首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although yellow maize (Zea mays) fractions and products are a source of dietary carotenoids, only limited information is available on the bioavailability of these pigments from maize-based foods. To better understand the distribution and bioavailability of carotenoid pigments from yellow maize (Z. mays) products, commercial milled maize fractions were screened for carotenoid content as were model foods including extruded puff, bread, and wet cooked porridge. Carotenoid content of maize fractions ranged from a low of 1.77-6.50 mg/kg in yellow maize bran (YCB) to 12.04-17.94 mg/kg in yellow corn meal (YCM). Lutein and zeaxanthin were major carotenoid species in maize milled fractions, accounting for approximately 70% of total carotenoid content. Following screening, carotenoid bioaccessibility was assessed from model foods using a simulated three-stage in vitro digestion process designed to measure transfer of carotenoids from the food matrix to bile salt lipid micelles (micellarization). Micellarization efficiency of xanthophylls was similar from YCM extruded puff and bread (63 and 69%), but lower from YCM porridge (48%). Xanthophyll micellarization from whole yellow corn meal (WYCM) products was highest in bread (85%) and similar in extruded puff and porridge (46 and 47%). For extruded puffs and breads, beta-carotene micellarization was 10-23%, but higher in porridge (40-63%), indicating that wet cooking may positively influence bioaccessibility of apolar carotenes. The results suggest that maize-based food products are good dietary sources of bioaccessible carotenoids and that specific food preparation methods may influence the relative bioaccessibility of individual carotenoid species.  相似文献   

2.
While isomeric profiles of carotenoids found in food often differ from those in body fluids and tissues, insights about the basis for these differences remain limited. We investigated the digestive stability, relative efficiency of micellarization, and cellular accumulation of trans and cis isomers of beta-carotene (BC) using an in vitro digestion procedure coupled with human intestinal (Caco-2) cells. A meal containing applesauce, corn oil, and either water-soluble beadlets (WSB) or Dunaliella salina (DS) as a BC source was subjected to simulated gastric and small intestinal digestion. BC isomers were stable during digestion, and the efficiency of micellarization of cis-BC isomers exceeded that of all-trans-BC isomers. The cellular profile of carotenoids generally reflected that in micelles generated during digestion, and intracellular isomerization was minimal. These data suggest that cis isomers of BC are preferentially micellarized during digestion and transferred across the brush-border surface of the enterocyte from mixed micelles with similar efficiency as all-trans-BC at the concentrations of the carotenoids utilized in this study.  相似文献   

3.
To compare the in vitro bioaccessibility of lutein, zeaxanthin, beta-cryptoxanthin, lycopene, and alpha-and beta-carotenes from relevant dietary contributors, a gastrointestinal model was used to assess the stability, isomerization, carotenol ester hydrolysis, and micellarization. Salivar, gastric, duodenal, and micellar phases were extracted, with and without saponification, and analyzed by using a quality-controlled HPLC method. The stability of carotenoids under digestion conditions was >75%, regardless of the food analyzed, whereas micellarization ranged from 5 to 100%, depending on the carotenoid and the food. cis-Isomers were maintained in processed foods, but increased in fresh foods. Xanthophyll ester hydrolysis was incomplete (<40%), and both free and ester forms were incorporated into supernatants, regardless of the xanthophyll involved and the food assessed. In vitro bioaccesibility varies widely both for different carotenoids in a given food and for a given carotenoid in different foods. Although in vitro bioaccesibility may not be enough to predict the in vivo bioavailability, it may be relevant for the food industry and for food-based dietary guidelines.  相似文献   

4.
A carotenoid-rich salad meal with varying amounts and types of triglycerides (TG) was digested using simulated gastric and small intestinal conditions. Xanthophylls (lutein and zeaxanthin) and carotenes (alpha-carotene, beta-carotene, and lycopene) in chyme and micelle fraction were quantified to determine digestive stability and efficiency of micellarization (bioaccessibility). Micellarization of lutein (+zeaxanthin) exceeded that of alpha- and beta-carotenes, which was greater than that of lycopene for all test conditions. Micellarization of carotenes, but not lutein (+zeaxanthin), was enhanced (P < 0.05) by addition of TG (2.5% v/w) to the meal and was dependent on fatty acyl chain length in structured TG (c18:1 > c8:0 > c4:0). The degree of unsaturation of c18 fatty acyl chains in TG added to the salad purée did not significantly alter the efficiency of micellarization of carotenoids. Relatively low amounts of triolein and canola oil (0.5-1%) were required for maximum micellarization of carotenes, but more oil (approximately 2.5%) was required when TG with medium chain saturated fatty acyl groups (e.g., trioctanoin and coconut oil) was added to the salad. Uptake of lutein and beta-carotene by Caco-2 cells also was examined by exposing cells to micelles generated during the simulated digestion of salad purée with either triolein or trioctanoin. Cell accumulation of beta-carotene was independent of fatty acyl composition of micelles, whereas lutein uptake was slightly, but significantly, increased from samples with digested triolein compared to trioctanoin. The results show that the in vitro transfer of alpha-carotene, beta-carotene, and lycopene from chyme to mixed micelles during digestion requires minimal (0.5-1%) lipid content in the meal and is affected by the length of fatty acyl chains but not the degree of unsaturation in TG. In contrast, fatty acyl chain length has limited if any impact on carotenoid uptake by small intestinal epithelial cells. These data suggest that the amount of TG in a typical meal does not limit the bioaccessibility of carotenoids.  相似文献   

5.
The absorption of some carotenoids has been reported to be decreased by coingestion of relatively high concentrations of other carotenoids. It is unclear if such interactions occur among carotenoids during the digestion of plant foods. Current varieties of maize contain limited amounts of the pro-vitamin A (pro-VA) carotenoids beta-carotene (BC) and beta-cryptoxanthin (BCX) and relatively higher levels of their oxygenated metabolites lutein (LUT) and zeaxanthin (ZEA). Here, we examined if LUT and ZEA attenuate the bioaccessibility of pro-VA carotenoids at amounts and ratios present in maize. BC incorporation into bile salt mixed micelles during chemical preparation and during simulated small intestinal digestion of carotenoid-enriched oil was slightly increased when the concentration of LUT was sixfold or more greater than BC. Likewise, the efficiency of BC micellarization was slightly increased during simulated small intestinal digestion of white maize porridge supplemented with oil containing ninefold molar excess of LUT to BC. Mean efficiencies of micellarization of BC, BCX, LUT, and ZEA were 16.7, 27.7, 30.3, and 27.9%, respectively, and independent of the ratio of LUT plus ZEA to pro-VA carotenoids during simulated digestion of maize porridge prepared from flours containing 0.4-11.3 microg/g endogenous pro-VA carotenoids. LUT attenuated uptake of BC by differentiated cultures of Caco-2 human cells from medium-containing micelles in a dose-dependent manner with inhibition reaching 35% when the molar ratio of LUT to BC was 13. Taken together, these results suggest that the bioaccessibility of pro-VA carotenoids in maize is likely to be minimally affected by the relative levels of xanthophylls lacking pro-VA activity present in cultivars of maize.  相似文献   

6.
Among various factors influencing β-carotene (Bc) bioavailability, information on interactions between carotenoids or other micronutrients such as flavonoids during a meal that contains different plant-derived foods is quite limited. Because orange-fleshed sweet potato (OFSP) is an important Bc-rich staple food, a source of vitamin A in developing countries, this study focused on the effect of citrus fruit juice carotenoids and flavonoids on Bc bioaccessibility from OFSP. In vitro digestion coupled with the Caco-2 cell culture model was used to evaluate the bioaccessibility and cellular uptake of Bc from OFSP in the presence of pink grapefruit (pGF) or white grapefruit (wGF) juices. The addition of grapefruit juices significantly decreased the bioaccessibility, by up to 30%, but not the cellular uptake of Bc from boiled OFSP. Lycopene, but more probably naringin, present in grapefruit juices was suspected to be responsible for the inhibitory effect of the citrus juices on Bc bioaccessibility. This inhibition was apparently due in part to competition for incorporation between Bc and naringin into mixed micelles during in vitro digestion. In contrast, Bc uptake from dietary micelles was not impaired by naringin.  相似文献   

7.
Phytosterols have been shown to reduce cholesterol absorption in humans. Supplementing phytosterols in fat-free formulations, however, has yielded controversial results. In the present study, we investigated the effect of supplementing test meals with different fat-free phytosterol products on cholesterol incorporation into mixed micelles during simulated digestion and accumulation of micellar cholesterol by Caco-2 cells: control orange juice (OJ), orange juice supplemented with either multivitamin/multimineral tablets (MVT), multivitamin/multimineral tablets containing phytosterols (MVT+P), and phytosterol powder (PP). These combinations were added to Ensure-based test meals and spiked with cholesterol of natural isotopic composition or 13C2-cholesterol to differentiate external from endogenous cholesterol. After simulated gastric/small intestinal digestion, micelle fractions were analyzed for cholesterol enzymatically (n = 6-20/product) and by high-performance liquid chromatography-tandem mass spectrometry (n = 12/product) and added to Caco-2 cells to determine the accumulation of 13C2-cholesterol (n = 10-24/product). As compared to OJ, PP and MVT+P significantly decreased cholesterol micellarization (determined enzymatically) by 70 +/- 39 (mean +/- SD) and 70 +/- 39%, respectively (P < 0.001, Bonferroni). The stable isotope experiments revealed that both PP and MVT+P reduced cholesterol micellarization [by 25 +/- 12 (P = 0.055) and 21 +/- 8% (P = 0.020), respectively, Fisher's protected LSD test] and Caco-2 cell accumulation (by 28 +/- 8 and 10 +/- 8%, respectively; P < 0.010, Bonferroni). OJ+P did not inhibit micellarization or accumulation of cholesterol by Caco-2 cells. This study shows that fat-free phytosterol-containing products can significantly inhibit cholesterol micellarization and Caco-2 cell bioaccessibility, albeit to different extents depending on individual formulations. This is most likely explained by inhibition of cholesterol micellarization.  相似文献   

8.
Pulp from "slightly ripe", "moderately ripe", or "fully ripe" mangoes was digested in vitro in the absence and presence of processed chicken as a source of exogenous fat and protein to examine the impact of stage of ripening of mango on micellarization during digestion and intestinal cell uptake (i.e., bioaccessibility) of beta-carotene. The quantity of beta-carotene transferred to the micelle fraction during simulated digestion significantly increased as the fruit ripened and when chicken was mixed with mango before digestion. Qualitative and quantitative changes that occur in pectin from mango pulp during the ripening process influenced the efficiency of micellarization of beta-carotene. Finally, the uptake of beta-carotene in micelles generated during simulated digestion by Caco-2 human intestinal cells confirmed the bioaccessibility of the provitamin A carotenoid in mango.  相似文献   

9.
Epidemiological studies have consistently demonstrated that there is an association between carotenoid-rich food intakes with a low incidence in chronic diseases. Nevertheless, there is not an association between the intake of total dietary carotenoids and chronic health incidence in the European population, probably because of different carotenoid food sources and bioavailability. The objective of this study was to evaluate the small and large intestine bioaccessibilities of major dietary carotenoids from fruits and vegetables in a common diet. A bioaccessibility model that includes enzymatic digestion and in vitro colonic fermentation was employed. Lutein presented greater small intestine bioaccessibility (79%) than beta-carotene (27%) or lycopene (40%). With regard to large intestine bioaccessibility, similar amounts of lycopene and beta-carotene were released from the food matrix (57%), whereas small amounts of lutein (17%) were released. These results suggest that 91% of the beta-carotene, lutein, and lycopene contained in fruits and vegetables is available in the gut during the entire digestion process. Colonic fermentation is shown to be important for carotenoid availability in the gut.  相似文献   

10.
The digestive stability, efficiency of micellarization, and cellular accumulation of the chlorophyll pigments of different preparations of pea were investigated, using an in vitro digestion procedure coupled with human intestinal Caco-2 cells. Fresh pea (FP), cooked fresh pea (CFP), frozen pea (FZP), cooked frozen pea (CFZP), and canned pea (CP) were subjected to simulated digestion. Although after digestion the pigment profile was modified for all samples, except CP, allomerization reactions and greater destruction of chlorophylls were observed in only FP, which should be due to enzymes in FP that were denaturalized in the rest of the test foods. A pigment extract of CFZP was also subjected to in vitro digestion, showing a positive effect of the food matrix on the pigment digestive stability. The transfer of the chlorophyll pigments from the digesta to the micellar fraction was significantly more efficient in CFZP (57%, p < 0.0001), not significantly ( p > 0.05) different between CFP, FZP, and CP (28-35%), and lowest in FP (20%). Pheophorbide a stood out as the most-micellarized chlorophyll derivative in all of the samples, reaching levels of up to 98%. Incubation of Caco-2 cells with micellar fractions at the same concentration prepared from each test food showed that pigment absorption was considerably lower ( p < 0.006) in cells incubated with FP, whereas there were no differences among the rest of the preparations. Therefore, factors associated with the food matrix could inhibit or mediate the chlorophyll pigment absorption. These results demonstrated that the industrial preservation processes of peafreezing and canningas well as the cooking have a positive effect on the bioaccessibility and bioavailability of the chlorophyll pigments with respect to the FP sample, emphasizing CFZP with greater bioaccesibilty degree.  相似文献   

11.
Vitamin E and carotenoids are fat-soluble microconstituents that may exert beneficial effects in humans, including protection against cancer, cardiovascular diseases, and age-related eye diseases. Their bioavailability is influenced by various factors including food matrix, formulation, and food processing. Since human studies are labor-intensive, time-consuming, and expensive, the in vitro model used in this study is increasingly being used to estimate bioaccessibility of these microconstituents. However, the ability of this model to predict bioavailability in a healthy human population has not yet been verified. The first aim of this study was to validate this model by comparing model-derived bioaccessibility data with (i) human-derived bioaccessibility data and (ii) published mean bioavailability data reported in studies involving healthy humans. The second aim was to use it to measure alpha- and gamma-tocopherol, beta-carotene, lycopene, and lutein bioaccessibility from their main dietary sources. Bioaccessibility as assessed with the in vitro model was well correlated with human-derived bioaccessibility values (r = 0.90, p < 0.05), as well as relative mean bioavailability values reported in healthy human groups (r = 0.98, p < 0.001). The bioaccessibility of carotenoids and vitamin E from the main dietary sources was highly variable, ranging from less than 0.1% (beta-carotene from raw tomato) to almost 100% (alpha-tocopherol from white bread). Bioaccessibility was dependent on (i) microconstituent species (lutein > beta-carotene and alpha-carotene > lycopene and alpha-tocopherol generally > gamma-tocopherol), (ii) food matrix, and (iii) food processing.  相似文献   

12.
This study highlights the changes in lycopene and β-carotene retention in tomato juice subjected to combined pressure-temperature (P-T) treatments ((high-pressure processing (HPP; 500-700 MPa, 30 °C), pressure-assisted thermal processing (PATP; 500-700 MPa, 100 °C), and thermal processing (TP; 0.1 MPa, 100 °C)) for up to 10 min. Processing treatments utilized raw (untreated) and hot break (~93 °C, 60 s) tomato juice as controls. Changes in bioaccessibility of these carotenoids as a result of processing were also studied. Microscopy was applied to better understand processing-induced microscopic changes. TP did not alter the lycopene content of the tomato juice. HPP and PATP treatments resulted in up to 12% increases in lycopene extractability. all-trans-β-Carotene showed significant degradation (p < 0.05) as a function of pressure, temperature, and time. Its retention in processed samples varied between 60 and 95% of levels originally present in the control. Regardless of the processing conditions used, <0.5% lycopene appeared in the form of micelles (<0.5% bioaccessibility). Electron microscopy images showed more prominent lycopene crystals in HPP and PATP processed juice than in thermally processed juice. However, lycopene crystals did appear to be enveloped regardless of the processing conditions used. The processed juice (HPP, PATP, TP) showed significantly higher (p < 0.05) all-trans-β-carotene micellarization as compared to the raw unprocessed juice (control). Interestingly, hot break juice subjected to combined P-T treatments showed 15-30% more all-trans-β-carotene micellarization than the raw juice subjected to combined P-T treatments. This study demonstrates that combined pressure-heat treatments increase lycopene extractability. However, the in vitro bioaccessibility of carotenoids was not significantly different among the treatments (TP, PATP, HPP) investigated.  相似文献   

13.
Chlorella is a nutrient-rich microalga that contains protein, lipid, minerals, vitamins, and high levels of lutein. This study evaluated the bioavailability of lutein from Chlorella vulgaris using a coupled in vitro digestion and human intestinal Caco-2 cell model. Lutein bioaccessibility was low, and approximately 75% of total C. vulgaris lutein was not micellized during the digestion process but remained in the insoluble digestate. Microfluidization improved lutein micellization efficiency during C. vulgaris digestion. C. vulgaris was microfluidized at a pressure exceeding 10000 psi, and the cell surface disruption was visualized by scanning electron microscopy. The mean C. vulgaris particle size was reduced from 3.56 to 0.35 μm with the microfluidization treatment. C. vulgaris microfluidization at 20000 psi was three times more efficient for aqueous lutein micelles production as compared with untreated C. vulgaris, and the final lutein content accumulated by intestinal Caco-2 cells was also higher with microfluidization. C. vulgaris lutein stability was not affected by microfluidization. These results indicate that microfluidization may be useful for improving lutein bioaccessibility from C. vulgaris during food processing.  相似文献   

14.
The impact of simulated digestion on the stability and bioaccessibility of isoflavonoids from soy bread was examined using simulated oral, gastric, and small intestinal digestion. The aqueous (bioaccessible) fraction was isolated from digesta by centrifugation, and samples were analyzed by high-performance liquid chromatography (HPLC). Isoflavonoids were stable during simulated digestion. Partitioning of aglycones, acetylgenistin, and malonylgenistin into the aqueous fraction was significantly (P < 0.01) affected by the concentration of bile present during small intestinal digestion. Omission of bile resulted in nondetectable genistein and <40% of total daidzein, glycitein, and acetylgenistin in the aqueous fraction of digesta. Partitioning of these compounds into the aqueous fraction was increased by physiological concentrations of bile extract. These results suggest that micellarization is required for optimal bioaccessibility of isoflavonoid aglycones. We propose that the bioavailability of isoflavones from foods containing fat and protein may exceed that of supplements due to enhanced bile secretion.  相似文献   

15.
Epidemiological studies have shown that consumption of carotenoid-rich fruits and vegetables is associated with a reduced risk of developing chronic diseases. beta-Carotene, alpha-carotene, and beta-cryptoxanthin are precursors of vitamin A, a nutrient essential for human health. However, little is known about the bioavailability of carotenoids from whole foods. This study characterized the intestinal uptake performance of carotenoids using monolayers of differentiated Caco-2 human intestinal cells and mimicked human digestion to assess carotenoid absorption from carrots and corn. Results showed that Caco-2 cellular uptake of beta-carotene and zeaxanthin was higher than that of lutein. Uptake performances of pure carotenoids and carotenoids from whole foods by Caco-2 cells were both curvilinear, reaching saturated levels after 4 h of incubation. The time kinetics and dose response of carotenoid uptake presented a similar pattern in Caco-2 cells after plating for 2 and 14 days. Furthermore, the applicability of this new model was verified with whole grain corn, showing that cooked corn grain significantly enhanced carotenoid bioavailability. These results support the feasibility of the in vitro digestion cell model for assessing carotenoid absorption from whole foods as a suitable and cost-effective physiological alternative to current methodologies.  相似文献   

16.
果胶已经被证实可以影响脂类的消化,脂溶性的类胡萝卜素在消化阶段需要被脂滴包裹才能进入小肠形成胶束,因此果胶对类胡萝卜素的消化利用也会存在潜在影响。该文综述了近年来果胶对脂类和类胡萝卜素消化利用影响研究进展,主要分为果胶对消化液黏度的影响、对消化酶的影响、与钙离子的相互作用、与胆盐的结合作用以及对脂滴的包裹作用这5个方面。该文为后续分析如何提高果蔬中类胡萝卜素生物利用度提供理论依据。  相似文献   

17.
People in the rural areas of Mexico consume corn tortillas and beans as basic components of their diet. However, little is known about the nutritionally relevant features of starch present in such combined meals. The objective of the present study was to evaluate the in vitro bioavailability of starch in tortilla-bean mixtures stored at 4 degrees C for different times, as compared to that of corn tortilla and boiled black beans kept separately under the same conditions. Available starch (AS), resistant starch (RS), and retrograded resistant starch (RRS) contents were measured. The in vitro starch hydrolysis indices (HI) of freshly cooked and cold-stored samples were evaluated using a chewing/dialysis digestion protocol. HIs were used to predict glycemic indices (pGI) of the samples. AS in tortilla and beans decreased between 3 and 6% after 48-72 h, whereas values in the mixture fell by 3% after 48 h, with no further change by 72 h. Only minor rises in RS contents (1.5-1.6%) were recorded for tortilla and beans after 72 h of storage, and a lower increase (0.4%) was recorded in the mixture. Judging from RRS values, an important proportion of RS is due to starch retrogradation. The HI and pGI were higher in tortilla than in bean and the mixture. Hydrolysis rate values decreased in the stored samples, a pattern that corresponded with RS and RRS changes. The slow digestion features of common beans are largely retained by the legume-tortilla combination. Data support the perceived health beneficial properties of starch in this traditional cereal-legume food.  相似文献   

18.
Consumption of plant food rich meals, such as feijoada, a traditional meal in Brazil, is associated with the reduction of chronic disease. The objectives of this study were to determine phytochemical content and antioxidant activity by chemical and cellular antioxidant assays (CAA) of feijoada with or without in vitro digestion. Feijoada showed no difference in phenolics and flavonoids after digestion. Bound and residue contributions to total phenolics were 20.9% and 32.2%, respectively, suggesting that phenolics reach the colon after intake. Flavonoids in residue and bound fractions represented 50% of total flavonoids. Antioxidant activity of feijoada without digestion was higher than that with digestion; however, it showed lower antiproliferative activity and CAA. Feijoada with in vitro digestion also yielded phenolics with higher CAA. Analyses of whole meals should be used to evaluate phytochemicals present in food mixtures consumed, especially with digestion models coupled with CAA resulting in information similar to those in physiological conditions.  相似文献   

19.
Although numerous studies have demonstrated the health benefits of chlorophyll derivatives, information regarding the digestion, absorption, and metabolism of these phytochemicals is quite limited. To better understand the digestion of these pigments, green vegetables including fresh spinach puree (FSP), heat- and acid-treated spinach puree (HASP), and ZnCl(2)-treated spinach puree (ZnSP) were subjected to an in vitro digestion method which simulates both the gastric and small intestinal phases of the process. Native chlorophylls were converted to Mg-free pheophytin derivatives during digestion. Conversely, Zn-pheophytins were completely stable during the digestive process. Transfer of lipophilic chlorophyll derivatives, as well as the carotenoids lutein and beta-carotene, into the aqueous micellar fraction from the food matrix was quantified. Micellarization of total chlorophyll derivatives differed significantly (p < 0.05) for FSP (37.6%), HASP (17.2%), and ZnSP (8.7%). Micellarization of chlorophyll a derivatives was determined to be significantly more efficient than chlorophyll b derivatives in FSP and HASP (p < 0.01), but not in ZnSP (p > 0.05). Intestinal cell uptake of micellarized pigments was investigated using HTB-37 (parent) and clonal TC7 lines of human Caco-2 cells. Medium containing the pigment-enriched fraction generated during digestion was added to the apical surface of fully differentiated monolayers for 4 h. Pigments were then extracted from cells and analyzed by C18 HPLC with photodiode array detection. Both Caco-2 HTB-37 and TC7 clone cells accumulated 20-40% and 5-10% of micellarized carotenoid and chlorophyll derivatives, respectively. These results are the first to demonstrate uptake of chlorophyll derivatives by human intestinal cells and to support the potential importance of chlorophylls as health-promoting phytochemicals.  相似文献   

20.
The solubility and bioavailability of cadmium (Cd) in infant foods, three cereal- and milk-based diets and two ready-to-use baby dishes, were studied after in vitro digestion and by using human intestinal Caco-2 cells. The solubility of Cd after in vitro digestion varied between diets; liver casserole had the highest solubility and was lower after infant as compared to adult digestion conditions. Generally, more Cd was soluble in infant intestinal than gastric juice in contrast to the results from the adult digestion. Caco-2 cells were incubated with supernatants of infant digests that had been equilibrated with (109)Cd during the in vitro digestion procedure, and cellular uptake and transport of (109)Cd were measured after 180 min. Statistically significant differences in both uptake and transport of Cd were detected between some of the diets and a control solution containing only digestive enzymes and (109)CdCl(2). Uptake of soluble Cd in the cells varied between diets from 4 to 6%, and the transport over the monolayers was 1-2% of the dose. We conclude that age specific digestion conditions as well as composition of diets affect both solubility and bioavailability of Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号