首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究旨在探讨表皮生长因子(EGF)调控猪小肠上皮细胞IPEC-J2中钠依赖Ⅱb型磷转运蛋白(NaPi-Ⅱb)表达的分子机制。试验分别用EGF受体酪氨酸激酶抑制剂(tyrphostin AG1478)、蛋白激酶A(PKA)抑制剂(H89)、蛋白激酶C(PKC)抑制剂(k4393)、p38抑制剂(SB203580)、细胞外信号调节激酶(ERK)抑制剂(PD98059)、c-Jun氨基末端激酶(JNK)抑制剂(anisomycin)与EGF共同处理IPEC-J2细胞,利用Western blot检测相关通路蛋白及目的蛋白(NaPi-Ⅱb)的表达水平。结果显示:相较于对照组,EGF处理后NaPi-Ⅱb表达水平显著降低(P0.05);相较于无抑制剂组,EGF受体、PKA、PKC、丝裂原活化蛋白激酶(MAPK)/p38、MAPK/ERK1/2、MAPK/JNK的特异性抑制剂处理IPEC-J2后,NaPi-Ⅱb表达水平显著提高(P0.05),其中添加MAPK/ERK1/2特异性抑制剂显著降低了MAPK/ERK1/2在Tyr204位点的磷酸化水平(P0.05),添加MAPK/JNK的特异性抑制剂显著降低了MAPK/JNK1/2/3在Thr183和Tyr185位点的磷酸化水平(P0.05),说明该2组抑制剂对该通路的抑制作用是通过降低上述位点的磷酸化水平实现的。本研究结果表明EGF受体、PKA、PKC、p38、ERK和JNK均介导了EGF调控IPEC-J2细胞中NaPi-Ⅱb的表达。  相似文献   

2.
Pseudorabies virus (PRV) infection leads to severe inflammatory responses and tissue damage, and many natural herbs exhibit protective effects against viral infection by modulating the inflammatory response. An ethyl acetate fraction of flavonoids from Polygonum hydropiper L. (FEA) was prepared through ethanol extraction and ethyl acetate fractional extraction. An inflammatory model was established in RAW264.7 cells with PRV infection to evaluate the anti-inflammatory activity of FEA by measuring cell viability, nitric oxide (NO) production, reactive oxygen species (ROS) release, and mRNA expression of inflammatory factors, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Its functional mechanism was investigated by analyzing the phosphorylation and nuclear translocation of key proteins in the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Our findings indicate that PRV induced inflammatory responses in RAW264.7 cells, and the responses were similar to that in lipopolysaccharide (LPS)-stimulated cells. FEA significantly suppressed NO synthesis and down-regulated both expression and secretion of COX-2, iNOS, and inflammatory cytokines (P<0.05 or P<0.01). FEA also reduced NF-κB p65 translocation into the nucleus and decreased MAPK phosphorylation, indicating that the NF-κB/MAPK signaling pathway may be closely related to the inflammatory response during viral infection. The findings suggested the potential pharmaceutical application of FEA as a natural product that can treat viral infections due to its ability to mitigate inflammatory responses.  相似文献   

3.
Cytokines and nitric oxide (NO) are potential mediators of luteal development and maintenance, angiogenesis, and blood flow. The aim of this study was to evaluate (i) the localization and protein expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) in equine corpora lutea (CL) throughout the luteal phase and (ii) the effect of a nitric oxide donor (spermine NONOate, NONOate) on the production of progesterone (P4) and prostaglandin (PG) E(2) and factor(s) that stimulate endothelial cell proliferation using equine luteal explants. Luteal tissue was classified as corpora hemorrhagica (CH; n = 5), midluteal phase CL (mid-CL; n = 5) or late luteal phase CL (late CL; n = 5). Both eNOS and iNOS were localized in large luteal cells and endothelial cells throughout the luteal phase. The expression of eNOS was the lowest in mid-CL (P < 0.05) and the highest in late CL (P < 0.05). However, no change was found for iNOS expression. Luteal explants were cultured with no hormone added or with NONOate (10(-5) M), tumor necrosis factor-α (TNFα; 10 ng/mL; positive control), or equine LH (100 ng/mL; positive control). Conditioned media by luteal tissues were assayed for P4 and PGE(2) and for their ability to stimulate proliferation of bovine aortic endothelial cells (BAEC). All treatments stimulated release of P4 in CH, but not in mid-CL. TNFα and NONOate treatments also increased PGE(2) levels and BAEC proliferation in CH (P < 0.05). However, in mid-CL, no changes were observed, regardless of the treatments used. These data suggest that NO and TNFα stimulate equine CH secretory functions and the production of angiogenic factor(s). Furthermore, in mares, NO may play a role in CL growth during early luteal development, when vascular development is more intense.  相似文献   

4.
Tumor necrosis factor (TNF)-alpha is a proinflammatory cytokine considered to play an important role in muscle catabolism, but little is known about the mechanisms of its action. The aim of the present study was therefore to examine the effect of TNF-alpha pretreatment on glucose uptake and protein synthesis as well as the cellular content and phosphorylation of protein kinase B (PKB), p70S6k, Mitogen Activated Protein (MAP) kinase and p90rsk in mouse C2C12 myotubes stimulated with insulin. To determine whether interleukin (IL)-1beta might be involved in the catabolic action of TNF-alpha, the effects of IL-1beta were also tested. Experiments were performed on mouse C2C12 myoblasts subjected to differentiation in the presence of increasing concentrations of TNF-alpha (0.1-100 ng/ml) or IL-1 (5-50 ng/ml) for 5 or 6 days. Insulin (100 nmol/l) markedly stimulated glucose uptake in C2C12 myotubes (202.6% of control). This effect was profoundly attenuated by pretreatment with TNF-alpha at a concentration of 1 ng/ml (122.2% of control) and completely abolished by higher cytokine concentrations. Pretreatment of cells with TNF-alpha at a concentration of 1 ng/ml was also effective in diminishing the effect of insulin on protein synthesis, whereas higher cytokine concentrations prevented hormonal stimulation of protein synthesis in C2C12 myotubes. Pretreatment with TNF-alpha caused a significant decrease in PKB protein content. Insulin-mediated activation of protein kinase B was significantly diminished in cells differentiated in the presence of TNF-alpha. Treatment of C2C12 cells with insulin led to the gel mobility retardation of p70S6k indicating its phosphorylation and activation. In cells differentiated in the presence of TNF-alpha an approximately 2-fold decrease of insulin-mediated p70S6k phosphorylation was noted. Six-day differentiation of myogenic cells in the presence of TNF-alpha did not affect the protein content of p42MAPK, p44MAPK, p90rsk and phosphorylation of p42MAPK. Neither glucose uptake nor protein synthesis stimulated by insulin were affected significantly by pretreatment with IL-beta. Preincubation of myogenic cells with IL-1beta did not modify either the protein content of PKB and p70S6k or the insulin-stimulated phosphorylation of these kinases. In conclusion: i) high concentrations of TNF-alpha, but not IL-beta, present in the extracellular environment during myoblast differentiation prevent the stimulatory action of insulin on glucose uptake and protein synthesis; ii) insulin resistance induced by TNF-alpha in C2C12 myogenic cells could be associated with the decreased insulin-mediated phosphorylation of PKB and p70s6k, but not with the basal phosphorylation of p42MAPK.  相似文献   

5.
Vascular thrombosis and tissue infarction is a principal lesion in Haemophilus somnus septicemia known also as thrombotic meningoencephalitis. This study was undertaken to examine whether tumor necrosis factor-alpha (TNF-alpha) can influence the adherence of H. somnus to cultured bovine aortic endothelial cells (BAEC). Confluent BAEC were exposed to 0-100 nM of human recombinant TNF-alpha for 12-48 h. Suspensions of different strains of H. somnus (approximately 1.5-3 x 10(8) labelled with [methyl-3H]-thymidine, were added to BAEC and incubated for 1.5 h. Initial studies with one pathogenic (P) strain and one non-pathogenic (NP) strain revealed that both strains adhered to normal endothelial cells but minimally to subendothelial matrix remaining after removal of BAEC. Adherence to BAEC was reduced by an excess of unlabelled H. somnus of the same strain. Adherence was enhanced for both strains by exposure of BAEC to TNF-alpha in a manner that increased with TNF-alpha concentration and with duration of exposure to TNF-alpha prior to addition of bacteria. A survey of adherence of six live P strains and six NP strains demonstrated considerable variation but no difference in adherence between P and NP strains to normal or to TNF-alpha-stimulated BAEC. However, TNF-alpha consistently increased adhesion of each strain to BAEC. Both P and NP strains caused more severe cytotoxic changes in TNF-alpha-treated BAEC. Tumor necrosis factor-alpha also increased adhesion of formalin-killed bacteria of P and NP strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The contribution of the mitogen-activated protein kinase (MAPK) pathway to the relaxation induced by tamoxifen, a synthetic non-steroidal anti-estrogen, was examined in rat vascular smooth muscle. Tamoxifen (0.1-300 microM) inhibited the contraction induced by endothelin-1 (ET-1, 3 nM) in aortic smooth muscle in a concentration-dependent manner. The inhibitory effect of tamoxifen was not attenuated by 10 microM ICI 182,780, a selective antagonist of estrogen receptors. In the Ca(2+) channel inhibitor verapamil (1 microM)-pretreated strips, tamoxifen also inhibited the contraction induced by ET-1. Both PD098059 and SB203580, inhibitors of MAPK/extracellular signal-regulated kinase (ERK) kinase and p38 MAPK, respectively, inhibited ET-1-induced contraction in aortic smooth muscle. In Western blot analysis with anti-phosphorylated MAPK antibodies, ET-1 (3 nM) enhanced activities of both ERK1/2 and p38 MAPK in aortic muscle strips, which were not attenuated by the treatment with 4 mM EGTA. Tamoxifen (100 microM) inhibited the activities of ERK1/2 and p38 MAPK induced by ET-1 without significant changes in the expression of these kinases. These results suggest that tamoxifen induces relaxation of rat vascular smooth muscle, and that this is, at least in part, mediated by the inhibition of the Ca(2+)-independent MAPK pathway.  相似文献   

8.
In several transformed cell lines, the growth factors IGF-I and epidermal growth factor (EGF) activate second messenger systems that cause the phosphorylation of the estrogen receptor (ER). One kinase catalysing receptor phosphorylation is mitogen activated protein (MAP) kinase, and the result of phosphorylation is an increase in receptor transactivation function. EGF and IGF-I, secreted locally and systemically, are involved in uterine-conceptus interactions in early pregnancy, and therefore it is of interest to determine whether these growth factors affect ER function in the uterus. An estrogen response element, chloramphenicol acetyl transferase reporter gene construct (CATERE) was transfected into bovine endometrial epithelial and stromal cells in vitro, and CAT measured during transient expression. Growth factors were added at various times following transfection, and MAP kinase phosphorylation was monitored by western blotting of p42 and p44. The MEK inhibitor U 0126 was used to determine whether the effect of IGF-I on CATERE expression was mediated through MAP kinase, and the anti-estrogen ICI 182780 was used to identify effects involving the ER. In stromal cells, reporter gene activity was increased in a dose dependent manner by IGF-I or hEGF in the presence or absence of estradiol-17beta. In the absence of estradiol the effect of IGF-I was not inhibited by ICI 182780. The effect of IGF-I occurred within an hour, before any detectable increase in cell proliferation, and the activation of CAT expression in response to IGF-I or EGF was blocked by U 0126. In contrast to their effects in stromal cells, neither IGF-I nor EGF affected CAT expression in bovine endometrial epithelial cells. Measurement of phosphorylated MAP kinases p42/p44 by western blotting showed that EGF but not IGF-I activated MAP kinase phosphorylation in both epithelial and stromal cells. In stromal cells, the fact that U 0126 blocked the CAT responses to IGF-I and EGF indicates the involvement of a MAP kinase. But since IGF-I did not activate p42/p44, a different MAP kinase, not detected by the antibody used here, is implicated. As the response was not blocked by ICI 182780, we conclude this effect is independent of ER activation. Therefore in bovine uterine cells in culture effects on MAP kinases p42/p44 can be dissociated from those on ERE-dependent gene expression, and reporter gene expression may be independent of ER activation.  相似文献   

9.
The purpose of the present study was to investigate potential changes in expression and activation of Ser/Thr protein kinases as well as in the level of insulin-like growth factor-binding proteins (IGFBPs) in skeletal muscle of streptozotocin (STZ)-diabetic mice. We have examined the basal and insulin-mediated phosphorylation of protein kinase B (PKB), protein kinase Czeta (PKCzeta), p70(S6k), mitogen-activated protein kinase (MAPK)/p90(rsk) pathway and the expression of IGFBP-3, -4, and -5 in mice selected for body weight gain (line C) and reduction (line L). Apart from IGFBP-3 level, which was higher in C line, the diabetes-associated changes in signaling components examined in present work were similar in both lines of mice. The expression of PKB in skeletal muscle was similar in control and diabetic mice. Insulin increased the Ser473 phosphorylation of PKB in both experimental groups however, in diabetic mice the insulin-dependent PKB phosphorylation was more evident in comparison to control group. Neither protein level nor insulin-stimulated p70(S6k) activation were modified by STZ-diabetes. Basal PKC phosphorylation was augmented in muscle of diabetic mice and it was not increased following insulin injection. No apparent differences in levels of p42(MAPK), p44(MAPK) and p90(rsk) protein in gastrocnemius muscles between control and STZ-treated mice were observed. Basal phosphorylation of p90(rsk) in diabetic mice was markedly elevated in comparison to the control. In muscle of C-line mice, insulin stimulated the p90(rsk) activity to the same extent in both experimental groups (+22% over appropriate basal value). Insulin-mediated stimulation of p90(rsk) in muscle of L-line mice amounted to +26% and +14%, for control and diabetic mice, respectively. Protein level of IGFBP-3 in muscle of diabetic C-line mice was augmented by approx. 28% when compared to the control, whereas the expression of IGFBP-4 and -5 was not modified by STZ-diabetes. In conclusion: diabetes-associated changes in the insulin signaling in skeletal muscle involve: 1) enhanced insulin-dependent phosphorylation of PKB; 2) increased basal phosphorylation of PKC and its resistance to stimulatory action of insulin; 3) increased basal phopshorylation of p90(rsk), and 4) augmented IGFBP-3 protein level, which can potentially contribute to disruption of anabolic signals in this tissue.  相似文献   

10.
Endothelin (ET), derived from the endothelium of blood vessels, is a potent vasoactive peptide. Although it has been reported to be involved in cardiovascular diseases, such as hypertension, the mechanism by which ET evokes vasoconstriction is still unclear. On the other hand, p42/p44 mitogen-activated protein kinase (MAPK) and p38 MAPK are activated by a variety of growth factors and cellular stresses, respectively. However, the role of p42/p44 MAPK and p38 MAPK on the ET-1-induced vasoconstriction is not fully understood. This study was undertaken to determine whether p42/p44 MAPK and p38 MAPK participate in the regulation of vascular smooth muscle contraction by ET-1. The isometric vasoconstriction and intracellular Ca(2+) ([Ca(2+)](i)) were simultaneously measured using CAF-100. Phosphorylation of myosin light chain (MLC) and p42/p44 MAPK, p38 MAPK were determined by Western blots. In rat thoracic aorta, ET-1 induced a sustained contraction. In contrast, [Ca(2+)](i) was decreased with time. Both PD98059, an inhibitor of p42/p44 MAPK, and SB203580, an inhibitor of p38 MAPK, partially attenuated ET-1-induced contractions in concentration-dependent manners. ET-1 increased phosphorylation of both p42/p44 MAPK and p38 MAPK, and PD98059 and SB203580 completely decreased phosphorylation of p42/p44 MAPK and p38 MAPK in response to ET-1 stimulation, respectively. On the other hand, PD98059 and SB203580 did not affect MLC phosphorylation in response to ET-1 stimulation. These results indicate that p38 MAPK, as well as p42/p44 MAPK, may partially regulate the ET-1-induced contraction through a MLC phosphorylation-independent pathway.  相似文献   

11.
A dense network of capillaries irrigates the corpus luteum (CL) allowing an intricate cross talk between luteal steroiodgenic and endothelial cell (EC) types. Indeed, luteal endothelial cells (LEC) play pivotal roles throughout the entire CL life-span. Microvascular endothelial cells are locally specialized to accommodate the needs of individual tissues, therefore unraveling the characteristics of LEC is imperative in CL physiology. Numerous studies demonstrated that endothelium-derived endothelin-1 (ET-1) is upregulated by the luteolytic hormone-prostaglandin F2alpha (PGF2alpha) and functions as an important element of the luteolytic cascade. To have a better insight on its synthesis and action, members of ET system (ET-1, ET converting enzyme -ECE-1 and ET(A) and ET(B) receptors) were quantified in LEC. The characteristic phenotype of these cells, identified by high ET-1 receptor expression (both ET(A), ET(B)) and low ET-1 and ECE-1 levels, was gradually lost during culture suggesting that luteal microenvironment sustains the selective phenotype of its resident endothelial cells. Proper vascularization and endothelial cell activity per se are essential for normal CL function. Therefore, factors affecting vascular growth are expected to play major role in the regulation of luteal function. Concomitantly with the angiogenic process, luteal PGF2alpha and its receptors (PGFR) are induced and maintained during most of the CL life-span, suggesting a possible role of PGF2alpha in LEC proliferation and function. Dispersed LEC expressed PGFR and incubation with the prostaglandin stimulated mitogen-activated protein kinase (MAPK) signaling cascade. PGF2alpha activated p42/44 MAPK phosphorylation also in long-term cultured LEC. In this cell type, PGF2alpha increased cell number, 3H-Thymidine incorporation and cell survival. Additionally, PGF2alpha rapidly and transiently stimulated the expression of immediate-early response genes, i.e. c-fos and c-jun mRNA, further suggesting a mitogenic effect for this prostaglandin in LEC. These data imply that PGF2alpha may assume different and perhaps opposing roles depending on luteal microenvironment.  相似文献   

12.
13.
In mammals, insulin regulates S6K1, a key enzyme involved in the control of protein synthesis, via the well-documented phosphoinositide-3'kinase (PI3K) pathway. Conversely, S6K1 is activated by insulin in avian muscle despite the relative insulin insensitivity of the PI3K pathway in this tissue. Mitogen-activated protein kinase (MAPK) cascade is another insulin sensitive pathway. The aim of this study was to explore the potential involvement of the ERK1/2 MAPK pathway in the control of p70 S6 kinase (S6K1) in avian species. Firstly, we characterized ERK1/2 MAPK in various chicken tissues. ERK2 was the only isoform detected in avian species whatever the tissue studied. We also showed that ERK2 is activated in vivo by insulin in chicken muscle. The regulation and the role of ERK2 in insulin signaling were next investigated in chicken hepatoma cells (LMH) and primary myoblasts. Insulin stimulation led to ERK2 and S6K1 phosphorylation, and concomitantly increased kinase activity. U0126, an inhibitor of the ERK MAPK pathway, completely abolished insulin-induced S6K1 phosphorylation and activity in chicken myoblasts, whereas its effect was only partial in LMH cells. In conclusion, these results show that ERK1/2 MAPK is involved in the control of S6K1 by insulin in chicken cells, particularly myoblasts.  相似文献   

14.
Some male seasonal breeders are known to undergo testicular growth and regression throughout the year. The periodic and fast physiological development and regression processes, with simultaneous fast changes in blood flow, appears to be stimulated by angiogenic substances and inhibited by anti-angiogenic factors. The objective of this study was to evaluate the effect of season on microvascularization and production of angiogenic factors by testicular tissue, using the male cat as a model. Monthly, testes were collected post mortem from domestic stray cats, for histology and for tissue culture. Testis explants were cultured for 18h and conditioned media were tested for their ability to stimulate mitogenesis of bovine aortic endothelial cells (BAEC). Vascular endothelial growth factor (VEGF) was used as a positive control. Proliferative response of BAEC to samples was evaluated by determining the number of cells in each well using a Neubauer chamber. Vascular density was assessed by a computerized image analysis ('Scion Image, NIH, USA') based on the total histological area occupied by the vascular lumen. Percentage data subjected to arcsine transformation were analysed by one-way ANOVA and post-comparison tests. There was a significant increase in microvascular areas in November ( P  < 0.001), when compared to the remaining months (LSD test). All cat testicular tissue showed the capability to increase BAEC proliferation, when compared to negative controls, throughout the study. However, there was an increase in BAEC mitogenesis in February ( P  < 0.05) and November ( P  < 0.001), when compared to the other months. Our data show that cat testicular tissue from different periods of the year stimulates angiogenic factor(s). Furthermore, changes in angiogenesis may play a role on vascular growth and regression of the testes during the breeding and non-breeding season in the male cat.  相似文献   

15.
Neutrophil-derived MMP-9 activity is regulated more promptly and efficiently at the level of degranulation than at other levels of regulation. In human neutrophils, degranulation is one of the earliest responses to TNF-α stimulation, which involves protein kinase C and mitogen-activating protein kinase (MAPK) pathways. The level of MMP-9 in mammary secretion of cows increases drastically following milk-stasis, which is partially explained by increases of both neutrophil infiltration and neutrophil degranulation per se. Since MMP-9 represents one of the major remodeling capacities in the mammary gland of cows during early dry period, the current study attempted to explore the involved intracellular mechanisms in the up-regulated MMP-9 secretion. We repeatedly measured on the somatic cells of mammary secretion along the early dry period of cows the expression of TNF-α protein and the phosphorylation of p38 MAPK, ERK, and JNK. Also, cultures of bovine peripheral neutrophils were conducted to examine the mode of short-term MMP-9 secretion in response to TNF-α stimulation and the blocking effects of TNF-α antibody and inhibitors of MAPK pathways. Ex vivo measurements show that conventional cow milk has fully transformed into a neutrophil-abundant, lactoferrin-rich, and high-MMP-9 mammary secretion by d 7 in milk-stasis. No significant (P>0.05) change, however, was found in the expression of TNF-α or the phosphorylation extent of MAPK pathway intermediates on the somatic cells of mammary secretion during the first 3 weeks in milk-stasis. In vitro studies indicate linear increase of short-term MMP-9 release in response to TNF-α stimulation in dosages between 0.1 and 10 ng/ml. In the presence of preparations of d 7-dry secretion of cows, the short-term release of MMP-9 from bovine peripheral neutrophils was significantly (P<0.05) blocked by inhibitor of p38 MAPK but was significantly (P<0.05) promoted by ERK inhibitor while TNF-α antibody or JNK inhibitor exerted no effect. In conclusion, the current ex vivo measurements suggest no apparent association of TNF-α and MAPK pathway with long term intramammary accumulation of MMP-9 during the early dry period of cows, whereas cultures of bovine peripheral neutrophils under a simulated acute involution intramammary environment of cows suggest a role played by TNF-α and MAPK pathways in the short-term MMP-9 release via degranulation.  相似文献   

16.
硒对脂多糖诱导的奶牛乳腺上皮细胞氧化损伤的保护作用   总被引:1,自引:0,他引:1  
本试验旨在研究硒(Se)对脂多糖(LPS)诱导的奶牛乳腺上皮细胞(BMEC)氧化损伤的保护作用及其机制。将贴壁生长的第3代BMEC随机分为8组,每组6个重复,每个重复1个培养孔。对照(CON)组采用基础培养液,不添加Se和LPS,培养30h;LPS组和6个Se保护组在基础培养液中分别添加不同水平的Se(0、10、20、50、100、150和200nmol/L),培养24h后,加入1μg/mL LPS作为外源刺激作用6h。结果表明:1)与CON组相比,LPS组BMEC的相对增殖率显著下降(P0.05),谷胱甘肽过氧化物酶(GPx)、硫氧还蛋白还原酶(TrxR)、总超氧化物歧化酶(T-SOD)、过氧化氢酶(CAT)活性和总抗氧化能力(T-AOC)均显著下降(P0.05),GPx1和TrxR1的基因和蛋白表达量、硒蛋白P(SelP)含量也显著下调(P0.05);而LPS组的一氧化氮(NO)含量,诱导型一氧化氮合酶(iNOS)活性及其基因和蛋白表达量,炎症因子肿瘤坏死因子-α(TNF-α)、白介素-1(IL-1)和白介素-6(IL-6)含量及其基因表达量,活性氧(ROS)活性,丙二醛(MDA)含量均显著升高(P0.05),丝裂原活化蛋白激酶(MAPK)信号通路相关因子p38丝裂原活化蛋白激酶(p38 MAPK)、c-Jun氨基端激酶(JNK)、细胞外信号调节激酶1/2(ERK1/2)的基因表达量呈相似变化。2)与LPS组相比,Se保护组随Se添加水平的增加,相对增殖率,T-SOD、CAT、GPx、TrxR活性,T-AOC,GPx1、TrxR1基因和蛋白表达量均呈先升高后下降趋势;而NO含量,iNOS活性及其基因和蛋白表达量,炎症因子TNF-α、IL-1、IL-6含量及其基因表达量,MAPK信号通路相关因子ERK1/2、JNK、p38 MAPK的基因表达量,ROS活性,MDA含量呈先降低后升高的趋势;以20~100nmol/L Se保护效果较好,综合来看50nmol/L Se保护效果最好。结果提示,Se可提高BMEC的抗氧化功能,对LPS引起的细胞氧化损伤具有保护作用,其机制是Se增强TrxR活性从而抑制MAPK信号通路的激活,最终减少NO的大量释放,但过高水平的Se会对细胞造成损伤。培养液中20~100nmol/L Se的保护作用较好,尤其以50nmol/L Se效果最好。  相似文献   

17.
The corpus luteum (CL) undergoes regression by prostaglandin (PG)F(2alpha) from uterus and endothelin-1 (ET-1) plays an important role during luteolysis as a local mediator of PGF(2alpha) in the cow. Endothelial cells (EC) and luteal cells are main cell types making up the CL and their interactions are vital for CL function. We aimed to examine the relevance of interactions between EC and luteal cells on stimulation of genes which involved ET-1 synthesis by PGF(2alpha). We further focused the impact of maturity of luteal cells on the stimulation of the genes. To make a microenvironment which resembles the CL, we used bovine aortic endothelial cells (BAEC) and luteinizing or fully-luteinized granulosa cells (GC) and evaluated the effect of PGF(2alpha) on the expression for mRNA of ET-1 system by using real-time RT-PCR. PGF(2alpha) stimulated the expression of preproET-1 and endothelin converting enzyme-1 mRNA only in the co-cultures of BAEC with fully-luteinized GC, but not with luteinizing GC. The data suggest that interactions between BAEC and fully-luteinized GC enhance the capability of BAEC to produce ET-1 in response to PGF(2alpha). This mechanism may contribute to the local induction of luteolytic action of PGF(2alpha) which is dependent on the age/maturation of the CL.  相似文献   

18.
Recent studies suggest that ovarian follicular atresia is associated with DNA fragmentation and degeneration of granulosa cells, the hallmark of programmed cell death or apoptosis. Apoptosis of granulosa cells play a major role in follicular atresia. These studies have also demonstrated the involvement of tumour suppressors, apoptotic proteins and survival factors. These factors contribute to the developmental decision as to whether the ovarian follicles mature or undergo atresia. However, the precise temporal and molecular events involved in the apoptotic pathways in this process need to be elucidated. The present report summarizes the role of Jun N‐terminal kinase (JNK), p38 mitogen activated protein kinase (p38 MAPK), and extracellular‐signal regulated kinase (ERK)‐signalling module in the regulation of pro‐ and anti‐apoptotic factors of the granulosa cells in regulating follicular atresia. The findings presented here suggest that the loss of tropic hormone support is translated into the attenuation of Raf‐1‐MAPK/ERK kinase (MEK)‐ERK‐signalling pathway of the granulosa cells and this results in the decreased phosphorylation of the pro‐apoptotic BAD.  相似文献   

19.
Previous studies in cattle have shown influences of dietary unsaturated fatty acid (UFA) supplementation on ovarian function. However, it is unclear whether these UFA exert direct or indirect effects on ovarian steroid production or their mechanisms of action. We have recently shown that 5′AMP-activated protein kinase (AMPK) regulates progesterone secretion through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MAPK ERK1/2) in rodent granulosa cells. Here, we investigated the effects of 3 UFAs, oleic acid (OA), linoleic acid (LA), and α-linolenic acid (ALA) on progesterone secretion in goat granulosa cells. Finally, we examined the effects of UFAs on MAPK ERK1/2 and AMPK phosphorylation in these granulosa cells. Oleic acid and LA (10 μM each), but not ALA (100 μM), increased progesterone secretion (P < 0.05) in the presence or absence of insulin-like growth factor (IGF)-1 (10-8 M) or FSH (5 × 10−8 M). The different AMPK subunits, except for γ3, are present in the goat ovary. Treatment with metformin (10 mM), an activator of AMPK, increased AMPK phosphorylation (P < 0.05) and reduced progesterone secretion by 50% (P < 0.05) in the basal state and in response to IGF-1 or FSH in goat granulosa cells. Oleic acid and LA had no effect on AMPK phosphorylation, whereas they rapidly increased MAPK ERK1/2 phosphorylation (P < 0.05). Finally, U0126, a MAPK ERK1/2 inhibitor, decreased OA- and LA-induced progesterone secretion (P < 0.05), suggesting that these UFAs could stimulate progesterone secretion partly through MAPK ERK1/2 in the absence of IGF-1 and FSH in goat granulosa cells. The involvement of AMPK in this process remains to be demonstrated. Taken together, some fatty acids could improve ovarian steroidogenesis through the MAPK ERK1/2 signaling pathway and, consequently, have beneficial effects on goat fertility.  相似文献   

20.
During fertilization in mammalian species, a sperm-induced intracellular Ca2+ signal ([Ca2+]i) mediates both exit of meiosis and oocyte activation. Recently, we demonstrated in mouse oocytes that the phosphorylation levels of inositol 1,4,5 trisphosphate receptor type1 (IP3R1), the channel responsible for Ca2+ release and oscillations during fertilization, changed during maturation and fertilization. Therefore, we examined the expression and phosphorylation of IP3R1 during in vitro maturation of pig oocytes. Here, our present study shows that expression of IP3R1 protein did not change during maturation, although the phosphorylation status of the receptor, specifically at an MPM-2 epitope, did. We found that while at the beginning of maturation IP3R1 lacked MPM-2 immunoreactivity, it became MPM-2 reactive by 24 h and reached maximal reactivity by 36 h. Interestingly, the acquisition of MPM-2 reactivity coincided with the activation of p34cdc2 kinase and mitogen-activated protein kinase (MAPK), which are involved in meiotic progression. Following completion of maturation, inactivation of MAPK by U0126 did not affect IP3R1 phosphorylation, although inactivation of p34cdc2 kinase by roscovitine dramatically reduced IP3R1 phosphorylation. Neither inhibitor affected total expression of IP3R1. Altogether, our results show that IP3R1 undergoes dynamic phosphorylation during maturation and this might underlie the generation of oscillations at fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号