首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We examined the influence of elevated UV-B radiation on the extractability of carbohydrates from leaf litter of Quercus robur. Saplings were exposed to a 30% elevation above the ambient level of erythemally weighted UV-B (280-315 nm) radiation for eight months at an outdoor facility. UV-B radiation was applied under arrays of fluorescent lamps filtered with cellulose diacetate, which transmitted both UV-B and UV-A (315-400 nm) radiation. Saplings were also exposed to elevated UV-A radiation under arrays of polyester-filtered lamps and to ambient radiation under arrays of non-energised lamps. Abscised leaves were collected, ground and sequentially treated with seven solvents in order to fractionate extractable carbohydrates based on the way in which they are held in the cell wall. Elevated UV-B radiation reduced the extractability of carbohydrates from cell walls of Q. robur. Sodium phosphate buffer at pH 7 extracted 10% less total carbohydrate from leaf material exposed during growth to elevated UV-B radiation under cellulose diacetate-filtered lamps than from leaf material grown under polyester-filtered and non-energised lamps. The cumulative amount of carbohydrate released by sequential extraction with phosphate buffer, CDTA, urea and sodium carbonate was between 5.1% and 7.8% lower from leaf material grown under cellulose diacetate-filtered lamps relative to that from leaves grown under non-energised lamps. Abscised leaves were also digested with Driselase, an enzyme mixture extracted from a basidiomycete fungus. No effects of elevated UV radiation were recorded on the amount of carbohydrate released by Driselase digestion. Regression analyses, using data from a previous field decomposition study, suggested that reduced availability of carbohydrates enhanced the colonisation of Q. robur litter by basidiomycete fungi, which then accelerated the decomposition rate of the litter in soil. We recommend that future studies into the effects of UV-B radiation on plant litter decomposition measure not only the concentrations of chemical constituents of litter, but also determine the availability of litter carbon sources to soil microbes, using methods similar to those used here.  相似文献   

2.

Purpose

Exposure to elevated ultraviolet B (UV-B) radiation during plant growth may influence plant tissue chemistry and subsequent decomposition. We conducted a 22-month decomposition experiment to evaluate the effects of UV-B radiation on litter chemistry and subsequent decomposition in humid subtropical forest systems.

Materials and methods

Leaf litters were derived from five native tree species, including Cunninghamia lanceolata, Cinnamomum camphora, Schima superba, Cyclobalanopsis glauca, and Elaeocarpus sylvestris, which grew under ambient and elevated UV-B radiation treatments for 1 year.

Result and discussion

UV-B treatment significantly altered the original C, N, P, K, and lignin content and ratios of C/N, lignin/N, and C/P of leaf litter of five species but just slightly accelerated decomposition at variable degree from 2 % to 13 %. Statistical analyses showed litter species, but not UV-B treatment, had significant effect on decomposition. Only initial lignin content was significantly related to the decay rate. Abundant precipitation and warm temperature in subtropical China maybe weaken or even mask the importance of litter chemistry change resulted from UV-B radiation to decomposition especially in early decomposition stage.

Conclusions

Exposure to supplemental UV-B level induced significant changes of the initial leaf litter chemistry but did not accelerate significantly subsequent decomposition of each species in humid subtropical areas of China at least in the early phase. The interspecific differences in litter chemistry of the five species showed greater effect on decomposition than elevated UV-B radiation at the early decomposition stage.  相似文献   

3.
Several studies have demonstrated a range of effects of outdoor UV-B supplementation during the growing season on leaf chemistry including carbohydrate extractability and on the subsequent decomposition of leaf litter. However, this study investigates the effects of several levels of UV radiation on leaf carbohydrate chemistry and subsequent decomposition using filtration of ambient sunlight. Fraxinus excelsior seedlings were grown outdoors in the UK under ambient solar irradiation and under filtration treatments which excluded either UV-B or both UV-A and UV-B. After one year of decomposition in the litter layer of a mixed semi-natural woodland, the loss of dry mass was 10% greater, relative to starting mass, in the leaves which had received no UV at all or no UV-B throughout the growing season (P < 0.05). Analysis of the cell wall material before decomposition revealed no significant trends in total carbohydrate and lignin content with UV exclusions, no change in foliar nitrogen and C-to-N ratio and a 2% increase in foliar carbon (P < 0.05) only with the combined exclusion of UV-A and UV-B. A sequential extraction of carbohydrate with a series of extractants (phosphate buffer, ammonium oxalate, urea, sodium hydroxide and formic acid) showed no trends with UV exclusions but digestion with the fungal enzyme mixture Driselase revealed that exclusion of UV-B only caused rhamnose and mannose residues of the cell-wall polysaccharides to resist Driselase digestion whist exclusion of all UV had the opposite effect. Whereas some studies have reported that elevated UV-B radiation from lamp supplementation can increase rates of subsequent leaf decomposition, the higher UV-B levels in the ambient controls of this filtration study resulted in 29% lower decomposition rates than the filtered-UV treatments.  相似文献   

4.
Litter decomposition is an important process of C and N cycling in the soil. Variation in the response of litter decomposition to nitrogen (N) addition (positive, negative or neutral) has been observed in many field studies. However, mechanism about variability in individual fungal species response to N addition has not yet been well demonstrated in the literature. Therefore, the objective of this study was to investigate the effects of N addition and litter chemistry properties on litter decomposition and enzyme activities of individual fungi. Three fungal species (Penicillium, Aspergillus, and Trichoderma) were isolated from a subtropical mixed forest soil. An incubation experiment was conducted using the individual fungi with two types of litter (leaf of Pinus massoniana and needle of Cryptocarya chinensis) and different N addition levels (0, 50 and 100 for N-deficient treatments, and 500 and 1000 μg N for N-excessive treatments). Cumulative CO2-C, enzyme activities, and lignin and cellulose loss were measured during the incubation period of 60 days. Litter decomposition and enzyme activities significantly varied with the fungal species, while the N addition and litter types greatly affected fungal enzyme activities. The N treatments significantly increased lignin-rich needle decomposition by lignocellulose decomposers (Penicillium and Aspergillus) but did not affect their leaf decomposition. On the contrary, The N treatments stimulated leaf decomposition by cellulolytic species (Trichoderma) but did not affect its needle decomposition. Correlation analysis showed that lignin in the litter was the key component to affect litter decomposition. Activities of N-acetyl-β-glucosaminidase and phenol oxidase were both positively correlated to litter decomposition. The fungi (Penicillium and Aspergillus) with higher production of N-acetyl-β-glucosaminidase showed higher litter decomposition ability. The low N addition levels stimulated Penicillium and Aspergillus litter decomposition, but they still required more N source (e.g., litter N source) to support decomposition. Depressed fungal litter N uptake (lower N-acetyl-β-glucosaminidase activities) only occurred at the highest N addition level. Litter decomposition of Trichoderma depended more on external N and its litter decomposition capability was the lowest among the three species.  相似文献   

5.
《Soil biology & biochemistry》2001,33(4-5):659-665
We tested whether elevated UV-B radiation applied to Quercus robur, a principal climax species of northern Europe, would influence concentrations of polyphenolics (Folin–Denis tannins and lignin), phenylpropanoid moieties of lignin, carbohydrates (monosaccharides and holocellulose), or nutrient elements (K, Ca, Mg, P and N) in recently-abscised leaf litter. Saplings of Q. robur were exposed for 2 years at an outdoor facility in the UK to a 30% elevation above the ambient amount of erythemally-weighted UV-B (280–315 nm) radiation under arrays of fluorescent lamps with cellulose diacetate filters, which transmitted both UV-B and UV-A (315–400 nm) radiation. Saplings were also exposed to elevated UV-A alone under arrays of lamps with polyester filters and to ambient radiation under non-energised arrays of lamps. We found little evidence that elevated UV-B radiation influenced leaf litter quality. Data pooled for both years indicated an 8% increase in vanillic acid concentration in litter from polyester-filtered lamp arrays, relative to non-energised arrays, and 8% and 6% increases, respectively, in concentrations of acetovanillone in litter from polyester- and cellulose diacetate-filtered lamp arrays, relative to non-energised lamp arrays. Arabinose concentration in litter from cellulose diacetate-filtered lamp arrays was 3% higher than in litter from polyester-filtered arrays, and glucose concentration in litter from cellulose-diacetate filtered lamp arrays was increased by 6%, relative to non-energised arrays. There were no main effects of elevated UV on the concentrations of holocellulose, polyphenolics or nutrient elements. We conclude that exposure to elevated UV-B does not substantially influence the initial chemical composition of Q. robur leaf litter and that any increases in UV-B radiation arising from ozone depletion over northern mid-latitudes will be unlikely to affect nutrient cycling and decomposition in Quercus woodlands through effects on litter quality alone.  相似文献   

6.
After a detailed field study of the leaf litter biota of an aspen poplar forest at the time of snow melt, and the confirmation of selective fungal feeding by field-collected specimens of Onychiurus subtenuis Folsom, an attempt was made to assess the effects of this selective feeding on the colonization of leaf litter by two common species of litter fungi. Simple microcosms held under controlled laboratory conditions were used in this study.The results showed that relatively low rates of selective grazing by the Collembola had potentially important effects on the competitive colonizing ability of the individual fungal species studied.  相似文献   

7.
A broad-spectrum endophyte, Phomopsis liquidambari, was used as a microbial agent to determine the effects of rapid litter decomposition on soil phenolic compounds dynamics, the soil microbial community balance and plant growth. The litter decomposition ratio was closely correlated with lignin degradation. The soil phenol concentration increased with the acceleration of litter decomposition after the first 30 days and later decreased to below the initial level. Based on denaturing gradient gel electrophoresis (DGGE) analysis, soil bacteria, especially gram-negative bacteria that have the potential to degrade aromatic compounds, were found in high abundance when the soil phenol concentration was high. When the phenolic concentration decreased, soil fungi increased in abundance. With fungal application, seed germination significantly increased to 69.87% and seedling growth was enhanced. Rapid litter decomposition by Pho. liquidambari initially led to higher releases of phenolic allelochemicals, which led to the enrichment of soil gram-negative bacteria. In addition, increased soil nutrients and temporarily higher concentrations of phenolics from litter decomposition strengthen seedling growth, suggesting that the endophytic fungus Pho. liquidambari is a suitable candidate for remediation of long-term cropping soil.  相似文献   

8.
 Enhanced UV radiation did not show any effect on the decomposition of a mixed litter of the dune grassland plant species Calamagrostis epigeios and Carex arenaria. Also, leaching of nutrients from lysimeters filled with dune grassland soils was not affected by enhanced UV radiation. Negative UV effects on the fungal biomass in the first part of the experiment were later reversed into positive ones. Clear effects of both UV-A and UV-B were found on Collembola, both on total number of individuals and on the number of species. The decreased number of species under UV radiation could have been due to a decrease in UV-sensitive species. The role of pigmentation is discussed. Received: 6 July 1999  相似文献   

9.
Host trees can modify their soil abiotic conditions through their leaf fall quality which in turn may influence the ectomycorrhizal (ECM) fungal community composition. We investigated this indirect interaction using a causal modelling approach. We identified ECM fungi on the roots of two coexisting oak species growing in two forests in southern Spain - Quercus suber (evergreen) and Quercus canariensis (winter deciduous)-using a PCR-based molecular method. We also analysed the leaf fall, litter and soil sampled beneath the tree canopies to determine the concentrations of key nutrients. The total mycorrhizal pool was comprised of 69 operational taxonomic units (OTUs). Tomentella and Russula were the most species-rich, frequent and abundant genera. ECM fungi with epigeous and resupinate fruiting bodies were found in 60% and 34% of the identified mycorrhizas, respectively. The calcium content of litter, which was significantly higher beneath the winter-deciduous oak species due to differences in leaf fall quality, was the most important variable for explaining ECM species distribution. The evaluation of alternative causal models by the d-sep method revealed that only those considering indirect leaf fall-mediated host effects statistically matched the observed covariation patterns between host, environment (litter, topsoil, subsoil) and fungal community variables.  相似文献   

10.
《Applied soil ecology》2000,14(1):17-26
The anecic earthworm Lumbricus terrestris L. was kept in laboratory microcosms containing beech forest soil without litter, with beech leaf litter or with lime leaf litter. The structure of microfungal communities in soil, litter and fresh and aged (100 days) earthworm faeces was analysed using the washing and plating technique. The passage of mineral soil through the gut of L. terrestris affected the structure of the fungal community only little. In contrast, in the litter treatments the structure of the fungal community in fresh earthworm casts significantly differed from that in soil and litter. The majority of soil and litter inhabiting fungi survived passage through the gut of L. terrestris and the fungal community in casts consisted of a mixture of soil and litter inhabiting fungi. However, the frequency of Cladosporium spp., Alternaria spp., Absidia spp., and other taxa was strongly reduced in fresh casts. The degree of colonization of litter particles (number of isolates per number of plated particles) also decreased, but some fungi (mainly Trichoderma spp.) benefited from gut passage and flourished in fresh casts. During ageing of cast material the dominance structure of the fungal community changed. Both the degree of colonization of organic particles and the species diversity increased and approached that in soil. However, the structure of the fungal community in casts remained cast specific even after 100 days of incubation. It is concluded that the feeding and burrowing activity of L. terrestris accelerates the colonization of litter by the edaphic mycoflora but also extends the range of occurrence of litter-associated fungi into mineral soil layers.  相似文献   

11.
Elevated nitrogen (N) deposition can affect litter decomposition directly, by raising soil N availability and the quantity and quality of litter inputs, and indirectly by altering plant community composition. We investigated the importance of these controls on litter decomposition using litter bags placed in annual herb based microcosm ecosystems that had been subject to two rates of N deposition (which raised soil inorganic N availability and stimulated litter inputs) and two planting regimes, namely the plant species compositions of low and high N deposition environments. In each microcosm, we harvested litter bags of 10 annual plant species, over an 8-week period, to determine mass loss from decomposition. Our data showed that species differed greatly in their decomposability, but that these differences were unlikely to affect decomposition at the ecosystem level because there was no correlation between a species’ decomposability and its response to N deposition (measured as population seed production under high N, relative to low N, deposition). Litter mass loss was ~2% greater in high N deposition microcosms. Using a comprehensive set of measurements of the microcosm soil environments, we found that the most statistically likely explanation for this effect was increased soil enzyme activity (cellobiosidase, β-glucosidase and β-xylosidase), which appears to have occurred in response to a combination of raised soil inorganic N availability and stimulated litter inputs. Our data indicate that direct effects of N deposition on litter input and soil N availability significantly affected decomposition but indirect effects did not. We argue that indirect effects of changes to plant species composition could be stronger in natural ecosystems, which often contain a greater diversity of plant functional types than those considered here.  相似文献   

12.

Purpose  

Ultraviolet-B (UV-B) radiation reaching the earth's surface has been increasing due to ozone depletion and can profoundly influence litter decomposition and nutrient cycling in terrestrial ecosystems. The role of UV-B radiation in litter decomposition in humid environments is poorly understood; we thus investigated the effect of UV-B radiation on litter decomposition and nitrogen (N) release in a humid subtropical ecosystem in China.  相似文献   

13.
The mycelia of saprotrophic (SP) and ectomycorrhizal (ECM) fungi occur throughout the upper soil horizons in coniferous forests and could therefore be exposed to high concentrations of monoterpenes occurring in the needle litter of some tree species.Monoterpenes are mycotoxic and could potentially affect fungi that are exposed to them in the litter layers. In order to investigate whether monoterpenes typical of coniferous litters could influence fungal communities, we analysed the monoterpene content of freshly fallen needles of Pinus sylvestris, Picea abies and Picea sitchensis. The most abundant monoterpenes were found to be α-pinene, β-pinene and 3-carene. We evaluated the effects of these three monoterpene vapours on the biomass production of 23 SP isolates and 16 ECM isolates. Overall, 75% of ECM isolates and 26% of SP isolates were significantly inhibited by at least one of the monoterpene treatments and both intra- and inter-specific variations in response were observed.Monoterpene concentrations are highest in surface litters. The differential effects on fungal taxa may influence the spatial and temporal distribution of fungal community composition, indirectly affecting decomposition and nutrient cycling, the fundamental ecosystem processes in which fungi have a key role in coniferous forest soils.  相似文献   

14.
Fungal decomposition of and phosphorus transformation from spruce litter needles (Picea abies) were simulated in systems containing litter needles inoculated with individual saprotrophic fungal strains and their mixtures. Fungal strains of Setulipes androsaceus (L.) Antonín, Chalara longipes (Preus) Cooke, Ceuthospora pinastri (Fr.) Höhn., Mollisia minutella (Sacc.) Rehm, Scleroconidioma sphagnicola Tsuneda, Currah & Thormann and an unknown strain NK11 were used as representatives of autochthonous mycoflora. Systems were incubated for 5.5 months in laboratory conditions. Fungal colonization in systems and competition among strains were assessed using the reisolation of fungi from individual needles. After incubation, needles were extracted with NaOH and extracts were analysed using 31P nuclear magnetic resonance spectroscopy (NMR). Needle decomposition was determined based on the decrease in C:N ratio. Systems inoculated with the basidiomycete S. androsaceus revealed substantial decrease in C:N ratio (from 25.8 to 11.3) while the effect of ascomycetes on the C:N ratio was negligible. We suppose that tested strains of saprotrophic ascomycetes did not participate substantially in litter decomposition, but were directly involved in phosphorus transformation and together with S. androsaceus could transform orthophosphate monoesters and diesters from spruce litter needles into diphosphates, polyphosphates and phosphonates. These transformations seem to be typical for saprotrophic fungi involved in litter needle decomposition, although the proportion of individual phosphorus forms differed among studied fungal strains. Phosphonate presence in needles after fungal inoculation is of special interest because no previous investigation recorded phosphonate synthesis and accumulation by fungi. Our results confirmed that the 31P NMR spectroscopy is an excellent instrumental method for studying transformations of soil organic phosphorus during plant litter decomposition. We suggest that polyphosphate production by S. androsaceus may contribute to the phosphorus cycle in forest ecosystems because this fungus is a frequent litter colonizer that substantially participates in decomposition.  相似文献   

15.
The present study was designated to evaluate the relative effects of litter depth and decomposition stage of needles on fungal colonization of needle litter in field experiments. The experiment was carried out in coniferous temperate forests in central Japan. Needle litter of Chamaecyparis obtusa and Pinus pentaphylla var. himekomatsu at two decomposition stages (recently dead and partly decomposed) were placed into the organic layer at two depths (on the surface of and beneath the litter layer). Fungal colonization of needles after 1 year was examined in terms of hyphal abundance and frequency of fungal species. Total and live hyphal length on needles were affected by the litter depth and (or) the decomposition stage of needles. Length of darkly pigmented hyphae on needles was 1.7-2.6 times greater beneath the litter layer than on the litter surface regardless of the decomposition stage of needles. Length of clamp-bearing hyphae in Pinus pentaphylla was 5.0-5.2 times greater in partly decomposed needles than in recently dead needles regardless of the litter depth. Frequencies of Pestalotiopsis spp. and Cladosporium cladosporioides were higher on recently dead needles than on partly decomposed needles and (or) were higher on the litter surface than beneath the litter layer. Frequencies of Trichoderma, Penicillium, and Umbelopsis species generally were higher on partly decomposed needles than on recently dead needles and were higher beneath the litter layer than on the surface.  相似文献   

16.
Conidia of Cochliobolus sativus and five other pigmented fungi lysed when incubated in natural soil. Lysis followed perforation of the spore wall by holes of varying dia. Three possible causes of perforation were investigated, namely autolysis, mechanical puncture by soil animals and enzymatic erosion by soil micro-organisms. Results indicated that soil micro-organisms were the likely causal agents although no micro-organism able to perforate conidia has yet been isolated. Colonization of conidia by the soil microflora was studied by electron microscopy. On the basis of these direct observations, possible perforation mechanisms are suggested. Reports of perforation of fungal, plant and bacterial cell walls are briefly summarized and the perforation phenomenon discussed in relation to the biodegradation of pigmented fungal propagules in soils.  相似文献   

17.
Controls on the colonization and abundance of arbuscular mycorrhizal fungi (AMF) in ecosystems are little understood and may be related to host factors, the fungal community, and soil physio-chemical properties; and changes in these variables during soil development may affect succession between mycorrhizal groups. Here we investigated the effects of litter, litter leachates, and common soluble phenolic compounds on AMF colonization of roots. In previous studies, we observed a negative correlation between increases in black cottonwood (Populus trichocarpa) litter and AMF abundance and inoculum potential along a riparian chronosequence in northwest Montana. From this, we hypothesized that litter inputs negatively affect the native AMF community and may contribute to the shift between AMF and ectomycorrhizas. We tested the effects of cottonwood foliage and litter extract additions on the colonization of AMF of both cottonwood and Sudan grass (Sorghum sudanese) seedlings. Addition of 5% (v/v) dried cottonwood leaves completely inhibited AMF colonization of S. sudanese. AMF colonization of S. sudanese was significantly reduced by litter extract of P. trichocarpa foliage, and colonization was negatively correlated with litter extract concentrations. Additions of aqueous litter extract significantly reduced AMF colonization of cottonwood seedlings as well. The effect of the litter extract on AMF colonization of S. sudanese did not appear to be mediated by changes in soil pH or plant biomass. Available phosphorus was higher in soil receiving highest concentration of litter extract, but not at a level expected to be inhibitory to AMF colonization. Litter additions significantly increased total soil phenolics, but with a range similar to natural soils of the Nyack floodplain. We tested pure soluble phenolic compounds common to Populus for their effect on AMF colonization by native fungi from the Nyack floodplain. All tested compounds significantly reduced AMF colonization but did not affect colonization by non-AMF root-colonizing fungi. This suggests secondary compounds present in cottonwood litter can affect colonization ability of a native AMF community. The potential mechanisms of inhibition and the relevance of these findings to AMF succession within both a single host and soil are discussed.  相似文献   

18.
Cutover peatlands are often rapidly colonised by pioneer plant species, which have the potential to affect key ecosystem processes such as carbon (C) turnover. The aim of this study was to investigate how plant cover and litter type affect fungal community structure and litter decomposition in a cutover peatland. Intact cores containing Eriophorum vaginatum, Eriophorum angustifolium, Calluna vulgaris and bare soil were removed and a mesh bag with litter from only one of each of these species or fragments of the moss Sphagnum auriculatum was added to each core in a factorial design. The presence or absence of live plants, regardless of the species, had no effect on mass loss, C, nitrogen (N) or phosphorus (P) concentrations of the litter following 12 months of incubation. However, there was a very strong effect of litter type on mass loss and concentrations of C, N and P between most combinations of litter. Similarly, plant species did not affect fungal community structure but litter type had a strong effect, with significant differences between most pairs of litter types. The data suggest that labile C inputs via rhizodeposition from a range of plant functional types that have colonised cutover bogs for 10-15 years have little direct effect on nutrient turnover from plant litter and in shaping litter fungal community structure. In contrast, the chemistry of the litter they produce has much stronger and varied effects on decomposition and fungal community composition. Thus it appears that there is distinct niche differentiation between the fungal communities involved in turnover of litter versus rhizodeposits in the early phases of plant succession on regenerating cutover peatlands.  相似文献   

19.
Recycling of olive mill wastewaters (OMW) into agricultural soils is a controversial issue since benefits to soil fertility should counterbalance potential short-term toxicity effects. We investigated the short-term effects of OMW on the soil-plant system, regarding the diversity, structure and root colonization capacity of arbuscular mycorrhizal (AM) fungi and the respective growth response of Vicia faba L, commonly used as green manure in olive-tree plantations. A compartmentalized pot system was used that allowed the establishment of an AM fungal community in one compartment (feeder) and the application of three OMW dose levels in an adjacent second compartment (receiver). At 0, 10, and 30 days after OMW treatment (DAT), V. faba pre-germinated seeds were seeded in the receiver compartment. At harvest, shoot and root dry weights, AM fungal root colonization, soil hyphal length and P availability were recorded in the receiver compartment. In addition, OMW effects on AM fungal diversity in plant roots were studied by DGGE. A transient effect of OMW application was observed; plant growth and AM fungal colonization were initially inhibited, whereas soil hyphal length was stimulated, but in most cases differences were absent when seeding was performed 30 DAT. Similarly, changes induced in the structure of the root AM fungal community were of transient nature. Cloning and sequencing of all the major DGGE bands showed that roots were colonized by Glomus spp. The transient effects of OMW on the structure and function of AM fungi could be attributed to OMW-derived phytoxicity to V. faba plants or to an indirect effect via alteration of soil nutritional status. The high OMW dose significantly increased soil P availability in the presence of AM fungi, suggesting efficient involvement of AM fungi in organic-P minerilization. Overall our results indicate that soil application of OMW would cause transient changes in the AM fungal colonization of V. faba plants, which, would not impair their long-term plant growth promoting ability.  相似文献   

20.
Plant roots and their associated mycorrhizal fungi critically mediate the decomposition of soil organic carbon (C), but the general patterns of their impacts over a broad geographical range and the primary mediating factors remain unclear. Based on a synthesis of 596 paired observations from both field and greenhouse experiments, we found that living roots and/or mycorrhizal fungi increased organic C decomposition by 30.9%, but low soil nitrogen (N) availability (i.e., high soil C:N ratio) critically mitigated this promotion effect. In addition, the positive effects of living roots and/or mycorrhizal fungi on organic C decomposition were higher under herbaceous and leguminous plants than under woody and non-leguminous plants, respectively. Surprisingly, there was no significant difference between arbuscular mycorrhizal fungi and ectomycorrhizal fungi in their effects on organic C decomposition. Furthermore, roots and/or mycorrhizal fungi significantly enhanced the decomposition of leaf litter but not root litter. These findings advance our understanding of how roots and their symbiotic fungi modulate soil C dynamics in the rhizosphere or mycorrhizosphere and may help improve predictions of soil global C balance under a changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号