首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The collective excitation spectrum of interacting electrons in one dimension has been measured by controlling the energy and momentum of electrons tunneling between two closely spaced, parallel quantum wires in a GaAs/AlGaAs heterostructure while measuring the resulting conductance. The excitation spectrum deviates from the noninteracting spectrum, attesting to the importance of Coulomb interactions. An observed 30% enhancement of the excitation velocity relative to noninteracting electrons with the same density, a parameter determined experimentally, is consistent with theories on interacting electrons in one dimension. In short wires, 6 and 2 micrometers long, finite size effects, resulting from the breaking of translational invariance, are observed.  相似文献   

2.
The Stokes-Einstein relation relates the diffusion coefficient of a spherical Brownian particle in a viscous fluid to its friction coefficient. For a particle suspended in anisotropic liquid, theory predicts that the drag coefficient should also be anisotropic. Using video microscopy coupled with particle tracking routines, the Brownian fluctuations of micrometer-sized particles were analyzed to yield a quantitative measurement of the diffusion coefficients parallel and perpendicular to the nematic director. The experimental values agree quite well with recent numerical calculations that take into account the distortions of the director field in the vicinity of the particles.  相似文献   

3.
The Coulomb drag in a system of two parallel layers is the result of electron-electron interaction between the layers. We have observed reproducible fluctuations of the drag, both as a function of magnetic field and electron concentration, which are a manifestation of quantum interference of electrons in the layers. At low temperatures the fluctuations exceed the average drag, giving rise to random changes of the sign of the drag. The fluctuations are found to be much larger than previously expected, and we propose a model that explains their enhancement by considering fluctuations of local electron properties.  相似文献   

4.
Transmission through a spinning window slightly rotates the polarization of the light, typically by a microradian. It has been predicted that the same mechanism should also rotate an image. Because this rotary photon drag has a contribution that is inversely proportional to the group velocity, the image rotation is expected to increase in a slow-light medium. Using a ruby window under conditions for coherent population oscillations, we induced an effective group index of about 1 million. The resulting rotation angle was large enough to be observed by the eye. This result shows that rotary photon drag applies to images as well as polarization. The possibility of switching between different rotation states may offer new opportunities for controlled image coding.  相似文献   

5.
We report the observation of a one-dimensional (1D) Tonks-Girardeau (TG) gas of bosons moving freely in 1D. Although TG gas bosons are strongly interacting, they behave very much like noninteracting fermions. We enter the TG regime with cold rubidium-87 atoms by trapping them with a combination of two light traps. By changing the trap intensities, and hence the atomic interaction strength, the atoms can be made to act either like a Bose-Einstein condensate or like a TG gas. We measure the total 1D energy and the length of the gas. With no free parameters and over a wide range of coupling strengths, our data fit the exact solution for the ground state of a 1D Bose gas.  相似文献   

6.
Erythrocyte suspensions were subjected to hydrodynamic forces generated by a partially submerged tungsten wire set into transverse oscillation at 20 kilohertz. Free hemoglobin appears in solution when the oscillation amplitude exceeds a critical threshold value. The hemolysis probably results from stresses exerted on cell by a microstreaming field established near the wire.  相似文献   

7.
8.
The motion of a magnetic domain wall in a submicrometer magnetic wire was detected by use of the giant magnetoresistance effect. Magnetization reversal in a submicrometer magnetic wire takes place by the propagation of a magnetic domain wall, which can be treated as a "particle." The propagation velocity of the magnetic domain wall was determined as a function of the applied magnetic field.  相似文献   

9.
We report the direct observation of dioxygen molecules physisorbed in the nanochannels of a microporous copper coordination polymer by the MEM (maximum entropy method)/Rietveld method, using in situ high-resolution synchrotron x-ray powder diffraction measurements. The obtained MEM electron density revealed that van der Waals dimers of physisorbed O2 locate in the middle of nanochannels and form a one-dimensional ladder structure aligned to the host channel structure. The observed O-O stretching Raman band and magnetic susceptibilities are characteristic of the confined O2 molecules in one-dimensional nanochannels of CPL-1 (coordination polymer 1 with pillared layer structure).  相似文献   

10.
Double-ended aryl dithiols [alpha,alpha'-xylyldithiol (XYL) and 4,4'-biphenyldithiol] formed self-assembled monolayers (SAMs) on gold(111) substrates and were used to tether nanometer-sized gold clusters deposited from a cluster beam. An ultrahigh-vacuum scanning tunneling microscope was used to image these nanostructures and to measure their current-voltage characteristics as a function of the separation between the probe tip and the metal cluster. At room temperature, when the tip was positioned over a cluster bonded to the XYL SAM, the current-voltage data showed "Coulomb staircase" behavior. These data are in good agreement with semiclassical predictions for correlated single-electron tunneling and permit estimation of the electrical resistance of a single XYL molecule (approximately18 ± 12 megohms).  相似文献   

11.
We present data from an induced gallium arsenide (GaAs) quantum wire that exhibits an additional conductance plateau at 0.5(2e2/h), where e is the charge of an electron and h is Planck's constant, in zero magnetic field. The plateau was most pronounced when the potential landscape was tuned to be symmetric by using low-temperature scanning-probe techniques. Source-drain energy spectroscopy and temperature response support the hypothesis that the origin of the plateau is the spontaneous spin-polarization of the transport electrons: a ferromagnetic phase. Such devices may have applications in the field of spintronics to either generate or detect a spin-polarized current without the complications associated with external magnetic fields or magnetic materials.  相似文献   

12.
采用正交试验方法,用掺配不同比例“三丝”(梗丝、膨胀丝及薄片丝)的烟丝(不加香)卷制烟支,测定卷烟主流烟气中3种有害成分(NH3,HCN,CO)的释放量。结果发现:以烟气NH3释放量为主要考虑因素时,梗丝、膨胀丝和薄片丝最优掺配比例分别为15%、15%和15%;以烟气HCN释放量为主要考虑因素时,梗丝、膨胀丝和薄片丝最优掺配比例分别为15%、5%和15%;以烟气CO释放量为主要考虑因素时,梗丝、膨胀丝和薄片丝最优掺配比例分别为15%、15%和0%。  相似文献   

13.
14.
Lakes R 《Science (New York, N.Y.)》1987,235(4792):1038-1040
A novel foam structure is presented, which exhibits a negative Poisson's ratio. Such a material expands laterally when stretched, in contrast to ordinary materials.  相似文献   

15.
End states--the zero-dimensional analogs of the two-dimensional states that occur at a crystal surface--were observed at the ends of one-dimensional atom chains that were self-assembled by depositing gold on the vicinal Si(553) surface. Scanning tunneling spectroscopy measurements of the differential conductance along the chains revealed quantized states in isolated segments with differentiated states forming over end atoms. A comparison to a tight-binding model demonstrated how the formation of electronic end states transforms the density of states and the energy levels within the chains.  相似文献   

16.
Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.  相似文献   

17.
18.
Molecular conductance junctions are structures in which single molecules or small groups of molecules conduct electrical current between two electrodes. In such junctions, the connection between the molecule and the electrodes greatly affects the current-voltage characteristics. Despite several experimental and theoretical advances, including the understanding of simple systems, there is still limited correspondence between experimental and theoretical studies of these systems.  相似文献   

19.
Single-file diffusion, prevalent in many processes, refers to the restricted motion of interacting particles in narrow micropores with the mutual passage excluded. A single-filing system was developed by confining colloidal spheres in one-dimensional circular channels of micrometer scale. Optical video microscopy study shows evidence that the particle self-diffusion is non-Fickian for long periods of time. In particular, the distribution of particle displacement is a Gaussian function.  相似文献   

20.
Single-walled carbon nanotubes are ideal systems for investigating fundamental properties and applications of one-dimensional electronic systems. The interaction of magnetic impurities with electrons confined in one dimension has been studied by spatially resolving the local electronic density of states of small cobalt clusters on metallic single-walled nanotubes with a low-temperature scanning tunneling microscope. Spectroscopic measurements performed on and near these clusters exhibit a narrow peak near the Fermi level that has been identified as a Kondo resonance. Using the scanning tunneling microscope to fabricate ultrasmall magnetic nanostructures consisting of small cobalt clusters on short nanotube pieces, spectroscopic studies of this quantum box structure exhibited features characteristic of the bulk Kondo resonance, but also new features due to finite size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号