首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. In organic farming systems, fertilizing materials can be used when potassium (K) deficiency is shown, but such systems are dominantly nitrogen (N) limited and this is likely to affect crop utilization of K. The supply of K to grass/clover from a range of mineral and organically based K fertilizers and its interaction with N supply were studied in a greenhouse experiment. Sequential plant cuts were taken for yield and nutrient content determinations in crop and soil. Crop yields were limited by N: where N supply was increased either through the mineralization of N from organic materials (rapemeal, farmyard manure) or inorganic fertilizer, plant yields increased significantly. Grass/clover responded better to additional K where sufficient N was available. However, yield responses to K were generally small, even in the presence of adequate N. Of the different fertilizers, kali and MSL-K increased yields above those of the control by less than 5%, sylvinite, DKSI and farmyard manure by 10–20%, and rapemeal and potassium sulphate by more than 25%. In all treatments, K offtakes in the grass/clover were considerably greater than fertilizer K inputs. The grass/clover showed an increased uptake of Na where insufficient K was available. However, the Mg content of the grass/clover was not adversely affected by K fertilizer application. Organic farmers need to consider the soil K status, the rotational nutrient budget, the supply of all nutrients in fertilizing materials and nutrient interactions to achieve effective K management in organic farming systems.  相似文献   

2.
For monitoring soil fertility after changing farm management from highly conventional to organic farming on the newly established research farm of Kassel University, two permanent–soil monitoring sites were installed in 1999. Representative locations for installing the permanent–soil monitoring sites were selected using geographical information systems (GIS), based on available data from geology, topography, soil taxation, land use, and intensive auger‐borehole records and analysis with a very high spatial resolution of data. The soils are represented by a Luvisol derived from loess and a Vertisol developed from claystone. The soil properties of the two monitoring sites measured immediately after changing to organic farming showed high contents of extractable nutrients as a result of the former intensive fertilization practice during conventional farm management. The microbial soil properties of the two monitoring sites were in the medium range of regional soils. A first evaluation of the development of soil properties was done after 5 y of monitoring. The soil organic‐matter content increased slightly after grass‐clover and after application of farmyard manure. The amounts of K and P decreased clearly at the loess site without application of farmyard manure. At the clay site, the unique application of farmyard manure led to increasing contents of extractable K and P in the top soil. The variation of soil properties increased clearly after perennial crops like grass‐clover and in years after application of farmyard manure.  相似文献   

3.
Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences between “herbicide-free” bioorganic (BIOORG) and biodynamic (BIODYN) systems and conventional systems with (CONFYM) or without manure (CONMIN) and herbicide application within a long-term agricultural experiment (DOK trial, Switzerland). Soil carbon content was significantly higher in systems receiving farmyard manure and concomitantly microbial biomass (fungi and bacteria) was increased. Microbial activity parameters, such as microbial basal respiration and nitrogen mineralization, showed an opposite pattern, suggesting that soil carbon in the conventional system (CONFYM) was more easily accessible to microorganisms than in organic systems. Bacterivorous nematodes and earthworms were most abundant in systems that received farmyard manure, which is in line with the responses of their potential food sources (microbes and organic matter). Mineral fertilizer application detrimentally affected enchytraeids and Diptera larvae, whereas aphids benefited. Spider abundance was favoured by organic management, most likely a response to increased prey availability from the belowground subsystem or increased weed coverage. In contrast to most soil-based, bottom-up controlled interactions, the twofold higher abundance of this generalist predator group in organic systems likely contributed to the significantly lower abundance of aboveground herbivore pests (aphids) in these systems. Long-term organic farming and the application of farmyard manure promoted soil quality, microbial biomass and fostered natural enemies and ecosystem engineers, suggesting enhanced nutrient cycling and pest control. Mineral fertilizers and herbicide application, in contrast, affected the potential for top-down control of aboveground pests negatively and reduced the organic carbon levels. Our study indicates that the use of synthetic fertilizers and herbicide application changes interactions within and between below and aboveground components, ultimately promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological control. However, grain and straw yields were 23% higher in systems receiving mineral fertilizers and herbicides reflecting the trade-off between productivity and environmental responsibility.  相似文献   

4.
Abstract

A two-year field study was conducted under semi-arid conditions in Pakistan to assess the role of tillage systems and farmyard manure on soil, plant nutrients and organic matter content. Four tillage systems (zero, minimum, conventional and deep tillage) and three farm manure levels were used. Maize crop was grown up to maturity. Uptake of N, P and K in maize shoots improved in tillage systems compared to non-tillage and treatments where farmyard manure was applied. Soil N status decreased in the deep tillage systems, whereas it increased in all other tillage systems and in the farmyard manure amended treatments. Increase in soil P values was observed under minimum and conventional tillage, whereas deep tillage resulted in a decrease. Farmyard manure amendments increased soil P and soil K in all systems. Tillage did not affect soil K levels. Results demonstrate that reduced tillage is practicable in arid and semi-arid regions since it improves soil fertility.  相似文献   

5.
Influence of different fertilization on pH, N, C and CAL-extractable K and P in the soil The influence of different fertilization (mineral fertilizer, different kinds and quantities of farmyard manure and biocompost, horn meal) on soil properties was studied during 8 years of cultivation. The plots were planted and harvested as practised under local farming conditions. The pH of the non-fertilized plots decreased from 5.84 to 5.69, while it was increased by fertilization with farmyard manure or biocompost. Nt in the soil was not influenced by different fertilization. Ct was increased by high biocompost application, stayed constant on the other fertilized plots but decreased on the nonfertilized plots from 1.08 to 0.99%. Without fertilization, plant available nutrients were diminished from 7.3 to 4.3 mg P(CAL) 100 g?1 and from 22.5 to 13.9 mg K(CAL) 100 g?1. However, if the plots were fertilized with mineral or organic fertilizer, the nutrient content remained on the initial level. Storing farmyard manure under roof or covering with straw or polyethylene sheet did not affect the criteria of soil studied.  相似文献   

6.
邵月红  潘剑君  孙波 《土壤通报》2005,36(2):177-180
主要分析了长期施用有机肥对瘠薄红壤有效碳库(微生物量碳,易氧化碳,矿化碳)及碳库管理指数(CPMI)的影响.结果表明:长期施用有机肥对土壤有效碳库和碳素有效率有很大影响,绿肥,稻草秸秆肥和厩肥处理的土壤有机碳,微生物量碳、易氧化碳、矿化碳的数量、碳素有效率明显高于对照处理的土壤。施肥对全碳、矿化碳的影响为:厩肥>绿肥>秸秆稻草肥>本田还田>对照,对微生物量碳的影响为:绿肥>厩肥>稻草秸秆肥>本田还田>对照,对活性碳(CA)、CPMI,碳素有效率A、B、C的影响为:绿肥>稻草秸秆肥>厩肥>本田还田>对照。在提高CA、CPMI方面,绿肥和稻草秸秆肥优于厩肥。相关分析表明:土壤有效碳库和碳素有效率与土壤化学性质相关或极相关,CPMI与土壤养分因子相关或极相关,反映了农业生产措施对土壤碳库的影响,可以运用CPMI来评估土壤碳库的变化。  相似文献   

7.

Background

Organic vegetable production has a demand for alternative fertilizers to replace fertilizers from sources that are not organic, that is, typically animal-based ones from conventional farming.

Aims

The aim of this study was to develop production strategies of plant-based fertilizers to maximize cumulative nitrogen (N) production (equal to N yield by green manure crops), while maintaining a low carbon-to-nitrogen (C:N) ratio, and to test the fertilizer value in organic vegetable production.

Methods

The plant-based fertilizers consisted of the perennial green manure crops—alfalfa, white clover, red clover, and a mixture of red clover and ryegrass—and the annual green-manure crops—broad bean, lupine, and pea. The crops were cut several times at different developmental stages. The harvested crops were used fresh or pelleted as fertilizers for field-grown white cabbage and leek. The fertilizer value was tested with respect to biomass, N offtake, N recovery, and soil mineral N (Nmin). Poultry manure and an unfertilized treatment were used as controls.

Results

The cumulative N production of the perennial green manure crops ranged from 300 to 640 kg N ha–1 year–1 when cut two to five times. The highest productions occurred at early and intermediate developmental stages, when cut three to four times. Annual green manure crops produced 110–320 kg N ha–1 year–1, since repeated cutting was restricted. The C:N ratio of the green manure crops was 8.5–20.5, and increased with developmental stage. The fertilizer value of green manure, as measured in white cabbage and leek, was comparable to animal-based manure on the condition that the C:N ratio was low (<18). N recovery was 20%–49% for green manure and 29%–42% for poultry manure. A positive correlation was detected between soil Nmin and vegetable N offtake shortly after incorporating the green manure crops, indicating synchrony between N release and crop demand.

Conclusions

Plant-based fertilizers represent highly productive and efficient fertilizers that can substitute conventional animal-based fertilizers in organic vegetable production.  相似文献   

8.
Abstract

Factorial combinations of N, P and K fertilizer have been compared with the use of farmyard manure at M?ystad since 1922 in a seven-year crop rotation (3 ley, oat, potato, wheat, barley). Until 1982, low inputs of N fertilizer (22 kg ha?1) were used. In 1983, they were brought into line with current farming practice. This paper presents the results of three subsequent rotations. Yields without any fertilizer were on average 48% of those with 100 kg N ha?1 in compound fertilizer, whilst those with 20, 40 and 60 Mg ha?1 farmyard manure were 81, 87 and 90%, respectively. Yields with other combinations of N, P and K declined in the order NP, NK, N, PK and K. When NPK fertilizer was used, apparent recoveries of applied fertilizer were close to 50% for N and K, and around 40% for P. Much lower values were found for nutrients applied singly. Balance between N supply and removal was indicated at rates of about 60 kg N fertilizer ha?1 in potatoes, 75 kg ha?1 in cereals and 90 kg ha?1 in leys. A surplus of P was found in all crops at all N levels, and of K in cereals and potatoes. In leys, K balance was achieved with an N supply of 90 kg N ha?1. Nutrient balance was indicated at a little below 20 Mg ha?1 yr?1 farmyard manure. Larger manure applications gave large nutrient surpluses, particularly of N. Soil reaction remained close to neutral with the use of calcium nitrate and manure, but declined with the use of ammonium nitrate. Manure use gave the highest amounts of available P, K and Mg in soil. Similar increases in total inorganic P were found with manure use as with fertilizer use, but amounts of organic P and total K were little affected.  相似文献   

9.
N, P and K budgets for crop rotations on nine organic farms in the UK   总被引:2,自引:0,他引:2  
Abstract. Nitrogen (N), phosphorus (P) and potassium (K) budgets were calculated for nine organic farms in the UK. The farms were situated on sandy loams, silty clay loams and silty loams over chalk with stockless farming systems and cattle, pig and poultry enterprises with a significant proportion of arable cropping. A soil surface nutrient budget was calculated for the target rotation on each farm using information about field management and measurements of the soil, crops and manure. Losses of N through leaching and volatilization were calculated independently using the nitcat and manner models. Nutrient budgets for seven of the farm rotations showed an N surplus, six a P surplus and three a K surplus. The ratio of N inputs supplied in the form of biological fixation : manure : atmospheric deposition was approximately 2 : 2 : 1 for stocked systems and 2 : 0 : 1 for stockless systems. Phosphorus surpluses resulted from supplementary P fertilizer (rock phosphate) and additional feed for non-ruminant livestock. The stockless system without P fertilizer resulted in a large P deficit and stocked systems, which relied on recycling manure alone, a small P deficit. Only rotations with large returns of manure or imported feed showed a K surplus or a balanced K budget.  相似文献   

10.
 Arbuscular mycorrhizal (AM) root colonization was studied in a long-term field trial in which four farming systems currently in use in Switzerland were continuously applied to a randomized set of plots at a single field site from 1978 till 1993. There were two low-input farming systems (organic and bio-dynamic) and two high-input (conventional) farming systems (according to Swiss guidelines of integrated plant production with and without farmyard manure). The systems had an identical 7-year crop rotation and tillage scheme and differed essentially only in the amount and type of fertilizer supplied and in plant protection management. The percentage of root colonization by AM fungi was determined in field samples 2–3 times over the growing season in crops in the rotation, namely in winter wheat (Triticum aestivum L. cv. Sardona), vetch-rye and grass-clover. We found the percentage of root length colonized by AM fungi to be 30–60% higher (P≤0.05) in the plants grown in soils from the low-input farming systems than in those grown in conventionally farmed soils. Approximately 50% of the variation of AM root colonization was explained by chemical properties of the soils (pH, soluble P and K, exchangeable Mg), the effect of soluble soil P being most pronounced. The potential of the field soils from the differently managed plots to cause symbiosis with AM fungi was tested in a glasshouse experiment, using wheat as a host plant. Soils from the low-input farming systems had a greatly enhanced capacity to initiate AM symbiosis. The relative differences in this capacity remained similar when propagules of the AM fungus Glomus mosseae were experimentally added to the soils, although overall root colonization by AM fungi was 2.8 times higher. Received: 27 August 1999  相似文献   

11.
Abstract. To determine the effects of low-input agriculture on soil properties, we compared several forms of arable land management in a rotation experiment lasting 8 years on a Cambisol in Lithuania. Conventional arable cropping with applications of inorganic fertilizers increased the potassium (K) status of the soil, but resulted in losses of nitrogen (N) from the soil by mineralization and leaching. With ley–arable integrated cropping, a similar fertilizer regime based on farmyard manure (FYM) augmented with inorganic fertilizers increased the phosphorus (P), K, organic matter and N in the soil, as well as increasing N loss by leaching. These two high-input regimes were compared to three systems with less or no input. A reference treatment with no input, which produced small crop yields, maintained its nutrient status and organic matter. An organic regime receiving FYM and green manure lost only P, but maintained its K and N status, while a second organic regime in which the FYM was replaced by composted sewage maintained its fertility. The microbial activity varied somewhat from treatment to treatment, with the largest numbers of almost all groups of microorganisms in the reference treatment. All treatments led to decreases in fulvic acid, and the soil managed conventionally lost humic acid, too. The content of humic acid increased in the treatments where FYM was applied and in the reference soil, and the fraction bound to calcium increased in the integrated and the first organic treatments. The soil structures under the integrated cropping and second organic regime were the most stable. Of the low-input systems, the second organic regime seemed the most sustainable.  相似文献   

12.
为研究不同培肥处理对平朔露天煤矿复垦土壤作物养分含量及肥料利用率的影响,进行了玉米盆栽试验,结果表明:不同培肥处理对玉米植株的N,P,K含量均有提高作用,玉米N,P,K在根、茎、叶器官分配顺序为叶 > 茎 > 根;有机肥、菌肥和配施低浓度化肥处理对玉米N素含量增加最明显,有机肥、菌肥和化肥配施各处理对玉米P和K含量增加最明显,其次对玉米N,P,K含量增加较明显的为有机肥配施菌肥处理,而单施有机肥处理对玉米N,P,K含量增加效果最差;有机肥、菌肥和化肥配施处理对玉米N,P,K肥利用率高于有机肥配施菌肥处理更高于单施有机肥处理,此研究为恢复矿区复垦土壤肥力水平提供理论依据。  相似文献   

13.
ABSTRACT

An incubation study was undertaken to examine the periodic release of some macronutrients and micronutrients in a sandy loam treated with different organic amendments (farmyard manure, mushroom compost, poultry manure, vermicompost, biogas slurry, and biochar of Lantana weed) added @ 15 t ha?1 for 120 d through entrapment of released nutrients on ion exchange resins. Among organic amendments, the highest total contents were recorded for Ca, Mg, and S in farmyard manure, for K, Fe, and Mn in mushroom compost, for P, Zn, and Cu in biogas slurry, for B in biochar. The highest average release was recorded for P, Zn, Mn, and B from poultry manure, for Cu from biogas slurry, for Fe from vermicompost, for Ca, Mg, and S from mushroom compost, and for K from farmyard manure. The kinetics of mineralization and release of these nutrients conformed well to the zero-order kinetics and also to a power function equation. The initial release amount and release rate coefficient estimated by the power function equations were correlated significantly to the general properties of organic amendments and also to the type of C species present in organic amendment. Organic amendments having relatively higher content of water soluble C or fulvic or humic acids are likely to release nutrients through an early mineralization/solubilization from soil reserve.  相似文献   

14.
The use of organic materials as a source of nutrients on agricultural lands ameliorates soil physical properties as well as being an environmentally friendly way of disposing of their wastes. This study was conducted to determine effects of three organic materials (poultry litter, cattle manure, leonardite) on yield and nutrient uptake of silage maize. Poultry litter and cattle manure were applied based on phosphorus (P) or nitrogen (N) requirements of the crop whereas leonardite was applied only one dose (500 kg ha?1) and also combined with three inorganic fertilizer doses (100%, 75%, 50% of recommended inorganic fertilizer dose). According to the results, the highest green herbage yield and nutrient uptake values were observed in LEO-100 whereas N-based treatments significantly decreased yield and nutrient uptake of silage maize. The use of organic materials as a combination with inorganic fertilizer in silage maize cultivation is highly beneficial for sustainable forage production.  相似文献   

15.
Since 2008, a 5-year crop rotation experiment (winter wheat, pea, potato, barley undersown with red clover, and red clover) has been run in Tartu, Estonia, to evaluate the changes in soil chemical parameters under four fertilizer managements: (1) unfertilized conventional plots (conventional I), (2) conventional plots with addition of mineral fertilizers (conventional II), (3) organic plots with cover crops during the winter period (organic I), and (4) organic plots with the same cover crops plus a yearly amendment of 40 t ha–1 of cattle manure (organic II). After the first rotation, results showed significant differences (P < 0.05) in soil acidity dependent on the system with mean values ranging between 5.67 (conventional II) and 6.10 (organic II). In the organic II system, manure had a significant effect on the system, increasing the organic carbon (C) content by 0.34%, but in both organic systems, both cover crops and cattle manure were insufficient for maintaining a constant level of plant-available phosphorus (P) or potassium (K) in the soil. In the conventional II system, mineral fertilizers provided a sufficient amount of nitrogen (N) to the system and increased the concentration of P to 8.7 mg per kg. The yearly mineral or organic amendments did not counteract the significant decrease in soil-available K after the first rotation. Lastly, calcium (Ca) and magnesium (Mg) availability, strongly influenced by the soil pH local conditions, decreased with time for all systems even though organic ones presented greater concentrations of both compounds. In conclusion, the four fertilization systems managed independently would not guarantee a constant soil nutrient concentration after the first rotation.  相似文献   

16.
该文介绍了吉林省半干旱地区机械化玉米生产新体系施肥制度的特点和施肥方法。通过试验证明结合农家肥和根茬还田进行化肥一次性深施是培肥土壤的科学措施。报告了一次性施肥对种子出苗和幼苗生育的影响以及春季或秋季施肥对玉米产量的影响  相似文献   

17.
Abstract

Plant residue compost, urban waste compost, farmyard manure, and peat can be used to ameliorate soil acidity. The diversity of these materials and their highly variable composition mean that their reliability in increasing the soil pH is uncertain because of lack of a method to test their acid ameliorating capacities. Incubation of a Spodosol from Sumatra, an Oxisol from Burundi and an Ultisol from Cameroon with 1.5% by weight of four composts, a farmyard manure and a sedge peat resulted in increased soil pH and decreased aluminum (Al) saturation measured at 14 days of incubation. The increased soil pH was directly proportional to the protons consumption capacity of the organic materials. This was measured by titrating the organic material from their natural pH values down to pH 4.0. This measure of acid neutralizing capacity provides a simple test method that was reliable across the variety of materials used. The final pH of the soil treated with organic material can be predicted with reasonable accuracy by determining the buffer characteristics of the soil and organic matter separately. The pH at the intersection of the two buffer curves predicts reasonably accurately the final pH of the treated soil. This suggests that a major mechanism of acid amelioration may be proton exchange between the soil and organic matter buffer systems. The increased soil pH was also directly proportional to the base cations [calcium (Ca), magnesium (Mg), and potassium (K)] contents of the added organic material. Such a relationship was presumably obtained because the base cations reflected the content of weak organic acid functional groups that are capable of binding protons and Al.  相似文献   

18.
施肥对土壤不同碳形态及碳库管理指数的影响   总被引:77,自引:3,他引:77  
沈宏  曹志洪  徐志红 《土壤学报》2000,37(2):166-173
分析了施肥对土壤活性碳(CA)、微生物生物量碳(CMB)、矿化碳(CM)及碳库管理指数(CPMI)的影响。结果表明,不同土壤CA、CMB、CM及CPMI的大小为:水稻土〉黄棕壤〉红壤〉潮土。施肥对CA和CPMI,CMB和CM的影响分别为:处理3〉处理〉处理1〉处理4〉CK,处理3〉处理5〉处理4〉处理1〉CK。在提高CA、CMB、CM及CPMI方面,稻草肥、绿肥优于厩肥,厩肥高量施用优于常量施用。  相似文献   

19.
Lower P‐input levels in organic than conventional farming can decrease soil total and available P, which can potentially be resupplied from soil organic P. We studied the effect of 30 y of conventional and organic farming on soil P forms, focussing especially on organic P. Soil samples (0–20 cm) were taken in a field experiment with a nonfertilized control, two organic systems receiving P inputs as animal manure, and two conventional systems receiving only mineral P or mineral P and manure. Soils were analyzed for total, inorganic, organic, and microbial P, by sequential P fractionation and by enzyme additions to alkaline soil extracts. Samples taken prior to starting the experiment were also analyzed. Average annual P balances ranged from –20 to +5 kg ha–1. For systems with a negative balance, labile and moderately labile inorganic P fractions decreased, while organic and stable inorganic P fractions were hardly affected. Similar quantities and proportions of organic P extracted with NaOH‐EDTA were hydrolyzed in all soils after addition of an acid phosphatase, a nuclease, and a phytase, and enzyme‐stable organic P was also similar among soils. Thus, neither sequential fractionation nor enzyme addition to alkaline soil extracts showed an effect of the type of applied P (manure vs. mineral) on organic P, suggesting that organic P from manure has largely been mineralized. Thus far, we have no indication that the greater microbial activity of the organic systems resulted in a use of stable P forms.  相似文献   

20.
The aim of this study was to investigate what kind changes in the soil fertility parameters occur depending on different farming methods. The field experiment was performed on sandy loam Luvisol during 2008–2014. The following treatments were carried out: organic (ORG), organic with farmyard cattle manure (ORGFYM) and conventional with farmyard cattle manure and mineral fertilizers (CONFYM). Soil samples were collected yearly in September and analyzed for P, K, Mg and Ca by the Mehlich III method. In parallel, ammonium lactate extractable P and K (AL method), and ammonium acetate extractable Mg and Ca (NH4OAc-method) were determined. The Pearson correlation coefficients between the analysis results achieved by the Mehlich III method and alternative methods were calculated. In all the treatments, no significant changes in soil Corg content were established over seven years. A significant (p?AL in the soil but considerable decrease in the soil KAL content was revealed. The application of cattle manure (60?t?ha?1 for the 5-year crop rotation) in both organic and conventional treatments sustained the status of available nutrients in the soil. The Pearson correlation coefficients between Mehlich III and AL methods for P (r?=?0.770, p?r?=?0.922, p?4OAc-methods was found in the case of Mg (r?=?0.951, p?r?=?0.841, p?Mehlich III/PAL quotient was inversely proportional with the CaMehlich III values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号