首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
2.
Soilborne potato diseases and soil microbial community characteristics were evaluated over 8 years in different potato cropping systems designed to address specific management goals of soil conservation, soil improvement and disease suppression. Results were compared to a standard rotation and non‐rotation control in field trials in Maine. Standard rotation consisted of barley underseeded with red clover, followed by potato (2‐year). Soil‐conserving system (SC) featured an additional year of forage grass and reduced tillage (3‐year, barley/timothy–timothy–potato). Soil‐improving system (SI) added yearly compost amendments to SC, and the disease‐suppressive system (DS) featured crops with known disease‐suppressive capability (3‐year, mustard/rapeseed–sudangrass/rye–potato). Systems were established in 2004, evaluated with and without irrigation, and actively managed until 2010, with potato also planted in 2011 and 2012 to examine residual effects. All rotations reduced soilborne diseases black scurf and common scab, and increased yield after one rotation cycle (3 years), but diseases increased overall after two rotation cycles. DS maintained lower soilborne disease levels than all other rotations, as well as high yields, throughout the study. Cropping system effects became more pronounced after multiple cycles. SI system and irrigation both resulted in higher yields, but also higher levels of soilborne disease. Cropping system and irrigation effects were significant even after systems were no longer maintained. Soil microbial community data showed significant changes associated with cropping system, and differences increased over time. Cropping system strategy had significant and lasting effects on soil microbiology and soilborne diseases, and can be used to effectively enhance potato production.  相似文献   

3.
立枯病和白绢病是白术生产种植中的两种主要土传病害,在苗期和生长期都有发生,危害严重。本研究从浙江省磐安县采集具有典型病症的白术植株,对病原进行了分离、纯化和致病性测定。综合形态学特征及rDNA-ITS序列分析表明,白术上的病害是由立枯丝核菌Rhizoctonia solani Kühn引起的立枯病和由齐整小核菌Sclerotium rolfsii Sacc.引起的白绢病。室内毒力测定结果表明,10种供试杀菌剂对立枯病菌的毒力从大到小为:噻呋酰胺咯菌腈戊唑醇四氟醚唑吡唑醚菌酯丙硫菌唑嘧菌酯啶酰菌胺苯醚甲环唑咪鲜胺;对白绢病菌的室内毒力从大到小为:吡唑醚菌酯噻呋酰胺嘧菌酯戊唑醇咯菌腈苯醚甲环唑丙硫菌唑啶酰菌胺四氟醚唑咪鲜胺,其中噻呋酰胺对两种病菌都具有很高的活性,EC_(50)分别为0.06和0.03mg/L,可用于两种病害的防治。  相似文献   

4.
Beet yellows virus (BYV), beet mild yellowing virus (BMYV), beet chlorosis virus (BChV), and beet mosaic virus (BtMV) cause virus yellows (VY) disease in sugar beet. The main virus vector is the aphid Myzus persicae. Due to efficient vector control by neonicotinoid seed treatment over the last decades, there is no current knowledge regarding virus species distribution. Therefore, Europe-wide virus monitoring was carried out from 2017 to 2019, where neonicotinoids were banned in 2019. The monitoring showed that closterovirus BYV is currently widely spread in northern Europe. The poleroviruses BMYV and BChV were most frequently detected in the northern and western regions. The potyvirus BtMV was only sporadically detected. To study virus infestation and influence on yield, viruses were transmitted to sugar beet plants using viruliferous M. persicae in quadruplicate field plots with 10% inoculation density simulating natural infection. A plant-to-plant virus spread was observed within 4 weeks. A nearly complete infection of all plants was observed in all treatments at harvest. In accordance with these findings, a significant yield reduction was caused by BMYV and BChV (−23% and −24%) and only a moderate reduction in yield was observed for BYV (−10%). This study showed that inoculation at low densities mimics natural infection, and quick spreading induced representative yield effects. Within the background of a post-neonicotinoid era, this provides the basis to screen sugar beet genotypes for the selection of virus tolerance/resistance and to test the effectiveness of insecticides for the control of M. persicae with a manageable workload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号