeding damage (LFD) under artificial infestation, and other agronomic traits were evaluated in two environments for the TC progenies and three environments for 183 RILs. The correlation between line per se and TC performance was low for LFD and intermediate for most agronomic traits. Estimates of the genotypic variance and heritabilities were smaller in the TC progenies than in the RILs for all traits. Quantitative trait loci were identified using an RFLP linkage map with 136 loci. For LFD, four QTLs were detected in the TC progenies, of which two were in common with nine QTLs previously mapped in the RILs. Few QTLs for agronomic traits were common to the two types of progeny, because of the low consistency of QTL positions for all traits in RIL and TC progenies, the use of TC progenies should be considered in QTL mapping studies as the first step for marker-assisted selection in hybrid breeding.  相似文献   

11.
Fusarium wilt is a worldwide disease that affects cotton production. Molecular markers tightly linked to resistance genes can be used for marker-assisted and/or genomic selection. We performed both family-based linkage mapping and population-based association mapping (AM) to detect quantitative trait loci (QTLs) conferring resistance against Fusarium oxysporum f. sp. vasinfectum race 7 (FOV 7) in Upland cotton. To identify QTLs underlying FOV 7 resistance by linkage mapping, three Upland cotton cultivars/lines, Xuzhou 142, Yumian 21 and Shang 9901, were used to obtain the composite cross population, designated as Xuzhou 142/Yumian 21//Xuzhou 142/Shang 9901. A linkage map containing 185 simple sequence repeat loci and 40 linkage groups was constructed with an average distance of 7.5 cM between adjacent markers. Seven QTLs were detected by linkage mapping, explaining 2.9–6.6 % of the total phenotypic variance. We also performed marker–trait AM with the MLM model (Q + K) in a panel composed of 356 Upland cotton cultivars. In total, 27 loci were significantly associated with FOV 7 resistance at the α = 0.01 level (?log10 P ≥ 2), which were distributed on 16 chromosomes and explained 1.48–12.99 % of phenotypic variation. Three of the 7 QTLs identified by linkage mapping could be detected in AM. We identified the favorable allele for each of the 27 associated loci and investigated the number of favorable alleles in each accession. The results should increase our understanding of the genetic basis of FOV resistance and facilitate future resistance breeding in Upland cotton.  相似文献   

12.
Cotton is a high-value per acre crop that is produced as a raw material for the textile industry. With the development of new technologies in the textile industry, much attention has been paid to fiber quality in conjunction with yield. The introgression cultivar “Acala Prema” is extensively planted in the Carolina/USA for its good fiber qualities, high yields and tolerance to Verticillium wilt. To conduct QTL mapping for fiber quality and yield in Acala-Prema, we developed a population of 180 recombinant inbred lines (RILs) from a single seed derived from a cross between this line and Chinese cultivar 86-1. We examined the yield performance of the RILs in five Chinese environments and fiber qualities in seven Chinese environments. A genetic linkage map comprising 279 loci was constructed using this RIL population, chiefly with SSR markers, and QTLs were repeatedly identified across diverse environments using the composite interval mapping method. A total of 86 nonredundant QTLs for yield and its components and fiber qualities were independently detected in five or seven environments; Prema alleles were responsible for the increase in trait values for 46 QTLs, while 86-1 was responsible for 40 QTLs. Notably, we detected the stable fiber strength QTL qFS-D3-1, which explained 4.51–17.55 % of PV, with LOD scores ranging from 2.83 to 7.09, and the fiber length qFL-D11-1, which explained 10.02–25.34 % of the PV. Eighteen environment epistatic QTLs were also detected. The QTLs detected in this study provide new information for improving fiber quality and may be especially valuable for marker-assisted selection.  相似文献   

13.
Rice leaffolder (RLF) (Cnaphalocrocis medinalis (Guenée) is a destructive and widespread insect pest throughout the rice growing regions in Asia. The genetics of resistance to RLF in rice is very complex and not thoroughly explored. The present study was conducted to detect the quantitative trait loci (QTL) associated with RLF resistance involving 176 recombinant inbred lines (RILs) of F8 generation derived from a cross between IR36, a leaffolder susceptible variety and TNAULFR831311, a moderately resistant indica rice culture. Simple sequence repeat (SSR) markers were used to construct specific linkage groups of rice. All the RILs were screened to assess their level of resistance to RLF by measuring the leaf area damaged. Besides this, the length and width of the flag leaf of each RIL were measured since these two parameters were considered as correlated traits to the RLF resistance in rice. All the above parameters observed across the RILs showed quantitative variation. Correlation analysis revealed that damage score based on greenhouse screening was positively correlated with length and width of the flag leaf. Out of 364 SSR markers analysed, 90 were polymorphic between the parents. Multi-point analysis carried out on segregating 69 SSR marker loci linkage group wise resulted in construction of linkage map with eleven groups of 42 SSR markers. Through single marker analysis, 19 SSR markers were found to have putative association with the three phenotypic traits studied. Of these markers, RM472 was identified as a locus having major effect on RLF resistance trait based on length of the flag leaf. Interval mapping detected two QTLs on linkage group 1. Among these QTLs, the QTL flanked by RM576–RM3412 were found to be associated with width of the flag leaf and RLF resistance. The putative SSR markers associated with leaffolder resistance identified in the present study may be one of the loci contributing resistance to RLF in rice.  相似文献   

14.
Chickpea genetic mapping has been hampered by insufficient amplicon length polymorphism for sequence based markers. To develop an alternative source of polymorphic markers, we determined naturally abundant single nucleotide polymorphism (SNP) in coding and genomic regions between FLIP 84-92C (C. arietinum) and PI 599072 (C. reticulatum) and identified an inexpensive method to detect SNP for mapping. In coding sequences, 110 single base changes or substitutions (47% transitions and 53% transversions) and 18 indels were found; while 50 single base changes (68% transitions and 33% transversions) and eight indels were observed in genomic sequences. SNP frequency in coding and genomic regions was 1 in 66 bp and 1 in 71 bp, respectively. In order to effectively use this high frequency of polymorphism, we used Cleaved Amplified Polymorphic Site (CAPS) and derived CAPS (dCAPS) marker systems to identify a restriction site at SNP loci. In this study, we developed six CAPS and dCAPS markers and fine mapped QTL1, a region previously identified as important for ascochyta blight resistance. One of the CAPS markers from a BAC end was identified to account for 56% of the variation for ascochyta blight resistance in chickpea. Conversion of naturally abundant SNPs to CAPS and dCAPS for chickpea mapping, where absence of amplicon length polymorphism is a constraint, has potential to generate high-density maps necessary for map-based cloning and integration of physical and genetic maps.  相似文献   

15.
Hop with powdery mildew [HPM: caused by Podosphaera macularis (Wallr.) U. Braun & S. Takam.] results in significant losses in hop production by reducing yield and quality. One means of increasing yield and quality is the production of resistant hop lines. Breeding for resistance can be significantly improved and accelerated by use of marker-assisted selection. The objective of this preliminary study was to identify QTLs and markers for genetic resistance to HPM. A bi-parental mapping population between the resistant line “Newport” and susceptible line ‘21110M’. Phenotypic data was scored under controlled greenhouse conditions. Significant differences among offspring were observed and disease resistance did not follow a distinct binomial distribution, suggesting quantitative genetic control. Genotyping-by-sequencing resulted in approximately 375 K SNP markers, which were filtered down to 2263 markers mapped to 10 linkage groups. Interval Mapping identified four QTLs with one on linkage group 1 and three located on linkage group 6. Composite interval mapping identified three QTLs, all located on linkage group 6. Mixed linear models identified 15 markers associated with expression of resistance to HPM. Three of these 15 SNPs were also identified in QTL-CIM analysis. Evaluation of the scaffolds containing the significant SNP markers identified seven putative genes—several of which appear involved in disease resistance in other plant species. The SNP markers identified in this study still require validation in unrelated populations prior to implementation in breeding programs.  相似文献   

16.
大豆倒伏性及其相关性状的QTL分析   总被引:17,自引:3,他引:17  
利用来自中豆29×中豆32的165个重组自交系F10进行2年田间试验, 以复合区间作图法检测与大豆倒伏及形态性状有关的QTL。结果表明, 2年分别检测到25个和19个与大豆倒伏及茎杆性状和根系性状有关的QTL, 分布于A2、C1、C2、D1a、F、G、I和L连锁群, 可解释4.4%~50.1%的表型变异。在F连锁群上, 2年均检测到倒伏主效QTL(qLD-15-1)和株高主效QTL(qPH-15-2);G连锁群和L连锁群上分别有1个主茎节数QTL和2个根重QTL在2个年份重复出现。在倒伏QTL的附近检测出株高、根重、茎叶重、茎粗、主茎节数和分枝数QTL, 表明植株地上部和地下部性状与抗倒性普遍关联;QTL定位结果与表型相关分析一致, 反映了这些形态性状表型相关的遗传特性。部分性状QTL存在共位性, 但是未在2个年份稳定表达。  相似文献   

17.
High-density marker-based QTL mapping can serve as an effective strategy to identify novel genomic information to facilitate crop improvement. In this study, we genotyped an F2 population (KB12-1 × PP12-1) using a RAD-seq approach and constructed a high-density linkage map for radish. After a series of filtering procedures were performed, 17,124 SNPs and 3,336 indels with aa × bb genotyping were retained to obtain bin markers. Then, a linkage map comprising a total of 1,221 bin markers in nine linkage groups spanning 1,467.3 cM with an average marker interval of 1.2 cM was constructed. We evaluated the resistance of the F2 mapping population to black rot using F3 progeny, and two major QTLs related to black rot resistance were identified based on this map. Among these QTLs, qBRR2 on Chr.2 explained 26.97% of the phenotypic variation with a LOD score of 11.93, and qBRR7 on Chr.7 accounted for 27.06% of the phenotypic variation with a LOD score of 11.83. The additive effect of qBRR2 was positive (14.97); however, qBRR7 had the opposite effect (−11.99). The high-density linkage map and the major QTLs qBRR2 and qBRR7 provide new important information for disease resistance gene discovery and utilization in genetic improvement.  相似文献   

18.

Objective of investigation

Chickpea is a major global food legume for which seed weight and plant growth habit are important yield and harvestability components for plant breeding. This study tested seed weight and plant growth habit inheritance and identified quantitative trait loci (QTL).

Experimental material

A 10 nested association mapping (NAM) populations of chickpea were created from crosses between ‘Gokce’, a cultivar and wild crop relative accessions of Cicer reticulatum and Cicer echinospermum. Families were then developed to the F2:4 generation.

Method of investigation

A 10 families were grown at the Field Experiment Station, Harran University near Şanlıurfa, Turkey during 2019.

Data collection

A 100-seed weight and prostrate or erect growth habit was scored in the field. Two families were genotyped for 60 single-nucleotide polymorphisms (SNP).

Result and conclusions

A 100-seed weight showed polygenic control, and three QTLs were found. Growth habit was controlled by one or two QTLs. The two traits were significantly correlated for five populations. The crop wild relatives of chickpea contain variations at novel loci affecting seed weight compared to the literature.  相似文献   

19.
Quantitative trait locus (QTL) analysis of nitrogen use efficiency (NUE) of barley (Hordeum vulgare L.) was conducted on data generated from two pot experiments carried out in 2005 (using four nitrogen rates) and 2008 (with three rates) with AFLP markers and 94 recombinant inbred lines (RILs) of the Prisma × Apex mapping population. In total 41 QTLs were detected on 6 chromosomes and for 18 traits in both trials. About 95 % of the detected QTLs were with major additive effects. The percentage of variance accounted for by individual QTLs in the multiple QTL mapping model ranged from 8.4 to 54.4 % across all mapped traits in both years. Fifteen QTLs were related to NUE and its components; most of these QTLs were detected at lower nitrogen rates and none at the highest rate in both trials. These QTLs were found on Chromosomes 3(3H) and 7(5H) in 2005 and Chromosome 2(2H) in 2008. Except for the QTLs of plant height and NUE based on grain yield, none of the QTLs which were detected for a given trait in 2005, expressed themselves in 2008 irrespective of the nitrogen levels. QTLs controlling some traits were co-located in each year, and QTLs for many traits were detected on the same chromosome and close to the denso locus. Further research is needed to investigate the possibility to reduce nitrogen fertilizer requirements through breeding while maintaining high yield of barley.  相似文献   

20.
N. Rewal  J. S. Grewal 《Euphytica》1989,44(1-2):61-63
Summary Chickpea (Cicer arietinum L.) line ICC 1069 was selected as resistant parent after screening for resistance to grey mould (Botrytis cinerea Pers.) under artificial inoculation conditions. It was crossed with four high yielding susceptible varieties of chickpea. Crosses ICC 1069 × BGM 413 and ICC 1069 × BG 256 showed monogenic dominant resistance in ratio of 3R (resistant): 1S (susceptible). However, in crosses, ICC 1069 × BGM 419 and ICC 1069 × BGM 408, a ratio of 13S (susceptible) : 3R (resistant) was obtained indicating the presence of epistatic interaction. The results pointed towards the presence of a type of major gene resistance to grey mould in chickpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号