首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(3,4-Dihydroxyphenyl)ethanol, commonly known as hydroxytyrosol (1), is the major phenolic antioxidant compound in olive oil, and it contributes to the beneficial properties of olive oil. Bioavailability and metabolism studies of this compound are extremely limited, in part, related to unavailability of radiolabeled compound. Studies with radiolabeled compounds enable use of sensitive radiometric analytical methods as well as aiding elucidation of metabolic and elimination pathways. In the present study a route for the formation of hydroxytyrosol (1), by reduction of the corresponding acid 2 with tetrabutylammonium boronate, was found. Methods for the incorporation of a tritium label in 1 were investigated and successfully accomplished. Tritiated hydroxytyrosol (1t) was synthesized with a specific activity of 66 Ci/mol. The stability of unlabeled and labeled hydroxytyrosol was also investigated.  相似文献   

2.
Olive oil and fruit samples from six cultivars sampled at four different maturity stages were discriminated into cultivars and maturity stages. The variables-volatile and phenolic compounds-that significantly (p < 0.01) discriminated cultivars and maturity stage groups were identified. Separation by stepwise linear discriminant analysis revealed that Manzanilla olive cultivar was separated from cultivars Leccino, Barnea, Mission, Corregiola, and Paragon, whereas cultivars Corregiola and Paragon formed a cluster. The volatile compounds hexanol, hexanal, and 1-penten-3-ol were responsible for the discrimination of cultivars. All maturity stages were discriminated, with the separation of early stages attributed to oil phenolic compounds, tyrosol and oleuropein derivatives, whereas the volatile compounds (E)-2-hexenal, hexanol, 1-penten-3-ol, and (Z)-2-penten-3-ol characterized the separation of all maturity stages and in particular the late stages. Hexanol and 1-penten-3-ol characterized the separation of both cultivars and maturity stages.  相似文献   

3.
Capillary electrophoresis (CE) can be effectively used as a fast screening tool to obtain qualitative and semiquantitative information about simple and complex phenolic compounds of extra virgin olive oil. Three simple phenols (tyrosol, hydroxytyrosol, and vanillic acid), a secoiridoid derivative (deacetoxy oleuropein aglycon), and two lignans (pinoresinol and acetoxypinoresinol) were detected as the main compounds in extra virgin olive oils by high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). Spectrophotometric indices, radical scavenging activity, and oxidative stability of extra virgin olive oil samples obtained from olives hand-picked at different ripening degrees were statistically correlated with the CZE and HPLC quantification. The concentration of phenols in extra virgin olive oil decreased with ripeness of olive fruits. The high correlations found between CZE and the other analytical results indicate that CE can be applied as a rapid and reliable tool to routinely determine phenolic compounds in extra virgin olive oils.  相似文献   

4.
In olive fruits of the cultivar Arbequina, the chlorophyll pigments decrease significantly throughout ripening, while the carotenoids decrease more gradually and discontinuously. There is no degradation of the carotenoid fraction in stages before complete ripeness. The presence of esterified xanthophylls exclusively in this variety suggests that the chloroplast pigment metabolism is different from that in other olive varieties studied previously. There are increases of specific carotenoids, violaxanthin, neoxanthin, antheraxanthin, lutein epoxide, and esterified xanthophylls between the light green and yellowish green ripening stages. Such increases are related to the detection of precursor carotenoids (phytofluene and xi-carotene) in the yellowish green stage. Chlorophyllides (a and b) and alpha-carotene have also been detected exclusively in this variety. Quantitatively, the drastic change in color between light green and yellowish green ripening stages characteristic of this variety can be explained by the considerable reduction found in the chlorophylls/carotenoids ratio. The study of the pigments present in skin and pulp has shown that the pattern of carotenoid distribution differs depending on the fruit part concerned.  相似文献   

5.
Biological thiols are important antioxidants, and recent studies showed that their contents vary depending on the groups of foodstuffs. Therefore, we investigated the levels of some biological thiols in various vegetables and fruits by using a sensitive high-performance liquid chromatography (HPLC) technique. Biological thiols measured in some vegetables and fruits include glutathione (L-glutamyl-L-cysteinly glycine, GSH), N-acetylcysteine (NAC), captopril [CAP (C9H15NO3S)], homocysteine (HCYS), cysteine (CYS), and gamma-glutamyl cysteine (GGC). Our results show that biological thiol contents are between 3-349 nM/g wet weight in vegetables and 4-136 nM/g wet weight in fruits. CAP is only found in asparagus (28 nM/g wet weight). Furthermore, none of the biological thiols analyzed were found in cabbages, red grapes, blackberries, apples, and peaches. Therefore, various vegetables and fruits differ significantly in their thiol contents. Oxidation of these important thiols may occur and result in the production of toxic byproducts, if they are exposed to radiation and ozone treatment for sterilization purposes. Further studies should be performed to monitor the levels of these biological thiols.  相似文献   

6.
The phenolic composition of olive fruits (Olea europaea L.) (cv. Picual, Villalonga, Alfafarenca, and Cornicabra) grown in different areas of Spain was studied by high performance liquid chromatography-mass spectrometry. Different levels of tyrosol, catechin, p-coumaric acid, rutin, luteolin, and oleuropein were observed in the different varieties analyzed. Treating the fruit with 0.3% Brotomax 50 days after anthesis had a beneficial effect on fruit size, oil content, levels of polyphenolic compounds, and Trolox-equivalent antioxidant activity (TEAC) in all the varieties analyzed.  相似文献   

7.
The total content of phenolic compounds (TAP) in 29 different monocultivar olive oil samples from France (Aglandau and Tanche) and Spain (Cornicabra, Picual, and Verdial) was assessed by the colorimetric Folin-Ciocalteu method. Also, individual phenolic compounds were determined and quantified by liquid chromatography coupled to mass spectrometry (LC-MS). The French olive oil samples had a lower TAP compared to Spanish samples. The quantity of individual phenolics was similar except for pinoresinol, which was lower in the French olive oil samples. TAP moderately correlated to the sum of quantified compounds (r = 0.64 and p < 0.01) Partial least-squares (PLS) regression analysis emphasized the importance of hydroxytyrosol and the total amount of quantified phenolic compounds by LC-MS in the prediction of the total amount of phenolic compounds as determined by the Folin-Ciocalteu method. The amount of alpha-tocopherol was generally different among the cultivars (Tanche > Picual > Verdial > Aglandau > Cornicabra). Of all quantified phenolic compounds in French olive oil samples, only luteolin correlated well to the altitude of the olive orchards (r = 0.76, p < 0.01).  相似文献   

8.
The effect of acidity, squalene, hydroxytyrosol, aldehydic form of oleuropein aglycon, hydroxytyrosyl acetate, tyrosol, homovanillic acid, luteolin, apigenin, alpha-tocopherol, and the mixtures hydroxytyrosol/hydroxytyrosyl acetate, hydroxytyrosol/tyrosol, and hydroxytyrosol/alpha-tocopherol on the oxidative stability of an olive oil matrix was evaluated. A purified olive oil was spiked with several concentrations of these compounds and, then, subjected to an accelerated oxidation in a Rancimat apparatus at 100 degrees C. Acidity, squalene, homovanillic acid, and apigenin showed negligible effect. At the same millimolar concentrations, the different o-diphenolic compounds yielded similar and significant increases of the induction time, alpha-tocopherol a lesser increase, and tyrosol a scarce one. At low concentrations of o-diphenols and alpha-tocopherol, a linear relationship between induction time and concentration was found, but at high concentrations the induction time tended toward constant values. To explain this behavior, a kinetic model was applied. The effect of the mixtures hydroxytyrosol/hydroxytyrosyl acetate was similar to that of a single o-diphenol at millimolar concentration equal to the sum of millimolar concentrations of both compounds. Concentrations of tyrosol >0.3 mmol/kg increase the induction time by 3 h. The mixtures hydroxytyrosol/alpha-tocopherol showed opposite effects depending on the relative concentrations of both antioxidants; so, at hydroxytyrosol concentrations <0.2 mmol/kg, the addition of alpha-tocopherol increased the induction time, whereas at higher hydroxytyrosol concentrations, the alpha-tocopherol diminished the stability.  相似文献   

9.
This study was conducted to determine whether the daily consumption for 84 days of tyrosol and hydroxytyrosol, the main olive oil phenolic compounds, and olive oil mill wastewater (OMWW), a byproduct of olive oil production, rich in micronutrients, may improve bone loss in ovariectomized rats (an experimental model of postmenopausal osteoporosis) and in ovariectomized rats with granulomatosis inflammation (a model set up for senile osteoporosis). As expected, an induced chronic inflammation provoked further bone loss at total, metaphyseal, and diaphyseal sites in ovariectomized rats. Tyrosol and hydroxytyrosol prevented this osteopenia by increasing bone formation ( p < 0.05), probably because of their antioxidant properties. The two doses of OMWW extracts had the same protective effect on bone ( p < 0.05), whereas OMWW did not reverse established osteopenia. In conclusion, polyphenol consumption seems to be an interesting way to prevent bone loss.  相似文献   

10.
The polyphenolic patterns of carob pods (Ceratonia siliqua L.) and derived products were identified and quantified using high-performance liquid chromatography-UV absorption-electrospray ion trap mass spectrometry after pressurized liquid extraction and solid-phase extraction. In carob fiber, 41 individual phenolic compounds could be identified. In addition, spectrophotometric quantification using the Folin-Ciocalteu and vanillin assays was performed, and the antioxidative activity was determined as the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Carob pods contain 448 mg/kg extractable polyphenols comprising gallic acid, hydrolyzable and condensed tannins, flavonol-glycosides, and traces of isoflavonoids. Among the products investigated, carob fiber, a carob pod preparation rich in insoluble dietary fiber (total polyphenol content = 4142 mg/kg), shows the highest concentrations in flavonol-glycosides and hydrolyzable tannins, whereas roasted carob products contain the highest levels of gallic acid. The production process seems to have an important influence on the polyphenolic patterns and quantities in carob products.  相似文献   

11.
The contents of free and total phenolic acids and alk(en)ylresorcinols were analyzed in commercial products of eight grains: oat (Avena sativa), wheat (Triticum spp.), rye (Secale cerale), barley (Hordeum vulgare), buckwheat (Fagopyrum esculentum), millet (Panicum miliaceum), rice (Oryza sativa), and corn (Zea mays). Avenanthramides were determined in three oat products. Free phenolic acids, alk(en)ylresorcinols, and avenanthramides were extracted with methanolic acetic acid, 100% methanol, and 80% methanol, respectively, and quantified by HPLC. The contents of total phenolic acids were quantified by HPLC analysis after alkaline and acid hydrolyses. The highest contents of total phenolic acids were in brans of wheat (4527 mg/kg) and rye (4190 mg/kg) and in whole-grain flours of these grains (1342 and 1366 mg/kg, respectively). In other products, the contents varied from 111 mg/kg (white wheat bread) to 765 mg/kg (whole-grain rye bread). Common phenolic acids found in the grain products were ferulic acid (most abundant), ferulic acid dehydrodimers, sinapic acid, and p-coumaric acid. The grain products were found to contain either none or only low amounts of free phenolic acids. The content of avenanthramides in oat flakes (26-27 mg/kg) was about double that found in oat bran (13 mg/kg). The highest contents of alk(en)ylresorcinols were observed in brans of rye (4108 mg/kg) and wheat (3225 mg/kg). In addition, whole-grain rye products (rye bread, rye flour, and whole-wheat flour) contained considerable levels of alk(en)ylresorcinols (524, 927, and 759 mg/kg, respectively).  相似文献   

12.
A simple and reproducible method for qualitative and quantitative analysis of phenolic compounds in virgin olive oils by solid-phase extraction (SPE), high performance liquid chromatography with diode array detector (HPLC-DAD), and HPLC-mass spectrometry (MS) in tandem mode was developed. The polar fraction was obtained from samples of three different virgin olive oils. Detection and quantification were performed at 280, 240, and 320 nm. For identification purposes, HPLC-MS/MS was equipped with turbo ion spray source in the negative-ion mode. Twenty compounds of twenty-three detected and quantified were characterized. The method showed satisfactory linearity (r > 0.99), good recovery, satisfactory precision, and appropriate limits of detection (LOD) and quantification (LOQ).  相似文献   

13.
The effect of olive stone removal before processing on the degradation level, secoiridoid and tocopherol contents, and antioxidant activity of monovarietal extra virgin olive oils (EVOOs) was studied. EVOOs were extracted from olives of the Leccino, Moraiolo, Frantoio, Pendolino, Taggiasca, and Colombaia varieties both in the presence and in the absence of the stones. The degradation level of EVOOs was evaluated by acidity, peroxide number, and spectroscopic indices K(232) and K(270), according to EU regulation. The secoiridoid compounds typical of EVOO, namely, the oleuropein and ligstroside derivatives, hydroxytyrosol, tyrosol, and tocopherols were analyzed by HPLC. The antioxidant activity was evaluated by the xanthine oxidase/xanthine system, generating superoxide radical and hydrogen peroxide, and by the 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl test. Results showed that EVOOs obtained from both stoned and destoned olives had a very low degradation level, which was not affected by destoning. Destoning lowered slightly the alpha-tocopherol content in EVOOs but increased the total secoiridoid content and the antioxidant activity of EVOOs (up to 3.5-fold). However, these effects were variety-dependent and negligible in some conditions. It was concluded that a better knowledge of the reactions occurring during olive processing, and particularly on the involvement of endogenous pulp and stone enzymes, is essential to predict the effect of destoning on EVOO quality.  相似文献   

14.
A number of Sauvignon blanc wines made from hard pressed juices in an inert atmosphere (nitrogen) or in contact with oxygen were identified as having heavy off-flavors to varying degrees. Samples were extracted and subjected to time-based HPLC fractionation. The fractions were assessed by a sensory panel and those with unpleasant, irritating, off-odors were re-extracted. The extracts evaluated by gas chromatography coupled with olfactometry revealed a number of odoriferous zones, including one with an off-odor similar to the one perceived in two HPLC fractions. The odor was less intense in fractions previously supplemented with copper sulfate, suggesting that the compound(s) responsible were possibly thiol-related. A selective thiols extraction protocol and the analysis of the extract by gas chromatography coupled with mass spectrometry identified a new potent thiol in these wines. The compound responsible for the odoriferous zone, ethyl 2-sulfanylacetate (1), had an odor reminiscent of baked beans and Fritillaria meleagris bulbs. Its perception threshold was determined and sensory studies using graduated supplementation in dry white wines demonstrated its contribution to the off-odor observed in dry white wines.  相似文献   

15.
Hydroxytyrosol is quantitatively and qualitatively the principal phenolic antioxidant in olive oil. Recently it was shown that hydroxytyrosol and five metabolites were excreted in urine when hydroxytyrosol was dosed intravenously or orally in an olive oil solution to rats. The conclusive identification of three metabolites of hydroxytyrosol by MS/MS as a monosulfate conjugate, a 3-O-glucuronide conjugate, and 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid) has been established in this investigation. The structural configurations of the glucuronide conjugate and 4-hydroxy-3-methoxyphenylacetic acid were confirmed by (1)H NMR. The radical scavenging potencies of homovanillic acid, homovanillic alcohol, hydroxytyrosol, and the metabolites were examined with the radical 2,2-diphenyl-1-picrylhydrazyl. These studies showed them to be potent antioxidants with SC(50) values of 14.8 and 11.4 microM for homovanillic acid and homovanillic alcohol, respectively. The 3-O-glucuronide conjugate was more potent than hydroxytyrosol, with an SC(50) of 2.3 in comparison to 11.0 microM, and the monosulfate conjugate was almost devoid of radical scavenging activity.  相似文献   

16.
In this paper the relationship between virgin olive oil (VOO) phenol compounds and the formation of acrylamide in potato crisps was investigated. The phenol compositions of 20 VOO samples were screened by LC-MS, and 4 oils, characterized by different phenol compound patterns, were selected for frying experiments. Slices of potatoes were fried at 180 degrees C for 5, 10, and 15 min, and acrylamide content was determined by LC-MS. Results demonstrated that VOO phenolic compounds are not degraded during frying, and crisp color was not significantly different among the four VOOs. Acrylamide concentration in crisps increased during frying time, but the formation was faster in the oil having the lowest concentration of phenolic compounds. Moreover, the VOO having the highest concentration of ortho-diphenolic compounds is able to efficiently inhibit acrylamide formation in crisps from mild to moderate frying conditions. It was concluded that the use of ortho-diphenolic-rich VOOs can be proposed as a reliable mitigation strategy to reduce acrylamide formation in domestic deep-frying.  相似文献   

17.
The concentration of hydroxytyrosol (3,4-DHPEA) and its secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEA-EA) in virgin olive oil decreased rapidly when the oil was repeatedly used for preparing french fries in deep-fat frying operations. At the end of the first frying process (10 min at 180 degrees C), the concentration of the dihydroxyphenol components was reduced to 50-60% of the original value, and after six frying operations only about 10% of the initial components remained. However, tyrosol (p-HPEA) and its derivatives (p-HPEA-EDA and p-HPEA-EA) in the oil were much more stable during 12 frying operations. The reduction in their original concentration was much smaller than that for hydroxytyrosol and its derivatives and showed a roughly linear relationship with the number of frying operations. The antioxidant activity of the phenolic extract measured using the DPPH test rapidly diminished during the first six frying processes, from a total antioxidant activity higher than 740 micromol of Trolox/kg down to less than 250 micromol/kg. On the other hand, the concentration of polar compounds, oxidized triacylglycerol monomers (oxTGs), dimeric TGs, and polymerized TGs rapidly increased from the sixth frying operation onward, when the antioxidant activity of the phenolic extract was very low, and as a consequence the oil was much more susceptible to oxidation. The loss of antioxidant activity in the phenolic fraction due to deep-fat frying was confirmed by the storage oil and oil-in-water emulsions containing added extracts from olive oil used for 12 frying operations.  相似文献   

18.
Changes occurring in the concentrations of alpha-tocopherol, total phenols, and complex phenols linked to 3,4-dihydroxyphenylethanol (fractions FII and FIV) and p-hydroxyphenylethanol (FIII) during storage of virgin olive oil under environmental conditions were studied. Under diffused light, alpha-tocopherol was decomposed by 79% in 4 months, whereas <45% of the phenols were lost during the same period. Among the phenols, FII showed the least stability, and decreased by 72% in 6 months. Total phenols, FIII, and FIV recorded reductions in the range of 57-63% in 6 months. When the oil was stored in the dark, alpha-tocopherol, total phenols, FIII, and FIV exhibited similar profiles of degradation, reducing by 39-45% in the first 6 months and 50-62% in 12 months. FII was the least stable compound in the dark and recorded a loss of 64% in 6 months and 79% in 12 months. The levels of the above antioxidants were further related to peroxide formation. Remaining levels of these compounds at PV = 20 meq/kg ranged between 50 and 73% under diffused light and between 40 and 62% in the dark.  相似文献   

19.
Auraptene quantities in Tanaka's 77 Citrus species (including 14 varieties and cultivars), 5 Fortunella species, one Poncirus species, 27 hybrids between Citrus species, and 51 intergeneric hybrids between Citrus and Poncirus have been evaluated. The genus Citrus has been divided into eight groups. Auraptene is found in all of the species of Cephalocitrus group, a part of the species of Aurantium group, and most of the species of Osmocitrus group. The Citrus species contain a small amount of auraptene in the juice sacs compared with in the peels except for Henka mikan (C. pseudo-aurantium), Ichang lemon (C. wilsonii), and a Hassaku (C. hassaku)-pummelo hybrid (Okitsu No. 39), which contain large quantities of auraptene in their juice sacs (0.23, 0.52, and 0.14 mg/g, respectively). The Hong Kong wild kumquat (F. hindusii) alone contains auraptene in Fortunella species. All of the Citrus-trifoliate orange (P. trifoliata) hybrids as well as the trifoliate orange contain a large quantity of auraptene in both the peel (16.57-0.51 mg/g) and the juice sac (10.32-0.15 mg/g). These hybrids are almost inedible. The Iyo (C. iyo)-trifoliate orange hybrid (IyP269) is edible and contains auraptene in the peel (1.49 mg/g) and in the juice sac (1.73 mg/g). Citrus fruit products, for example, brand-named grapefruit juice and marmalade, retain about 0. 1 mg and 0.3 mg/100 g of auraptene, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号