首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five peat soils and a mineral soil were artificially contaminated with 137Cs. Soil solution activity and radio–lability of 137Cs were monitored over 709 days to quantify progressive 137Cs fixation. The peat soils fixed large amounts of 137Cs, but less than the mineral soil did. Distribution coefficients (Kd, cm3 g?1) ranged from 30 to 5000 at the end of equilibration. A labile 137Cs distribution coefficient, Kdt, was estimated by a method involving solid ? solution equilibration in dilute solution. In a separate study several concentrations of KCl were added to soils in increasing concentration both before and after the addition of 137Cs. Differences in apparent adsorption strength of radiocaesium indicated that K+ induced the collapse of expanded mineral interlayers, thereby trapping ions. It seemed that I37Cs adsorbs at sites in the small micaceous clay fraction of the peat soils. The different rates of 137Cs adsorption and fixation in the peat and mineral soils, in which the rate of access of 137Cs to fixation sites in peat soils is less, seems to have been caused partly by lack of K, and partly by the scarcity of fixation sites.  相似文献   

2.
The OAh and Ah horizons of acid brown and podzolic forest soils are reported to fix more radiocaesium than the mineral B horizons beneath them. We determined the respective influence of organic matter and clay minerals on the magnitude of Cs+ retention in a strongly acid brown forest soil in Belgium. The soil contained mica throughout the profile. Vermiculite was identified in the OAh and Ah horizons, and hydroxy interlayered vermiculite (HIV) in the Bw horizon. The OAh and Ah clay fraction retained much more Cs+ than the Bw horizon. The extraction of Al interlayers by Na-citrate resulted in a marked increase in Cs+ fixation in the Bw clays as well as the collapse of the vermiculitic layers after K+ saturation. Organic matter had a strong but indirect effect on Cs+ fixation. In the Bw horizon, acid weathering of layer silicates releases free Al and produces HIV minerals in which Al polymers block the access of radiocaesium onto Cs+-specific sites. In OAh and Ah horizons, free Al is complexed by organic acids. Consequently, the interlayer specific sites remain accessible for Cs+ fixation.  相似文献   

3.
To understand the process and the kinetics of potassium release from the clay interlayer in natural and arable soils in more detail, I tested the hypotheses that large, monovalent cations, especially NH4+ and Cs+, can reduce the release rates of K+ which is exchanged by Ca2+, even if these monovalent cations are present in concentrations of only a few μm . Percolation experiments were carried out with different illitic soil materials, some containing vermiculite, with 5 m m CaCl2 at pH 5.8 and 20°C, in some cases for over 7000 h. NH4+ and Cs+ both caused a large decrease in the rate at which K+ was released, Cs+ especially. Suppression began at 5 μm NH4+ Blocking by 20 μm NH4+ was easily reversible: the release rates readily increased when NH4+ was omitted from the exchange solution. Blocking by 2 μm Cs+ was equal to approximately 90% of that at 10 μm Cs+. Larger concentrations of Cs+ than 10 μm did not further reduce release but rather caused a slight increase, probably because of enhanced exchange of K+ by Cs+ without exfoliation of the interlayer space. Blocking by Cs+ was not reversible within > 7000 h of percolation by 5 m m CaCl2. The blocking effect was reproduced in several different soil materials using 10 μm Cs+ but was most pronounced in vermiculite-rich samples. As NH4+ is present in most arable soils, at least in concentrations of a few μm , I conclude that the observed effects are of significance in the K dynamics processes in soils, for example near the roots of plants. Further, very small concentrations of Cs+ in exchange solutions containing a large background of Ca2+ appear to be useful for suppressing K+ release from the interlayer in laboratory studies, probably without significantly altering the exchange at outer mineral surfaces.  相似文献   

4.
Cesium and Strontium Exchange Properties of Marsh Soils The cesium and strontium exchange properties of some typical marsh soils of the estuary and lower river Weser region were described. Soil samples were taken according to the existing soil maps 1:25000 of Lower Saxony e.g. a “sea marsh soil”. a “brackish marsh soil”, and a “river marsh soil”. The exchange properties were determined by Cs/Ca and Sr/Ca exchange curves (Q/I relations) as generally used in soil potassium research. In addition to the Q/I relations the following investigations were carried out: - Cs and Sr desorption experiments (one time equilibration with Ca++ solutions) - Cs and Sr reexchange experiments (eight times equilibration with water, Ca++, Ba++, and K+ solutions) - the naturally-occuring Cs and Sr contents of the soils including amounts caused by imissions or fallout, respectively - clay mineral composition and swelling of layer silicates due to saturation with Ca++, Sr++, Cs+, and K+ ions. Q/I relations as well as desorption and reexchange experiments indicated strong cesium and low strontium fixation by the soils investigated. This was considered the reason for the stronger transfer of Sr from soil to plants as compared with Cs. Furthermore, the reexchange experiment revealed nearly complete reversibility of the Sr sorption reactions by equilibration with the divalent cations Ca++ and Ba++ and some Sr fixation after treatment with K+ solutions. However, cesium was much better reexchanged by K+ than by Ca++ and Ba++ ions. This led to the conclusion that Cs fixed in interlayer positions of clay minerals could be remobilized by potassium and ammonium fertilization. The naturally-occuring Cs contents of the soils were found to be below the detection limit of the analytical methods used. The contents of naturally-occuring exchangeable Sr, however, was in agreement with the amounts of “labile Sr” as derived from the Sr/Ca exchange curves. Concerning the cesium exchange properties a clear distinction between “sea and river marsh soils” on the one hand and “brackish marsh soils” on the other hand was established due to differences in clay mineral composition and swelling state of 1:2 layer silicates. The different cesium exchange properties of the two soil groups could also be verified by more or less pronounced hysteresis effects of sorption (Q/I relation) and desorption curves.  相似文献   

5.
The use of bentonites as soil amendment has met with little success in reducing plant uptake of radiocaesium. However, bentonites exchanged with K+ have pronounced Cs+ binding capacity when subjected to wetting–drying cycles. Fifty‐four different bentonites were collected and characterized for cation exchange capacity and chemical composition. The radiocaesium interception potential (RIP) increased up to 160‐fold (mean 25) when the bentonites were converted to the K‐form and subjected to wetting–drying cycles. This increase in radiocaesium sorption was ascribed to a collapse of the clay sheets into an illite‐like structure, and was most pronounced in bentonites with a high layer charge. The RIP values of K‐bentonites subjected to 25 wetting–drying cycles ranged from 0.22 to 44.3 mol kg?1. The RIP yields, i.e. the RIP in soil–bentonite mixtures expressed per unit bentonite added, were even higher and ranged up to 99 mol kg?1. This upper limit is about 10‐fold higher than the RIP value of illite (~ 10 mol kg?1), the principal 137Cs sorbent in soils of temperate climates. Wetting–drying also promoted fixation of radiocaesium in soils amended with K‐bentonites. About 30% of added 137Cs could be desorbed with 1 m ammonium acetate (NH4Ac) from an unamended soil after 25 wetting–drying cycles, while only between 8 and 21% of 137Cs could be desorbed from a soil amended with bentonite and a K‐salt. These findings support the proposition that addition of K‐bentonite may be effective in reducing availability of 137Cs in soils.  相似文献   

6.
Abstract

Nonexchangeable potassium (K) release kinetics of six major benchmark soil series of India as affected by mineralogy of clay and silt fractions, soil depth and extraction media was investigated. The cumulative release of nonexchangeable K was greater in smectitic soils (353 mg K kg?1 at 0‐ to 15‐cm depth and 296 mg K kg?1 at 15‐ to 30‐cm depth, averaged for 2 soils and 3 extractants) than in illitic (151 mg K kg?1 at 0‐ to 15‐cm depth and 112 mg K kg?1 at 15‐ to 30‐cm depth) and kaolinitic (194 mg K kg?1 at 0‐ to 15‐cm depth and 167 mg K kg?1 at 15‐ to 30‐cm depth) soils. Surface soils exhibited larger cumulative K release in smectitic and illitic soils, whereas subsurface soils had larger K release in kaolinitic soils. Among the extractants, 0.01 M citric acid extracted a larger amount of nonexchangeable K followed by 0.01 M CaCl2 and 0.01 M HCl. The efficiency of citric acid extractant was greater in illitic soils than in smectitic and kaolinitic soils. Release kinetics of nonexchangeable K conformed fairly well to parabolic and first‐order kinetic models. The curve pattern of parabolic diffusion model suggested diffusion controlled kinetics in all the soils, with a characteristic initial fast rate up to 7 h followed by a slower rate. Greater nonexchangeable K release rates in smectitic soils, calculated from the first‐order equation (b=91.13×10?4 h?1), suggested that the layer edge and wedge zones and swelling nature of clay facilitated the easier exchange. In contrast to smectitic soils, higher release rate constants obtained from parabolic diffusion equation (b=39.23×10?3 h?1) in illitic soils revealed that the low amount of exchangeable K on clay surface and larger amount of interlayer K allowed greater diffusion gradients, thus justifying the better fit of first‐order kinetic equation in smectitic soils and parabolic diffusion equation in illitic soils.  相似文献   

7.
Ondráček  J.  Ždímal  V.  Smolík  J.  Lazaridis  M. 《Water, air, and soil pollution》2009,198(1-4):219-232
The work focuses on application of linear regression method for assessment of soil physicochemical parameters influence on 137Cs accumulation. Besides organic matter content and pH, the parameters related to sorption properties of mineral parts and mobile ions concentration were considered. Before linear regression model is applied the data were transformed using Box–Cox formula. Selection of explanatory variables for regression was based on Akaike Information Criterion (AIC). Analysis of residuals distribution showed that linear regression can be applied for assessment of Cs+ accumulation in soil horizons. The important conclusion is that Cs+ cation migration in soil is usually influenced by more than a single horizon parameter. Common influence of two or more parameters on 137Cs activity in soil horizon was observed. Our results suppose that migration of Cs in soil is affected mainly by horizon’s acidity, presence of minerals and ion exchangeable substances. Some processes are probably affected by Cs+ individual properties, but other ones are not so selective.  相似文献   

8.
湖南几种耕地土壤固定添加铵的动力学研究   总被引:2,自引:0,他引:2  
通过野外调查取样、室内培养试验和分析测定,研究了湖南省几种成土母质发育的旱地土壤和稻田土壤固定添加铵的动力学特性。结果表明,供试土壤对添加铵的固定速度很快,尤其在反应的前8~12h内速度更快,12h后速度逐渐变慢,24h以后,土壤对外源铵的固定已基本达到平衡。数学拟合表明,一级动力学方程和Elovich方程两种动力学模型能较好地拟合供试土壤固定添加铵的动力学特性,经统计均达极显著水平,抛物扩散方程也有较好的拟合效果,零级方程较差。由一级动力学方程求得的不同土壤固铵动力学参数:理论最大固铵量(A)、反应速率常数(b)以及反应半时值明显不同。耕型石灰性紫色土、耕型酸性紫色土、耕型棕色石灰土和耕型石灰岩红壤的理论最大固铵量和反应半时值分别为212.3mg kg^-1、179.0mg kg^-1、142.9mg kg^-1.13.7mg kg^-1和29.75h、25.96h、27.18h、23.49h;紫泥田、河沙泥、灰泥田和红黄泥的理论最大固铵量和反应半时值分别为86.2mg kg^-1、68.7mg kg^-1,31.8mg kg^-1、19.1mg kg^-1和14.50h、15.10h、15.51h、18.43h。耕型石灰性紫色土、耕型酸性紫色土、耕型棕色石灰土和耕型石灰岩红壤的反应速率常数分别为0.0233 h^-1、0.0267h^-1、0.0255h^-1、0.0295h^-1;紫泥田、河沙泥、灰泥田和红黄泥的反应速率常数分别为0.0478h^-1、0.0459h^-1、0.0447h^-1、0.0376h^-1.除耕型石灰岩红壤以外,旱地土壤的理论最大固铵量和反应半时值均明显大于水田土壤,而反应速率常数明显小于水田土壤。  相似文献   

9.
《CATENA》2001,43(2):81-99
Differences between measured 137Cs activity–depth profiles and idealised undisturbed profiles generated from an exponential model suggest that faunal turbation has redistributed 137Cs in mineral and organic upland soils in southern Scotland. Bioturbation is also demonstrated by the vertical displacement of other inputs to the soils of known age (non-native tree pollen and spheroidal carbonaceous particles, SCPs). The causes and mechanisms of bioturbation were further investigated by soil micromorphology. Well-drained mineral soils with active populations of earthworms are the most bioturbated, showing near-complete homogenisation to depths of about 20 cm. Enchytraeids also seem to remobilise 137Cs by the digestion of organic matter and may be the main cause of 137Cs redistribution in organic-rich upland soils. Relative rates of mixing are evaluated by comparing 137Cs depth profiles.  相似文献   

10.
After the Chernobyl accident in 1986 the fate of radiocaesium from the fallout became of pressing concern. Specific soil amendments, as K fertilizer and specific clay minerals, promised to mitigate the worst effects. We therefore investigated the influence of bentonite and the K status of the soil on the radiocaesium equilibria in soil and on its availability to ryegrass. A sample of a sandy soil was contaminated with 134Cs and amended with K and Ca salts (0–0.97 mmol kg?1) and K bentonite (0–2%). After 4 weeks' incubation of the soil mixtures, ryegrass was grown for 18 weeks in a pot trial and harvested on seven occasions. No significant treatment effects on 134Cs activity concentrations were found at the first and second harvest. From the third harvest onwards, however, 134Cs activity concentrations in the grass were reduced up to twofold (P < 0.05) by increasing rates of K bentonite. Adsorption studies with 137Cs revealed that the radiocaesium interception potential (RIP) of the soil–bentonite mixtures (> 1% bentonite) increased about 10‐fold during plant growth. The RIP of the K bentonite after plant growth was up to 10 times larger than that of pure illite. The formation of specific Cs sorption sites is ascribed to the in situ illitization of the K bentonite. The increase in RIP during plant growth is reflected in a decrease in exchangeable K+ at 2% K bentonite of about 18%. Radiocaesium concentrations in grass could be reliably predicted from the Cs+ and K+ concentrations in the soil solution. Adding K bentonite to a soil contaminated with radiocaesium is effective in fixing Cs in the soil.  相似文献   

11.
Dynamics and fixation of potassium in soils of North-West-Iran The following results were obtained from experiments conducted on two calcareous soils (A-horizon) and on two soil samples from fertilizer experimental plots (K0 = control plot, K5 = 1000 kg K2O/ha) to study the dynamics and fixation of potassium in these soils: The K-exchange curve of K5 sample when compared with K0 sample showed that, as a consequence of high fertilizer dose, most of the specific adsorption sites for cations (particularly on illites and weathering products of illites) were occupied by K which, thus, resulted into lower K-adsorption as well as fixation. The shape of K-exchange curves of other three samples (Alluvial soil, 16, Brown soil 26 and K0 sample, Fig. 5 and 6) indicates a typical bend at definite activity ratios. This bend in the exchange curves exists apparently in soils containing high content of illitic clay mineral fraction. This behaviour has been interpreted as a consequence of contraction of layers of illitic minerals which were formerly expanded due to loss of potassium. The K-desorption experiment, which then followed, showed that a major part of sorbed amounts of potassium could not be desorbed and remained fixed in the soil. Similar type bend as in the exchange curve was also observed in the potassium fixation curves (Fig. 6 and 7). Illite is the dominant clay mineral in all these soils which in Brown soil and K0-sample is expanded at edges; the expansion goes back to 10 A on treatment with K which then does not expand again on saturation with Mg.  相似文献   

12.
Cation exchange resin saturated with H+ and Ca2+ was used to extract 137Cs from peat soil at two sites in Britain affected by l37Cs deposition following the Chernobyl accident. The technique identified three classes of 137Cs, similar to those observed for K+ in soils: ‘Fast’, ‘Intermediate’ and ‘Slow’. These classes are probably related to the selectivity for 137Cs of the cation exchange sites on the organic matter and the clay minerals, and to the structure of the soil. With one exception, most 137Cs was in the ‘Slow’ form and was only very slowly released to the resins, if at all. However, there was enough l37Cs in the ‘Fast’ and ‘Intermediate’ forms to contaminate pasture and thus grazing animals for some years. Based on the resin technique, it is estimated that contamination will persist for several decades in uplands contaminated at these activity concentrations.  相似文献   

13.
Abstract

Fixation of the ammonium ion (NH4 +) by clay minerals is an alternate way of building the nitrogen (N) pool in soil to optimize N crop recovery and minimize losses. Clay minerals (illite, montmorillonite, and vermiculite) and an illitic Portnoeuf soil were used to compare NH4 + fixation abilities. Total N determination and X‐ray diffraction analysis were performed on each of the minerals and the Portnoeuf soil controls, and NH4 + saturated batches were subsequently desorbed by potassium chloride (KCl) after 4096 hours. Total N was determined for each employing either Kjeldahl digestion only, or pretreating with hydrofluoric‐hydrochloric acid (HF‐HCl) before the Kjeldahl digestion. The total N for the soil was 38% more after pretreatment with HF‐HCl. The total N determined after pretreatment with HF‐HCl for the NH4 + saturated and subsequently KCl desorbed minerals was found to be highest in vermiculite. The cation exchange acapacity (CEC) of each of the minerals was determined, and highest CEC was found in montmorillonite [83.07 cmol(+)/kg]. X‐ray diffraction analysis revealed collapse of the vermiculitic clay lattice from an initial d‐spacing of 13.1 angstrom to 10.4 angstrom after desorprion by KCl. This suggested the existence of sequestered NH4 + between the 2: 1 vermiculitic clay interlayer lattice.  相似文献   

14.
Potassium (K+) and nitrogen [N, as the form of ammonium (NH4+)] are major nutrients for plant growth. Although there have been a number of studies on the kinetic fixation of potassium and ammonium ions in soils and clays, however, investigations on the kinetics of competitive fixation of these ions have been few, if any, especially by taking into account silt component of the soils. In this study, the kinetics of potassium and ammonium fixation were examined in the silt components of several soil samples. The results revealed that considerable amounts of K+ and in lesser amounts, NH4+ ions were fixed by silt components of the soils. Potassium fixation was strongly preferred over ammonium. To describe the fixation kinetics, seven mathematically models were evaluated. A comparison of the models showed that pseudo-second-order equation properly described the fixation of these ions by the silt components.  相似文献   

15.
Cesium and soil carbon in a small agricultural watershed   总被引:8,自引:1,他引:8  
Scientific, political, and social interests have developed recently in the concept of using agricultural soils to sequester carbon. Studies supporting this concept indicate that soil erosion and subsequent redeposition of eroded soils in the same field may establish an ecosystem disequilibrium that promotes the buildup of carbon on agricultural landscapes. The problem is to determine the patterns of soil erosion and redeposition on the landscape and to relate these to soil carbon patterns. Radioactive 137cesium (137Cs) can be used to estimate soil erosion patterns and, more importantly, redeposition patterns at the field level. The purpose of this study was to determine the relationship between 137Cs, soil erosion, and soil carbon patterns on a small agricultural watershed. Profiles of soils from an upland area and soils in an adjacent riparian system were collected in 5 cm increments and the concentrations of 137Cs and carbon were determined. 137Cs and carbon were uniformly mixed in the upper 15–20 cm of upland soils. 137Cs (Bq g−1) and carbon (%) in the upland soils were significantly correlated (r2=0.66). Carbon content of the 0–20 cm layer was higher (1.4±0.3%) in areas of soil deposition than carbon content (1.1±0.3%) in areas of soil erosion as determined by the 137Cs technique. These data suggest that measurements of 137Cs in the soils can be useful for understanding carbon distribution patterns in surface soil. Carbon content of the upland soils ranged from 0.5 to 1.9% with an average of 1.2±0.4% in the 0–20 cm layer while carbon below this upper tilled layer (20–30 cm) ranged from 0.2 to 1.5% with an average of 0.5±0.3%. Total carbon was 2.66 and 3.20 kg m−2 in the upper 20 cm and upper 30 cm of the upland soils, respectively. Carbon content of the 0–20 cm layer in the riparian system ranged from 1.1 to 67.0% with an average 11.7±17.1%. Carbon content below 20 cm ranged from 1.8 to 79.3% with an average of 18.3±17.5%. Soil carbon in the upper 20 cm of the riparian profile was 10.1 and 15.0 kg m−2 in the upper 30 cm of the riparian profiles. This is an increase of organic carbon by a factor of 3.8 and 4.7 for the upper 20 cm and upper 30 cm of the riparian profiles, respectively, when compared to the upland soil profiles.  相似文献   

16.
Cesium-137 (137Cs) is strongly adsorbed on clay minerals, especially on illite. The adsorption of Cs+ on reference clay minerals, however, has not been fully investigated in relation to the presence of illite. The objective of this study was to clarify the effect of impurities (i.e., illite and vermiculite), present in reference smectite group minerals and kaolin minerals, on the retention of Cs+. The clay mineralogy of the reference minerals was characterized by X-ray diffraction (XRD). The radiocesium interception potential (RIP) was measured as an index of the Cs+ retention ability of clays. The content of illite in clay was represented by the total potassium (K) content given that illite is a major source of K in the clay fraction. The content of vermiculite in clay was represented by the Cs fixation capacity induced by Cs saturation followed by heating of samples at 110°C. Metabentonite and beidellite gave extremely high RIP values compared with other smectite group minerals, although a peak for illite (at 1.0 nm) was not observed in XRD analysis. The reference smectite and kaolin minerals showed a range of RIP values, even though their RIP values are theoretically zero. The RIP values had a significant positive correlation with the total K content of all the reference clay minerals (rs = 0.621*). This indicated that the retention ability for 137Cs depended more on the content of illite, as impurity, rather than the type of bulk mineral. Hence, the contribution of illite to the magnitude of the RIP was elucidated by the combination of measurement of total K content and XRD analysis.  相似文献   

17.
The dynamic method was proposed for studying the kinetics of 137Cs selective sorption by the measurement of the 137Cs activity directly in the sorbent solid phase. A thin layer of the sorbent in a disposable syringe membrane filter (MF) was eluted with a 137Cs solution containing K+ and Ca2+ ions with a gradual decrease in the solution flow rate from 6 to 0.2 cm3/min. The activity of the sorbed 137Cs was determined periodically by placing the same MF in the detector well of a Wizard 1480 gamma counter. It was shown that the masses of the sorbent and water in the MF had no effect on the efficiency of the 137Cs measurement. A linear relationship between the RIP(K) value and the square root of the time for the period between 4 and 30 days was revealed using this method. The relative increase in the RIP(K) with time changed by 6 times (from 0.034 to 0.208 days−0.5) for the soils and by 20 times (from 0.008 to 0.153 days−0.5) for the mineral sorbents. The RIP(K) values measured for the interaction of soddy-podzolic soils with 137Cs during 24 hours using the standard limited volume method were lower than the values determined by the proposed dynamic method for the interaction period of 30 days by 50–100%.  相似文献   

18.
Schwesig  D.  Ilgen  G.  Matzner  E. 《Water, air, and soil pollution》1999,113(1-4):141-154
Mercury (Hg) and methylmercury (CH3Hg+) are global pollutants, but little information is available on their distribution and mobility in soils and catchments of Central Europe. The objective of this study was to investigate the pools and mobility of Hg and CH3Hg+ in different forest soils. Upland and wetland forest soils, soil solutions and runoff were sampled. In upland soils the highest contents of total-Hg were found in the Oh layer of the forest floor (>400 ng g-1) and the storage of non geogenic total-Hg (calculated for 60 cm depth) was about 120 mg/m2. The storage of total-Hg was one order of magnitude lower in wetland soils as compared to the upland soils. By far the largest proportion of total-Hg in soils was bound in immobile fractions. The depth gradients of CH3Hg+ did not correspond to those of total-Hg and the highest contents of CH3Hg+ in upland soils were observed in the litter layer of the forest floor and in the Bsv horizon. The CH3Hg+ content of the wetland soils was generally much higher in comparison with upland soils. CH3Hg+ in solution was found in the forest floor percolates of upland soils and in wetland soils, but not in soil solutions from mineral soil horizons. Gaseous losses of Hg as well as methylation of Hg are likely in wetland soils. The latter might be highly relevant for CH3Hg+ levels in runoff.  相似文献   

19.
20.
Heats of adsorption and adsorption isotherms of ammonia gas were measured at 300 K (27 °C) on outgassed soil saturated with Na+, K+, NH4+, Ca2+, or Mg2+ ions. The Ca and Mg soils adsorbed apparently one more NH2 molecule per exchangeable ion than the Na and K soils, mostly in the relative pressure range o to 0.005, but not much more than the NH4 soil. The initial heat of adsorption was c. 75 kJ mol-1 on the Ca and Mg soils and c. 60 kJ mol-1 on the other soils. The results suggest that most NH, is sorbed on these soils through reactions not involving exchangeable cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号