首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spera F 《Science (New York, N.Y.)》1980,207(4428):299-301
A conservation-of-energy equation has been derived for the spatially averaged magma temperature in a spherical pluton undergoing simultaneous crystallization and both internal (magma) and external (hydrothermal fluid) thermal convection. The model accounts for the dependence of magma viscosity on crystallinity, temperature, and bulk composition; it includes latent heat effects and the effects of different initial water concentrations in the melt and quantitatively considers the role that large volumes of circulatory hydrothermal fluids play in dissipating heat. The nonlinear ordinary differential equation describing these processes has been solved for a variety of magma compositions, initial termperatures, initial crystallinities, volume ratios of hydrothermal fluid to magma, and pluton sizes. These calculations are graphically summarized in plots of the average magma temperature versus time after emplacement. Solidification times, defined as the time necessary for magma to cool from the initial emplacement temperature to the solidus temperature vary as R(1,3), where R is the pluton radius. The solidification time of a pluton with a radius of 1 kilometer is 5 x 10(4) years; for an otherwise identical pluton with a radius of 10 kilometers, the solidification time is approximately 10(6) years. The water content has a marked effect on the solidification time. A granodiorite pluton with a radius of 5 kilometers and either 0.5 or 4 percent (by weight) water cools in 3.3 x 10(5) or 5 x 10(4) years, respectively. Convection solidification times are usually but not always less than conduction cooling times.  相似文献   

2.
Recharge in Volcanic Systems: Evidence from Isotope Profiles of Phenocrysts   总被引:2,自引:0,他引:2  
Strontium isotope ratios measured from core to rim across plagioclase feldspar crystals can be used to monitor changes in the isotope composition of the magma from which they grew. In samples from three magma systems from convergent margin volcanoes, sudden changes in major element composition, petrographic features, and strontium isotope composition were found to correspond to discrete magmatic events, most likely repeated recharge of more mafic magma with lower ratios of strontium-87 to strontium-86 into a crustally contaminated magma.  相似文献   

3.
Oxygen isotope analyses of sanidine phenocrysts from rhyolitic sequences in Nevada, Colorado, and the Yellowstone Plateau volcanic field show that delta(18)O decreased in these magmas as a function of time. This decrease in delta(18)O may have been caused by isotopic exchange between the magma and groundwater low in (18)O. For the Yellowstone Plateau rhyolites, 7000 cubic kilometers of magma could decrease in delta(18)O by 2 per mil in 600,000 years by reacting with water equivalent to 3 millimeters of precipitation per year, which is only 0.3 percent of the present annual precipitation in this region. The possibility of reaction between large magmatic bodies and meteoric water at liquidus temperatures has major implications in the possible differentiation history of the magma and in the generation of ore deposits.  相似文献   

4.
The Yellowstone caldera began a rapid episode of ground uplift in mid-2004, revealed by Global Positioning System and interferometric synthetic aperture radar measurements, at rates up to 7 centimeters per year, which is over three times faster than previously observed inflation rates. Source modeling of the deformation data suggests an expanding volcanic sill of approximately 1200 square kilometers at a 10-kilometer depth beneath the caldera, coincident with the top of a seismically imaged crustal magma chamber. The modeled rate of source volume increase is 0.1 cubic kilometer per year, similar to the amount of magma intrusion required to supply the observed high heat flow of the caldera. This evidence suggests magma recharge as the main mechanism for the accelerated uplift, although pressurization of magmatic fluids cannot be ruled out.  相似文献   

5.
The age and compositional zonation in crystals from the Youngest Toba Tuff record the prelude to Earth's largest Quaternary eruption. We used allanite crystals to date and decipher this zoning and found that the crystals retain a record of at least 150,000 years of magma storage and evolution. The dominant subvolcanic magma was relatively homogeneous and thermally stagnant for approximately 110,000 years. In the 35,000 years before eruption, the diversity of melts increased substantially as the system grew in size before erupting 75,000 years ago.  相似文献   

6.
The origin of Cu/Au ratios in porphyry-type ore deposits   总被引:3,自引:0,他引:3  
Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits.  相似文献   

7.
Geochemical precursors to volcanic activity at Mount St. Helens, USA   总被引:1,自引:0,他引:1  
The importance of the interplay between degassing and crystallization before and after the eruption of Mount St. Helens (Washington, USA) in 1980 is well established. Here, we show that degassing occurred over a period of decades to days before eruptions and that the manner of degassing, as deduced from geochemical signatures within the magma, was characteristic of the eruptive style. Trace element (lithium) and short-lived radioactive isotope (lead-210 and radium-226) data show that ascending magma stalled within the conduit, leading to the accumulation of volatiles and the formation of lead-210 excesses, which signals the presence of degassing magma at depth.  相似文献   

8.
Pyroclastic eruption and the intrusion of batholiths associated with large-volume ash-flow tuffs may be driven by a decrease in reservoir pressure caused by the low density of the magma column due to vesiculation. Batholithic intrusion would then be accomplished by the subsidence and settling of kilometer-sized crustal blocks through the magma chamber, resulting in eventual collapse to form large caldera structures at the surface. Such a model does not require the formation of a large, laterally extensive, shallow magma chamber before the onset of large-volume ash-flow eruptions. Eruption could commence directly from a deeper reservoir, with only a small channelway being opened to the surface before the onset of catastrophic ash-flow eruptions of the scale of Yellowstone or Long Valley. Such a model has wide-ranging implications, and explains many of the problems inherent in the simple collapse model involving shallow magna chambers as well as the process and timing of batholith intrusion in such cases.  相似文献   

9.
The quantitative assessment of underplating and concomitant partial melting of continental crust requires the use of geologically reasonable melt fraction distributions as a function of temperature. Conductive modeling indicates that simple underplating of metapelite by basalt can yield magma bodies with melt fractions above the rheological limit of extraction for almost any reasonable geotherm. Convection and subsequent homogenization are likely in these bodies. Granitic and tonalitic protoliths do not appear to yield substantial amounts of extractable magma. These results indicate that underplating involves repeated intrusion or occurs in deep crust.  相似文献   

10.
Extensive volcanism and high-temperature lavas hint at a global magma reservoir in Io, but no direct evidence has been available. We exploited Jupiter's rotating magnetic field as a sounding signal and show that the magnetometer data collected by the Galileo spacecraft near Io provide evidence of electromagnetic induction from a global conducting layer. We demonstrate that a completely solid mantle provides insufficient response to explain the magnetometer observations, but a global subsurface magma layer with a thickness of over 50 kilometers and a rock melt fraction of 20% or more is fully consistent with the observations. We also place a stronger upper limit of about 110 nanoteslas (surface equatorial field) on the dynamo dipolar field generated inside Io.  相似文献   

11.
Seismic reflection data from the East Pacific Rise between 17 degrees 05' and 17 degrees 35'S image a magma lens that varies regularly in depth and width as ridge morphology changes, confirming the notion that axial morphology can be used to infer ridge magmatic state. However, at 17 degrees 26'S, where the ridge is locally shallow and broad, the magma lens is markedly shallower and wider than predicted from regional trends. In this area, submersible dives reveal recent volcanic eruptions. These observations indicate that it is where the width and depth of the magma chamber differ from regional trends, indicating an enhanced magmatic budget, that is diagnostic of current magmatism.  相似文献   

12.
In an extending terrane basaltic magma supplied at a pressure greater than the least principal stress (overpressure) may be capable of suppressing normal faulting and the earthquakes and topographic relief that commonly accompany normal faulting. As vertical dikes intrude, they press against their walls in the direction opposite the least principal stress and increase its magnitude. The emplacement of tabular intrusions causes the internal magma pressure to act selectively in opposition to tectonic stresses. This process tends to equalize the stresses and thus diminishes the deviatoric stress (difference between maximum and minimum stresses) that creates faults and causes earthquakes. Observations of the pattern of seismicity and magmatism worldwide indicate that magmatism commonly supplants large earthquakes as the primary mechanism for accommodating tectonic extension. Recognizing the extent of magmatic stress accommodation is important in assessing seismic and volcanic risks.  相似文献   

13.
Seismic data from the ultrafast-spreading (150 to 162 millimeters per year) southern East Pacific Rise show that the rise axis is underlain by a thin (less than 200 meters thick) extrusive volcanic layer (seismic layer 2A) that thickens rapidly off axis. Also beneath the rise axis is a narrow (less than 1 kilometer wide) melt sill that is in some places less than 1000 meters below the sea floor. The small dimensions of this molten body indicate that magma chamber size does not depend strongly on spreading rate as predicted by many ridge-crest thermal models. However, the shallow depth of this body is consistent with an inverse correlation between magma chamber depth and spreading rate. These observations indicate that the paradigm of ridge crest magma chambers as small, sill-like, midcrustal bodies is applicable to a wide range of intermediate- and fast-spreading ridges.  相似文献   

14.
The initial ratio of strontium-87 to strontium-86 rises systematically from 0.70395 to 0.70662 over the upper 10 percent of the Kiglapait layered intrusion. This ratio is strongly correlated with potassium and rubidium. Contamination, exchange, and magma mixing fail to account for the increase, which is ascribed to the imperfect retention of radiogenic strontium-87 in feldspar-like structural units of the melt inherited from the magma source. These accidents in chemical discrimination persist most readily in anhydrous melts.  相似文献   

15.
Telemetry from electronic tiltmeters in the crater at Mount St. Helens contributed to accurate predictions of all six effusive eruptions from June 1981 to August 1982. Tilting of the crater floor began several weeks before each eruption, accelerated sharply for several days, and then abruptly changed direction a few minutes to days before extrusion began. Each episode of uplift was caused by the intrusion of magma into the lava dome from a shallow source, causing the dome to inflate and eventually rupture. Release of magma pressure and increased surface loading by magma added to the dome combined to cause subsidence just prior to extrusion.  相似文献   

16.
Sen G  Jones RE 《Science (New York, N.Y.)》1990,249(4973):1154-1157
The maximum depth at which large (>1000 km(3)) terrestrial mafic magma chambers can form has generally been thought to be the Moho, which occurs at a mean depth of about 35 kilometers beneath the continents and 8 kilometers beneath ocean basins. However, the presence of layers of cumulus magnesium-rich spinel and olivine and intercumulus garnet in an unusual mantle xenolith from Oahu, Hawaii, suggests that this rock is a fragment of a large magma chamber that formed at a depth of about 90 kilometers; Hawaiian shield-building magmas may pond and fractionate in such magma chambers before continuing their ascent. This depth is at or near the base of the 90-million-year-old lithosphere beneath Oahu; thus, rejuvenated stage alkalic magmas containing mantle xenoliths evidently also originate below the lithosphere.  相似文献   

17.
Over a period of roughly 40 days, starting on 8 July 2000, a caldera structure 1.7 kilometers in diameter developed by means of gradual depression and expansion of the summit crater at Miyake Island, Japan. At the same time, very-long-period (VLP) seismic signals were observed once or twice a day. Source mechanism analyses of the VLP signals show that the moment tensor solutions are smooth step functions over a time scale of 50 seconds, with dominant volumetric change components. We developed a model to explain the caldera and the VLP signals, in which a vertical piston of solid materials in the conduit is intermittently sucked into the magma chamber by lateral magma outflow. This model offers potential for making quantitative estimations of the characteristic physical properties of magma systems.  相似文献   

18.
Volcanic eruptions are episodic despite being supplied by melt at a nearly constant rate. We used histories of magma efflux and surface deformation to geodetically image magma transfer within the deep crustal plumbing of the Soufrière Hills volcano on Montserrat, West Indies. For three cycles of effusion followed by discrete pauses, supply of the system from the deep crust and mantle was continuous. During periods of reinitiated high surface efflux, magma rose quickly and synchronously from a deflating mid-crustal reservoir (at about 12 kilometers) augmented from depth. During repose, the lower reservoir refilled from the deep supply, with only minor discharge transiting the upper chamber to surface. These observations are consistent with a model involving the continuous supply of magma from the deep crust and mantle into a voluminous and compliant mid-crustal reservoir, episodically valved below a shallow reservoir (at about 6 kilometers).  相似文献   

19.
Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.  相似文献   

20.
Linking petrology and seismology at an active volcano   总被引:1,自引:0,他引:1  
Many active volcanoes exhibit changes in seismicity, ground deformation, and gas emissions, which in some instances arise from magma movement in the crust before eruption. An enduring challenge in volcano monitoring is interpreting signs of unrest in terms of the causal subterranean magmatic processes. We examined over 300 zoned orthopyroxene crystals from the 1980-1986 eruption of Mount St. Helens that record pulsatory intrusions of new magma and volatiles into an existing larger reservoir before the eruption occurred. Diffusion chronometry applied to orthopyroxene crystal rims shows that episodes of magma intrusion correlate temporally with recorded seismicity, providing evidence that some seismic events are related to magma intrusion. These time scales are commensurate with monitoring signals at restless volcanoes, thus improving our ability to forecast volcanic eruptions by using petrology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号