首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The recent availability of the full‐length sequence of one haplotype of the swine leukocyte antigen (SLA) complex, the swine major histocompatibility complex (MHC), and significant progress in the studies on gene expression and polymorphisms led to major advances in deciphering its role in resistance to diseases in animals. The present status of the genomic organization and polymorphism of the SLA complex is presented in this Review. Additionally, a comparative analysis with mammalian MHC has also been provided. The sequenced SLA‐H01 haplotype harbors 152 loci including genuine SLA genes, non‐MHC genes and pseudogenes. Although the numbers of expressed SLA genes could vary across haplotypes, three SLA class Ia, three SLA class Ib, four SLA class IIa and four SLA class IIb genes are currently expressed. Except for the class I genes, which have no clear orthologs, the gene organization of the loci was highly conserved between humans and pigs. Moreover, the human leukocyte antigen (HLA) complex lies on a single chromosomal segment, whereas a centromere at the class II and III junction splits the SLA complex into two segments, without disturbing gene organization or impeding functionality. Over 400 SLA class I and II allele sequences available in databases have been recently clustered and assigned to a specific SLA locus according to a newly defined nomenclature system.  相似文献   

2.
3.
Immunogenetics and the major histocompatibility complex.   总被引:7,自引:0,他引:7  
The poultry immune system is a complex system involving many different cell types and soluble factors that must act in concert to give rise to an effective response to pathogenic challenge. The complexity of the immune system allows the opportunity for genetic regulation at many different levels. Cellular communication in the immune response, the production of soluble factors, and the rate of development of immune competency are all subject to genetic influences. The genes of the major histocompatibility complex (MHC) encode proteins which have a crucial role in the functioning of the immune system. The MHC antigens of chickens are cell surface glycoproteins of three different classes: Class I (B-F), Class II (B-L) and Class IV (B-G). The MHC antigens serve as essential elements in the regulation of cell-cell interactions. The MHC has been shown to influence immune response and resistance to autoimmune, viral, bacterial and parasitic disease in chickens. The MHC has been the primary set of genes identified with genetic control of immune response and disease resistance, but there are many lesser-characterized genes outside of the MHC that also regulate immunoresponsiveness. Polygenic control has been identified in selection experiments that have produced lines of chickens differing in antibody levels or kinetics of antibody production. These lines also differ in immunoresponsiveness and resistance to a variety of diseases. Understanding the genetic bases for differences in immunoresponsiveness allows the opportunity selectively to breed birds which are more resistant to disease. Indirect markers that can be used for this selection can include the MHC genes and immune response traits that have been associated with specific or general resistance to disease.  相似文献   

4.
Genetic manipulation of the major histocompatibility complex   总被引:1,自引:0,他引:1  
The genes of the major histocompatibility complex (MHC) are prime candidates for genetic engineering of domestic species because of their importance in many biological phenomena, including disease resistance and reproduction. One MHC-linked gene, the Ped gene in the mouse, has been shown to influence embryo development and survival. The Ped gene has mapped to the Qa-2 subregion of the mouse MHC, the H-2 complex. Future studies are aimed at determining, at the DNA and protein levels, the structure of the Ped gene and its gene product. There is preliminary evidence that there may be MHC-linked Ped-like genes that influence reproduction in other species. The search for Ped-like genes in domestic species has been hampered by the limited data available describing the molecular structure of the MHC of species other than mouse and man. This paper describes the use of restriction fragment length polymorphism analysis to study the MHC of two domestic species, the pig and the chicken. Major histocompatibility complex effects on reproduction have been reported for both the pig and the chicken. The long-range goal is to identify and isolate advantageous alleles that could then be injected into recipient embryos to create more reproductively efficient animals.  相似文献   

5.
Comparative genomics of the poultry major histocompatibility complex   总被引:5,自引:0,他引:5  
This review summarizes the latest findings regarding the avian major histocompatibility complex (MHC), focusing particularly on the genomics of MHC in the Japanese quail (Cotrnix japonica) and other birds, as well as haplotype, genomics, function and disease resistance in the chicken (Gallus gallus). This information provides important insight into the breeding of disease resistance in poultry, natural selection of disease resistance in wild birds, and the effects of recombination and hitchhiking on the evolution of multiple MHC gene families.  相似文献   

6.
The major histocompatibility complex (MHC) is a genetic region that has been intensively studied for the past 2 decades. Interest in the MHC has been high because of (i) the particular involvement of the MHC in transplantation reactions, including organ allograft rejection in human beings; and (ii) the more general role of MHC gene products in the genetic control of immune responses in all mammals. The MHC has several remarkable properties that include a distinctive genetic structure which has been well-preserved through evolution, and the extreme plasticity of form of the principal MHC genes, which can coexist within a single species in 30 or more allelic forms. The genes of the MHC regulate cell-cell interactions of various types within the lymphoreticular system, and thus function as the so-called "immune response" genes that have been described in mice, rats, and guinea pigs. In human beings, the "disease associations" demonstrated between MHC alleles and various pathologic conditions are probably manifestations of abnormal functions of immune regulation governed by the MHC. Studies of the MHC in domestic species are still in their infancy. However, investigations of the MHC have been carried out in swine, cattle, horses, sheep, goats, dogs, and chickens. Further research on the MHC of domestic animals is merited, both for its contribution to the overall understanding of the biological significance of the MHC and for its practical application in clinical veterinary medicine.  相似文献   

7.
3个绵羊种群MHC微卫星标记的遗传多样性   总被引:1,自引:0,他引:1  
利用微卫星技术对小尾寒羊、道赛特羊、特克赛尔羊3个绵羊种群共218只绵羊的主要组织相容性复合体(MHC)ClassⅡ区DRB1、DRB2、DYMS、MB026基因座的微卫星多态性进行了研究。统计了3个种群的等位基因组成,并计算了微卫星基因座的等位基因频率、杂合度和多态信息含量。结果显示,4个基因座在3个种群中的平均等位基因数分别为14、10.33、12.67、5.33个;平均多态信息含量分别为0.8315、0.8037、0.7946、0.3992;平均杂合度分别为0.8473、0.8229、0.8165、0.4202。研究结果说明,DRB1、DRB2、DYMS基因座为高度多态基因座,MB026基因座为中度多态基因座,在这4个微卫星基因座上,小尾寒羊、道赛特羊及特克赛尔羊均具有丰富的遗传多态性,可作为有效的遗传标记用于各绵羊品种的遗传多样性和系统发生关系分析。  相似文献   

8.
9.
This study evaluated bacterial skeletal disease in conjunction with the major histocompatibility complex (MHC) in a genetically pure line of broiler breeder chickens. Chickens from six broiler breeder flocks were examined for skeletal lesions, bacterial pathogens, and MHC genotype. During a 10-week period, eighty-eight, 9- to 21-week-old lame chickens and 34 normal, age-matched controls were selected. Tenosynovitis, arthritis, and femoral or tibiotarsal (or both) osteomyelitis occurred in 86 of 88 (97.7%) lame chickens. Ninety-five bacterial isolates were obtained from 83 of 88 (94.3%) lame birds and 4 of 34 (11.8%) controls. Staphylococcus spp. was isolated from 72.6% of the skeletal lesions, predominantly Staphylococcus aureus (38.9%). MHC B complex genotypes were determined by hemagglutination for 88 lame birds, 34 controls, and 200 randomly selected birds from each of the six flocks (1,200 total). Combined chi-square analysis revealed that the homozygous MHC genotypes B(A4/A4) (chi(2) = 14.54, P = 0.0063) and B(A12/A12) (chi(2) = 42.77, P = 0.0001) were overrepresented in the sample of symptomatic birds compared with random samples from the same flocks. The homozygous A4 and A12 MHC genotypes influenced flock chi-square values more than the corresponding heterozygotes. An MHC B complex influence on bacterial skeletal disease was apparent in this line of broiler breeders.  相似文献   

10.
The major histocompatibility complex (MHC) of cattle is known as the bovine leukocyte antigen (BoLA) and is located on chromosome 23. BoLA has been linked to variation in resistance to disease including bovine leukemia virus‐induced lymphoma and mastitis. Moreover, BoLA appears to influence other traits such as milk yield, growth and reproduction, which are not often measured in humans, and variations in individual immune response to antigen. The BoLA appears to be organized in a similar way to the MHC region in humans, but there are notable differences. A major rearrangement within the class II region has led to the division of the BoLA into two distinct subregions of chromosome 23 separated by about a third of the chromosome’s length. The class IIa subregion contains functionally expressed DR and DQ genes, while the class IIb subregion contains the genes of undefined status such as DYA, DYB, DMA, DMB, DOB, DOA, TAP1, TAP2, LAP2 and LMP7. In addition, one pair of human class II genes (DP) does not appear to have an equivalent in cattle, and there is one pair of DY genes that seem to be found only cattle, sheep and goats. In humans, three classical, polymorphic class I genes (HLA‐A, ‐B and ‐C ) are each present on all haplotypes. However, in cattle, none of the four (or more) classical class‐I genes identified are consistently expressed, and haplotypes differ from one to another in both the gene number and composition. These variations in both class I and II are likely to play an important role in cattle immune responses. This review summarizes current knowledge of the structural and functional features and disease association of BoLA genes.  相似文献   

11.
The MHC (BoLA) type has been determined for cattle from three breeds in West Africa. Seventy Baoule, 50 N'Dama and 30 Zebu cattle from the centre and north of the Ivory Coast were tested. Lymphocytes from these cattle were tested in a lymphocytotoxicity test with alloantisera detecting all of the internationally recognised BoLA sera. 78 sera prepared in Edinburgh and 57 in Jouy-en-Josas were used in the study. The results showed that sera prepared in Europe detect similar specificities in West Africa. Although with some specificities the frequencies differ from those seen in Europe. The frequency of null alleles is higher than in Europe in the Ndama and Zebu animals indicating the existence of additional specificities which will require the production of alloantisera in these breeds. However in the Baoule the null allele frequency is lower even then in some European breeds. The population data in which no animals have more than two workshop specificities is consistent with a single locus control in West Africa as in Europe.  相似文献   

12.
The major histocompatibility complex (MHC) genes play well‐defined roles in eliciting immune responses and combating infectious diseases. This genetic system is among the most polymorphic. The extent of genetic variation within a population has been directly correlated with fitness for many traits. The MHC class II locus DRA polymorphism was analysed in the endangered Sorraia horse, two other Portuguese and four New World horse breeds considered to be historically close to the Sorraia. Comparison of the Sorraia with other breeds demonstrated less MHC variation among Sorraia horses. If DRA polymorphism provides greater disease resistance, selective breeding to increase MHC polymorphism may increase fitness of this population.  相似文献   

13.
Variation in natural resistance to footrot may be genetically derived, implying that genetic markers for resistance may exist and allow selection of superior animals. In this study association between variation within the ovine MHC class II region and resistance to footrot was investigated in two trials. Half-sib progeny were subjected to a field challenge with footrot and their condition subsequently recorded. The animals were then typed at their MHC class II loci to investigate associations between inherited paternal haplotype and footrot status. In the first trial an association between MHC haplotype and footrot status was observed across all animals (P = 0.005), when the self-curing and resistant animals were combined (P = 0.002) and when the self-curing animals were excluded from the analysis (P = 0.001). No association was observed in the second trial, a result attributed to the dry weather conditions which led to poor disease transmission and unreliable disease classification.  相似文献   

14.
Research on the structure of the ovine major histocompatibility complex (MHC), Ovar-Mhc, and its association with resistance to various diseases in sheep has received increasing attention during recent years. The term 'resistance' is used to denote the capacity of an animal to defend itself against disease or to withstand the effects of a harmful environmental agent. The Ovar-Mhc is poorly characterised when compared to MHCs of other domestic animals. However, its basic structure is similar to that of other animals, comprising Class I, II and III regions. Products of the Class I and II genes, the histocompatibility molecules, are of paramount importance as these present antigens to T-lymphocytes, thereby eliciting immune responses. Several studies have been conducted in sheep on the involvement of MHC genes/antigens in genetic resistance to diseases, the majority being concerned with gastrointestinal nematodes. Studies on resistance to footrot, Johne's disease and bovine leukaemia virus (BLV)-induced leukaemogenesis have also been reported. Genes of all three regions were implicated in the disease association studies. In addition to disease resistance, Ovar-Mhc genes have been found to be associated with traits such as marbling and birthweight. The use of genetic markers from within the Ovar-Mhc may be useful, via marker-assisted selection, for increasing resistance to various diseases provided they do not impact negatively on other economically-important traits. This review summarises current knowledge of the role of Ovar-Mhc in genetic resistance to diseases in sheep.  相似文献   

15.
1. Association of the B blood group, the major histocompatibility complex (MHC) in chickens, with avian leukosis virus (ALV) infection shown by shedding of group-specific (gs) antigen was studied in an Australorp line selected for short oviposition interval to improve egg production. Three haplotypes (B8a, B9a and B21) were segregating in this line at frequencies of 66.7, 15.6 and 17.8%, respectively, averaged over three generations. 2. The relative risk (odds ratio) of a hen becoming a gs-antigen shedder was calculated for progenies of the dams shedding gs-antigen and those of non-shedding dams separately and pooled over three generations. In the progenies of shedding dams, the relative risk was not significantly different from 1.0 for the three haplotypes. In contrast, in the progenies of non-shedding dams, the relative risk was 0.67, 0.48 and 2.53 for B8a, B9a and B21, respectively, with the last two ratios being significantly different from 1.0. 3. The average effect of haplotype substitution on probability of shedding was estimated from a linear logistic model. The estimates (relative to zero for B8a) for B9a and B21, respectively, were -0.26 and 0.03 among the progenies of shedding dams, and -0.16 and 0.87 among the progenies of non-shedding dams. The last estimate only was highly significant. 4. These results suggest that the three haplotypes were similar in susceptibility to congenital infection through hatching eggs, but differed in susceptibility to post-hatching infection from other infected birds.  相似文献   

16.
Major histocompatibility complex (MHC) class II antigen expression in hepatocytes and its correlation with mononuclear cell infiltration into the liver were studied using immunohistochemical techniques in 38 Dobermans with Doberman hepatitis (DH). Liver biopsy samples were obtained from 18 dogs at the subclinical stage. Autopsy samples were taken from 6 DH dogs euthanized for a reason other than DH, from 14 dogs euthanized because of advanced liver failure and from 6 control Dobermans. Upon examination of the control liver samples, no expression of MHC class II antigens was detected in hepatocytes. By contrast, in 15 of the 18 DH biopsies (83%) and in all 20 DH autopsy liver samples, hepatocytes expressed MHC class II molecules. MHC class II expression was either cytoplasmic or membranous and occurred in conjunction with lymphocyte infiltration. A correlation between the inflammatory reaction and the expression of MHC class II in hepatocytes suggests that the aberrant expression of MHC class II in hepatocytes is induced by cytokines. Hepatocytes presenting a putative MHC class II molecule-associated autoantigen could thus become the target of an immune attack mediated by CD4+ T cells. In addition, corticosteroid treatment was observed to significantly decrease MHC class II expression in DH hepatocytes. Inappropriate MHC class II expression in hepatocytes and mononuclear cell infiltration are suggesting an autoimmune nature for chronic hepatitis in Dobermans.  相似文献   

17.
To overcome shortages of human donor organs for organ failure patients, we made a commitment to develop gnotobiotic miniature swine as an alternative organ donor source for xenotransplantation. For this, we have constructed an absolute barrier‐sustained gnotobiotic facility. Pregnant sows of gnotobiotic miniature swine, were procured and germfree piglets were obtained by hysterectomy. These were maintained in germfree isolators for about 4 weeks, deprived of colostrum and were fed sterilized soybean milk. They were associated with di‐flora, anaerobic Lactobacillus sp. and Streptococcus sp. After confirmation of successful associations, gnotobiotic piglets were transferred into the facility aseptically. The piglets are maintained on high‐efficiency particle air‐filtered air in and out; maintaining constant room air pressure of 33 ± 3 mmAq, and sterile water and diet. In 10 sessions of hysterectomy, 18 male and 32 female piglets were obtained of which piglets (M six, F eight) died within 5 days. Among live piglets, piglets (M eight, F 12) were confirmed to be germfree by microbiological monitoring. For research of xenotransplantation, one consistent experimental result was essential. Therefore, major histocompatibility complex class II which related innate immunity, homozygotic gnotobiotic miniature swine was developed. As a result, genotyping revealed 14 individuals to be homozygous for major histocompatibility complex class II (DRB, DQB) as 0301, three individuals were homozygous as 0201 and each of two were homozygous for DQB as 0701 and DRB as 0404, respectively. Genetic modifications and immunological research for ideal alternative organ sources are in progress.  相似文献   

18.
Tropical Animal Health and Production - Animal breeding programs have used molecular genetic tools as an auxiliary method to identify and select animals with superior genetic merit for milk...  相似文献   

19.
Major histocompatibility complex (MHC) class I restricted cellular immune responses play an important role in immunity to intracellular pathogens. By binding antigenic peptides and presenting them to T cells, class I molecules impose significant selection on the targets of immune responses. Candidate vaccine antigens for cellular immune responses should therefore be analysed in the context of MHC class I antigen presentation. Transgenic mice expressing human MHC (HLA) genes provide a useful model for the identification of potential cytotoxic T lymphocyte (CTL) antigens. To facilitate the analysis of candidate CTL vaccines in cattle, we have produced transgenic mice expressing a common bovine MHC (BoLA) class I allele.The functional BoLA-A11 gene, carried on a 7 kb genomic DNA fragment, was used to make transgenic mice by pronuclear microinjection. Three transgenic mouse lines carrying the BoLA-A11 gene were established. Expression of the BoLA-A11 gene was found in RNA and the A11 product could be detected on the surface of spleen and blood cells. Functional analysis of the A11 transgene product, and its ability to act as an antigen presenting molecules in the mouse host will be discussed.  相似文献   

20.
Turkeys are extremely sensitive to aflatoxin B1 (AFB1) which causes decreased growth, immunosuppression and liver necrosis. The purpose of this study was to determine whether probiotic Lactobacillus, shown to be protective in animal and clinical studies, would likewise confer protection in turkeys, which were treated for 11 days with either AFB1 (AFB; 1 ppm in diet), probiotic (PB; 1 × 1011 CFU/ml; oral, daily), probiotic + AFB1 (PBAFB), or PBS control (CNTL). The AFB1 induced drop in body and liver weights were restored to normal in CNTL and PBAFB groups. Hepatotoxicity markers were not significantly reduced by probiotic treatment. Major histocompatibility complex (MHC) genes BG1 and BG4, which are differentially expressed in liver and spleens, were not significantly affected by treatments. These data indicate modest protection, but the relatively high dietary AFB1 treatment, and the extreme sensitivity of this species may reveal limits of probiotic-based protection strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号