共查询到20条相似文献,搜索用时 0 毫秒
1.
S. N. Costa C. A. D. Bragança L. R. Ribeiro E. P. Amorim S. A. S. Oliveira M. A. Dita F. F. Laranjeira F. Haddad 《Plant pathology》2015,64(1):137-146
Panama disease, caused by Fusarium oxysporum f. sp. cubense (Foc), is ranked among the most destructive diseases of banana. The use of resistant varieties is the most desirable and effective control measure. Information on the pathogen population structure is essential, as durability of the resistance and effective cultivar deployment are strongly linked to this structure. In this study, 214 Foc isolates from different banana producing states in three regions of Brazil (northeastern, southeastern and southern) were analysed. Initially, nine microsatellite markers (SSR) were tested, which revealed 52 distinct haplotypes distributed in the different geographical regions and cultivars. While amova analysis showed that 68·01% of the total variation occurred within states, correlation between genetic and geographical distances was only found in the southern region. Results indicated that isolates from different states comprise a single population, which is predominantly clonal. When isolates representing different haplotypes were inoculated in four banana cultivars, differences in severity were found, with the high severity values being caused by isolates from haplotypes H7, H31 and H41. The diversity found here points to the need for additional studies, as this characteristic may be related to Foc's evolutionary potential and possibly to its ability to overcome the resistance from breeding programme‐generated cultivars. This is the most comprehensive study on population biology of Foc in Brazil. 相似文献
2.
R.P. Baayen F. van Dreven M.C. Krijger C. Waalwijk 《European journal of plant pathology / European Foundation for Plant Pathology》1997,103(5):395-408
Pathogenic isolates were selected representing all known vegetative compatibility groups (VCGs) and races of Fusarium oxysporum sensu lato from Dianthus spp. On basis of differences in the internal transcribed spacer region of the ribosomal DNA, six VCGs were classified as F. oxysporum f.sp. dianthi and four as F. redolens f.sp. dianthi. All VCGs of F. oxysporum f.sp. dianthi were characterized by unique restriction fragment length polymorphisms (RFLPs), unique overall esterase profiles, and unique virulence spectra, supporting a clonal lineage concept. Two VCGs of F. oxysporum f.sp. dianthi nevertheless comprised more than one race, but races within the same VCG shared the same distinct overall virulence spectrum. VCGs belonging to F. redolens f.sp. dianthi also had unique RFLPs and unique virulence spectra, but had grossly identical esterase profiles. Three new races (9, 10 and 11) are described for F. oxysporum f.sp. dianthi, and four for F. redolens f.sp. dianthi. Two races previously considered lost were recovered; race 7 was identified as a member of VCG 0021 of F. oxysporum f.sp. dianthi while race 3 was identified as a distinct VCG and race of F. redolens f.sp. dianthi. A summary of races and VCGs in F. oxysporum f.sp. dianthi and F. redolens f.sp. dianthi is presented. 相似文献
3.
Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of fusarium wilt of chickpea, consists of two pathotypes (yellowing and wilting) and eight races (races 0, 1B/C, 1A and 2–6) of diverse geographical distribution. Six Foc isolates, one each of races 0, 1B/C, 1A, 4, 5 and 6, representing the two pathotypes and the geographical range of the pathogen, showed identical sequences in introns of the genes for translation elongation factor 1α ( EF1 α), β-tubulin, histone 3, actin and calmodulin. Eleven additional Foc isolates representative of all races, pathotypes and geographical range, and three isolates of F. oxysporum (Fo) nonpathogenic to chickpea were further analysed for sequence variation in the EF1 α gene. All isolates pathogenic to chickpeas shared an identical EF1 α gene sequence, which differed from that shared by the three Fo isolates nonpathogenic to chickpea. EF1 α gene sequences from the 17 Foc isolates and the three Fo isolates were compared with 24 EF1 α gene sequences in GenBank from isolates of 11 formae speciales of F. oxysporum by parsimony analysis. Foc isolates formed a grouping distinct from other formae speciales and nonpathogenic isolates. These results indicate that F. oxysporum f. sp. ciceris is monophyletic. 相似文献
4.
Characterization of Fusarium oxysporum f. sp. radicis-cucumerinum attacking melon under natural conditions in Greece 总被引:1,自引:0,他引:1
A severe root and stem rot disease of melon was observed during the 2001 growing season on four glasshouse crops in Heraklio, Greece. A total of 43 isolates of F. oxysporum , obtained in Crete from glasshouse-grown melon and showing fusarium wilt or root and stem rot symptoms, were characterized by pathogenicity and vegetative compatibility. The majority of these isolates was also fingerprinted via amplified fragment length polymorphic (AFLP) analysis. Of the total number of isolates, 22 were identified by pathogenicity tests as F. oxysporum f. sp. melonis , 20 as F. oxysporum f. sp. radicis-cucumerinum , while one isolate was nonpathogenic on cucumber, melon, sponge gourd and pumpkin. All 22 isolates of F. oxysporum f. sp. melonis were assigned to vegetative compatibility group (VCG) 0134, and all 20 isolates of F. oxysporum f. sp. radicis-cucumerinum to VCG 0260. Isolates of F. oxysporum f. sp. radicis-cucumerinum were incompatible with isolates of F. oxysporum f. sp. melonis. AFLP fingerprinting allowed for the clustering of the isolates of the two formae speciales of F. oxysporum along two separate phenetic groups: f. sp. melonis to AFLP major haplotype I, and f. sp. radicis-cucumerinum to AFLP major haplotype II. Overall, pathogenicity, vegetative compatibility grouping and AFLP analysis were correlated and effectively distinguished isolates of F. oxysporum from melon. This appears to be the first report of natural infection of melon by F. oxysporum f. sp. radicis-cucumerinum worldwide. 相似文献
5.
新疆棉花枯萎病菌群体结构的研究 总被引:2,自引:0,他引:2
采自新疆24个不同植棉县(市或团场)的37株棉花枯萎病菌代表菌株,经人工接种于国际通用鉴别寄主,致病性反应均表现为典型的7号生理小种特征。RAPD分析结果也显示出这37个供试菌株与7号小种各对照菌株间基因组DNA的指纹图谱高度相似,属同一遗传相似组,而与3号和8号小种的对照菌株间遗传差异较大,亲缘关系较远,即7号生理小种是组成目前新疆棉花枯萎病菌群体的优势小种,而原分布于新疆吐鲁番等地的3号小种在本研究中未被发现。结合部分自选辅助鉴别寄主对其中18个菌株进行的致病力分化研究表明,在7号小种内部还存在着侵染力的分化,显示出棉花枯萎病菌较强的变异性和适应性。 相似文献
6.
F. M. Alves-Santos ‡ L. Cordeiro-Rodrigues § J. M. Sayagués ¶ R. Martín-Domínguez P. García-Benavides M. C. Crespo J. M. Díaz-Mínguez A. P. Eslava 《Plant pathology》2002,51(5):605-611
Virulence (≡ severity of disease) and physiological specialization of nine isolates of Fusarium oxysporum f. sp. phaseoli recovered in El Barco de Avila (Castilla y León, west-central Spain) and of two isolates from Chryssoupolis (Greece) were determined. The susceptibility/resistance response showed by a differential set of common bean cultivars ( Phaseolus vulgaris ) selected at the Centro Internacional de Agricultura Tropical (CIAT) delineated the isolates into two new races: races 6 and 7. The results of pathogenicity tests did not show any significant differences in virulence among the isolates. However, the reactions of several Spanish common bean cultivars indicated the presence of two groups of isolates, highly virulent and weakly virulent, among the Spanish isolates analysed. These results indicate that isolates classified in the same race are not homogeneous with respect to virulence, and suggests that race analysis using the CIAT differential cultivars is insufficient to describe the physiological specialization of F. oxysporum f. sp. phaseoli . 相似文献
7.
Y. Burger N. Katzir G. Tzuri V. Portnoy U. Saar S. Shriber R. Perl-Treves R. Cohen † 《Plant pathology》2003,52(2):204-211
Screening of genotypes of melon ( Cucumis melo ) for resistance to wilt caused by Fusarium oxysporum f.sp. melonis is often characterized by wide variability in their responses to inoculation, even under carefully controlled conditions. The variability at the seedling stage of 17 genotypes susceptible to race 1 was examined in growth-chamber experiments. Disease incidence varied from 0 to 100% in a genotype-dependent manner. Using four combinations of light (60 and 90 µ E m−2 s−1 ) and temperatures of (27 and 31°C), only light intensity showed a statistically significant effect. Marker-assisted selection for fusarium resistance breeding using cleaved amplified polymorphic sequence (CAPS) and sequence-characterized amplified region (SCAR) markers were compared using a single set of genotypes that included 24 melon accessions and breeding lines whose genotype regarding the Fom-2 gene was well characterized. The practical value of the markers for discriminating a range of genotypes and clarifying the scoring of phenotypes was also tested using a segregating breeding population which showed codominant SCAR markers to be useful in marker-assisted selection. 相似文献
8.
This study identified genes that distinguish Australian Fusarium oxysporum f.sp. vasinfectum (Fov) isolates from related co‐localized non‐pathogenic F. oxysporum isolates and from non‐Australian Fov isolates. One gene is a homologue of the F. oxysporum f.sp. lycopersici (Fol) effector gene SIX6, encoding a 215‐residue cysteine‐rich secreted protein. The Six6 proteins from Fol and Fov contained eight conserved cysteine residues, five of which occurred in the highly diverged 48‐amino‐acid region where FovSix6 differs from FolSix6 at 32 residues. Two other potential effector genes, PEP1 and PEP2, were identified in a cDNA library of Fov genes expressed during infection of cotton. The presence of FovSIX6 and other differences in DNA fingerprints clearly distinguished Australian Fov isolates from non‐Australian Fov isolates and these differences further support the hypothesis based on earlier phylogenetic analysis that Australian Fov is different from Fov in other cotton‐growing areas. A specific diagnostic for Fov based on FovSIX6 is described. 相似文献
9.
G. Gilardi S. Franco Ortega P. C. J. van Rijswick G. Ortu M. L. Gullino A. Garibaldi 《Plant pathology》2017,66(4):677-688
Fusarium oxysporum f. sp. lactucae, the causal agent of fusarium wilt of lettuce (Lactuca sativa), occurs in most countries in which lettuce is grown and causes serious economic losses. Three races (1, 2 and 3) of the pathogen have previously been identified on the basis of their ability to cause disease on differential lettuce cultivars, as well as by means of molecular tools developed to characterize different races of this pathogen. Only race 1 has been detected in Europe so far. In this study, two isolates of F. oxysporum, obtained from lettuce plants grown in the Netherlands showing symptoms of wilt, have been characterized by combining the study of pathogenicity with differential cultivars of lettuce and molecular assays to determine whether the isolates are different from the known races of F. oxysporum f. sp. lactucae. This study reports the presence of F. oxysporum f. sp. lactucae for the first time in the Netherlands. The causal pathogen has been identified, using the IRAP‐SCAR technique, as a new race of F. oxysporum f. sp. lactucae. Specific primers have been designed to identify this new race. 相似文献
10.
香蕉枯萎病菌RAPD分析及4号生理小种的快速检测 总被引:3,自引:0,他引:3
用随机扩增多态性DNA(RAPD)技术,对采自广东、广西的香蕉和粉蕉上的30个香蕉枯萎病菌(Fusarium oxysporum f.sp.cubense)菌株和3个其它尖孢镰刀菌专化型的菌株进行比较及聚类分析。在遗传相似系数0.67时,可将供试菌株划分为3个RAPD群(RGs),其中香蕉枯萎病菌4号生理小种(FOC4)共15个菌株属于RGⅠ,1号生理小种(FOC1)共15个菌株属于RGⅡ,供试的其它尖孢镰刀菌专化型的3个菌株则属于RGⅢ。这说明香蕉枯萎病菌和供试3个其它专化型菌株与致病性间存在明显的相关性。1号生理小种内菌株间的遗传分化大于4号生理小种内菌株间的遗传分化。从90条RAPD随机引物中筛选出2条引物可产生4号生理小种的RAPD标记2个。将这2个RAPD标记电泳切胶回收、克隆及测序,并根据这2个特异片段序列设计SCAR上下游特异引物,通过对30个菌株的PCR扩增检验,其中一个RAPD标记成功地转化为SCAR标记,初步建立了以此为基础的4号生理小种快速检测技术,其检测灵敏度为2 ng新鲜菌丝。对采自不同地区的显症样品、吸芽、室内接种未显症的香蕉苗以及发病的香蕉植株不同部位进行检测,能够准确灵敏地鉴定出4号生理小种,从而为香蕉枯萎病菌的快速检测及防治奠定了基础。同时,快速检测结果发现,田间发病植株果柄的各部位及果实内并没有枯萎病菌的存在。 相似文献
11.
采用菌丝生长速率法和产孢量测定研究了不同温度、光照、pH及碳氮源对来源于海南、河北和上海的3株西瓜枯萎病菌Fo-HN-46、Fo-HB-12和Fo-SH-1生长速率和产孢量的影响。结果表明:西瓜枯萎病菌菌株的适宜生长温度为20~30℃,Fo-HN-46最适生长温度为28℃,Fo-HB-12和Fo-SH-1最适生长温度为25℃,产孢的最适温度为28~30℃;光照对西瓜枯萎病菌生长速率无显著影响,对产孢影响显著,Fo-HN-46在黑暗条件下单位面积产孢量最高,Fo-HB-12和Fo-SH-1在半光照条件下产孢量最高;pH对西瓜枯萎病菌菌株的生长速率和产孢量有显著影响,pH 7~9时菌丝生长速率快,pH 8~11时产孢量高;葡萄糖、淀粉和乳糖作为碳源能够显著增加西瓜枯萎病菌的产孢量;蛋白胨作为氮源能显著促进菌丝生长,硝酸钠、酵母粉和蛋白胨均能显著增加西瓜枯萎病菌的产孢量。用最适碳源、氮源培养,Fo-HN-46生长速率大于Fo-HB-12和Fo-SH-1。Fo-SH-1产孢量高于Fo-HN-46和Fo-HB-12。 相似文献
12.
Resistance sources to Fusarium oxysporum f. sp. cubense tropical race 4 in banana wild relatives 下载免费PDF全文
Target trait evaluation in crop wild relatives is an important prerequisite for efficiently using the potential useful genes located in this valuable germplasm. Over recent decades, Fusarium oxysporum f. sp. cubense tropical race 4 (Foc‐TR4) has seriously threatened worldwide banana plantations. Breeding new resistant cultivars from wild banana species is expected to provide invaluable additional resources. However, knowledge on resistance to Foc‐TR4 in wild Musa species is very limited. In this study, eight genotypes of wild banana relatives (Musa acuminata subsp. burmannica, M. balbisiana, M. basjoo, M. itinerans, M. nagensium, M. ruiliensis, M. velutina and M. yunnanensis) were characterized for resistance to Foc‐TR4 in both greenhouse and field conditions. Most wild bananas showed higher resistance levels to Foc‐TR4 than the reference cultivars ‘Brazilian’ (AAA, susceptible) and ‘Goldfinger’ (AAAB, moderate resistance). Among the wild species, M. balbisiana showed the highest levels of disease intensity followed by M. acuminata subsp. burmannica. Some individuals of M. yunnanensis, M. nagensium, M. ruiliensis and M. velutina showed low levels of rhizome discolouration in greenhouse conditions, but were resistant in the field. No symptoms were observed on M. basjoo and M. itinerans, suggesting higher levels of resistance to Foc‐TR4. The results revealed different sources of resistance to Foc‐TR4 in banana wild relatives, which constitute a valuable genetic resource for banana breeding programmes aiming to produce cultivars resistant to fusarium wilt. 相似文献
13.
14.
Abo K Klein KK Edel-Hermann V Gautheron N Traore D Steinberg C 《Phytopathology》2005,95(12):1391-1396
ABSTRACT Seventeen isolates of Fusarium oxysporum f. sp. vasinfectum from the Ivory Coast were characterized using vegetative compatibility group (VCG), restriction fragment length polymorphism of the ribosomal inter-genic spacer region (IGS), and mating type (MAT) idiomorph, and compared with a worldwide collection of the pathogen containing all available reference strains. Some of the isolates were identical to known reference strains for all three traits, whereas others had previously unknown varieties of IGS and (possibly) VCG. One or the other MAT idiomorph was present in each of the new isolates and the reference strains. The new isolates and reference strains were grouped based upon the three traits. Strains from the Ivory Coast were found in 7 of 11 groups detected, suggesting multiple sources for Fusarium wilt in the country. Despite the presence of both MAT idiomorphs among isolates, no evidence for recombination was found. 相似文献
15.
M. C. Rodríguez-Molina † I. Medina L. M. Torres-Vila J. Cuartero 《Plant pathology》2003,52(2):199-203
The vascular colonization pattern of Fusarium oxysporum f.sp. lycopersici races 0 and 1 in tomato was studied in five susceptible and five resistant cultivar–fungus combinations during a 26-day period after inoculation by root immersion. Propagules spread discontinuously along the stems in all five cultivars 1 day after inoculation, irrespective of cultivar resistance. Five days later the fungus was limited to the stem bases in all cultivars. Between the fifth and 12th days, stem colonization by the fungus stopped in all cultivar–race combinations. Thereafter, the situation remained stable in resistant combinations, with inoculum distributed discontinuously, and no disease symptoms were apparent. By contrast, in the susceptible combinations a gradual upward colonization of the stems was seen such that fungal distribution was no longer discontinuous and disease symptoms appeared. These results suggest that a fungal 'incubation' period in the base of the vascular system is required before a secondary invasion of tissues occurs in susceptible genotypes. The slope of the regression line fitted between the height reached by the fungus up the stem ( y ) and the time after inoculation ( x ) provides a measure of the horizontal (polygenic) resistance in tomato cultivars 相似文献
16.
ABSTRACT Fusarium wilt of cotton is a serious fungal disease responsible for significant yield losses throughout the world. Evolution of the causal organism Fusarium oxysporum f. sp. vasinfectum, including the eight races described for this specialized form, was studied using multigene genealogies. Partial sequences of translation elongation factor (EF-1alpha), nitrate reductase (NIR), phosphate permase (PHO), and the mitochondrial small subunit (mtSSU) rDNA were sequenced in 28 isolates of F. oxysporum f. sp. vasinfectum selected to represent the global genetic diversity of this forma specialis. Results of a Wilcoxon Signed-Ranks Templeton test indicated that sequences of the four genes could be combined. In addition, using combined data from EF-1alpha and mtSSU rDNA, the phylogenetic origin of F. oxysporum f. sp. vasinfectum within the F. oxysporum complex was evaluated by the Kishino-Hasegawa likelihood test. Results of this test indicated the eight races of F. oxysporum f. sp. vasinfectum appeared to be nonmonophyletic, having at least two independent, or polyphyletic, evolutionary origins. Races 3 and 5 formed a strongly supported clade separate from the other six races. The combined EF-1alpha, NIR, PHO, and mtSSU rDNA sequence data from the 28 isolates of F. oxysporum f. sp. vasinfectum recovered four lineages that correlated with differences in virulence and geographic origin: lineage I contained race 3, mostly from Egypt, and race 5 from Sudan; lineage II contained races 1, 2, and 6 from North and South America and Africa; lineage III contained race 8 from China; and lineage IV contained isolates of races 4 and 7 from India and China, respectively. 相似文献
17.
Pisatin involvement in the variation of inhibition of Fusarium oxysporum f. sp. pisi spore germination by root exudates of Pisum spp. germplasm 下载免费PDF全文
Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) is one of the major constraints of pea worldwide. Its control is difficult and is mainly based on the use of resistant cultivars. This study aimed to identify and characterize resistance mechanisms interfering with Fop spore germination, as an additional pre‐penetration resistance mechanism little explored so far. For this, root exudates were collected from 12 pea accessions with differential responses to the disease, from resistant to susceptible, and their effects on Fop germination and growth were determined. While root exudates from most accessions stimulated Fop germination, the root exudates of three accessions, JI 1412, JI 2480 and P42, did not stimulate, or even inhibited, Fop germination. Although some additional compounds might be involved, the analysis showed that the most active metabolite was the pea phytoalexin pisatin. Pisatin was identified in the active fraction of pea root exudate extracts and its amount in the root exudates was negatively correlated with the extent of Fop germination. This suggests an important role of pisatin in the constitutive defence of pea against F. oxysporum. 相似文献
18.
Vanilla stem rot, caused by Fusarium oxysporum f. sp. vanillae (Fov), is the main constraint to increasing vanilla production in the major vanilla‐producing countries, including Indonesia. The current study investigated the origin of Fov in Indonesia using a multigene phylogenetic approach. Nineteen Fov isolates were selected to represent Indonesia, the Comoros, Mexico and Réunion Island. The translation elongation factor 1 alpha gene and the mitochondrial small subunit ribosomal RNA gene phylogenies resolved the Fov isolates into three distinct clades in both phylogenetic species of the F. oxysporum species complex, indicating a polyphyletic pattern of evolution. In addition, Fov isolates from Indonesia were also polyphyletic. These results suggest that the vanilla stem rot pathogen in Indonesia has a complex origin. The implications for disease management are discussed. 相似文献
19.
为明确河北省棉花枯萎菌(Fusarium oxysporum f.sp.vasinfectum, FOV)变异及致病力分化情况,利用AFLP技术对采自河北省的75株FOV和3号、7号、8号生理小种的标准菌株进行遗传多样性分析,并比较了不同AFLP类群菌株对棉花品种冀棉11号的致病力差异。结果表明,78株FOV可划分为4个AFLP类群(AFLP groups, AGs),AGsⅠ为3号生理小种,AGsⅡ为8号生理小种,AGsⅢ包括7号生理小种和67株田间采集菌株,AGsⅣ包括8个田间采集菌株,该类群菌株与3号、7号、8号生理小种遗传差异较大。致病力初步测定表明,3号、7号、8号生理小种的标准菌株属中等致病力水平,而田间采集的75株枯萎菌菌株致病力存在明显差异,其中强致病力菌株占66.67%,中等致病力菌株占21.33%,弱致病力菌株占12%。表明河北省FOV群体遗传结构复杂,有遗传差异较大的新菌株出现,而且同一生理小种菌株之间存在显著的致病力分化。 相似文献
20.
香蕉枯萎病菌1号和4号生理小种细胞壁降解酶的比较 总被引:7,自引:1,他引:7
对香蕉枯萎病菌1号和4号生理小种的细胞壁降解酶进行比较。通过测定4号生理小种在寄主体内细胞壁降解酶的活性发现,能检测到多聚半乳糖醛酸酶(PG)、果胶甲基半乳糖醛酸酶(PMG)、多聚半乳糖醛酸反式消除酶(PGTE)、果胶甲基反式消除酶(PMTE)和纤维素酶(Cx)的活性。在不同碳源培养条件下,2个生理小种均有以上5种酶的活性,以1%柑桔果胶为碳源时产生的PMG和PG活性明显高于其他几种酶的活性,而以1%CMC为碳源时,所产生的Cx都比其他几种酶的活性高。细胞壁降解酶同工酶电泳后发现,4号生理小种在寄主体内和体外培养时都比1号生理小种多分泌一种PG。2个生理小种在体外培养时分泌的PMG、PGTE和PMTE没有差异。4号生理小种在寄主体内比1号生理小种多分泌一种PMG,却少分泌一种PGTE,2个生理小种在寄主体内的PMTE则没有差异。 相似文献