首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 180 毫秒
1.
葡萄温室栽培新模式   总被引:1,自引:0,他引:1  
温室葡萄栽培在多年一栽情况下,有些品种如巨峰等,连续形成花芽的能力较差,在扣棚期间形成的新梢上,不能或很少分化出花芽,出现花序变小、退化和果技率下降,容易造成减产和品质下降。压条更新栽培可以较好地解决这一问题。  相似文献   

2.
据《北方园艺》2013年第19期《短梢修剪对葡萄花芽分化及碳氮物质代谢的影响》(作者高秀岩)报道。为研究短梢修剪对葡萄花芽分化进程及营养物质含量的影响,作者以1年生“无核白鸡心”葡萄为试材,分5个不同修剪阶段,  相似文献   

3.
以"无核白鸡心"和"巨峰"葡萄为试材,采用盆栽的方式,研究了不同水分处理对"无核白鸡心"和"巨峰"葡萄生长及生理指标的影响。结果表明:在重度水分胁迫条件下,"无核白鸡心"的长势最差,相同水分胁迫条件下"巨峰"葡萄的株高、光合速率、水分利用效率、SOD活性及脯氨酸含量显著高于"无核白鸡心"葡萄。可见,"巨峰"葡萄的抗旱性强于"无核白鸡心"葡萄。  相似文献   

4.
【目的】探讨阳光玫瑰葡萄生长期花芽分化进程及相关生理分子水平变化,为葡萄生产调控及花芽分化深入研究提供理论参考。【方法】以4年生阳光玫瑰葡萄为试材,通过徒手剥离冬芽鳞片在体式解剖镜下观察冬芽形态结构变化,测定花芽分化过程中第5节位叶片内碳水化合物、矿质元素含量及冬芽内9个成花关键基因的表达。【结果】南宁地区阳光玫瑰葡萄在新梢6片展叶期时开始花芽形态分化,在末花期进入花序原基分化期。叶片可溶性总糖、淀粉含量在花序原基分化期后显著升高。叶片P、K、Ca和Mg元素含量在花芽形态分化起始时下降,在花序原基分化后60 d时含量显著降低。冬芽中VvFT和VvSOC1基因在花芽分化起始时表达水平较高;VvLFY、VvAP1、VvFUL、VvAP2、VvAP3和VvAG基因均在花序原基分化期及花序原基分化期后80~100 d出现表达波峰,VvFLC基因在花序原基分化后60~100 d的表达水平较高。【结论】南宁地区阳光玫瑰葡萄花芽分化进程开始较早。生产上在果实膨大期和软化期前后应适当补充磷、钾、钙、镁肥,以促进果实发育、花序原基及其各级穗轴分化。VvFT和VvSOC1基因参与诱导始原基及花序原基分化,...  相似文献   

5.
温室甜樱桃花芽形态分化观察   总被引:1,自引:0,他引:1  
【目的】观察温室条件下甜樱桃花芽形态分化时间和各时期的特征,为栽培者进行适时管控、提高花芽分化质量提供理论依据。【方法】从温室甜樱桃硬核期开始,定期取‘美早’‘红灯’‘早大果’3个品种的花芽,利用石蜡切片法观察花芽形态分化状态。【结果】昌黎温室中‘美早’花芽在3月中旬开始形态分化,至6月中旬雌蕊原基分化完成,分化时间持续85 d左右。‘红灯’和‘早大果’形态分化于3月下旬开始,6月下旬完成,持续90 d左右。乐亭‘美早’花芽形态分化比昌黎早15 d开始,花芽分化持续时间100 d左右,分化速度慢于昌黎。‘美早’花芽分化开始于硬核期,‘红灯’和‘早大果’花芽分化开始于成熟期前后。【结论】花芽分化开始时间不能根据品种成熟期来判断,应通过观察分化状态来确定。每个品种花芽形态分化开始时间与其成熟期的关系相对稳定。  相似文献   

6.
1花芽分化甜樱桃的花芽分化包括生理分化期和形态分化期两个阶段,花束状果枝和短果枝上的花芽在硬核期就开始分化的,果实采收后10天左右,花芽开始大量分化整个分化期需40~45天完成。叶芽萌动后,长成具有6~7片叶簇的新梢的基部各节,其腋芽多能分化成花芽,第二年结果。而开花后长出的新梢顶部各节,  相似文献   

7.
苹果树花芽分化需要充足的树体营养积累。一般果树在春梢停长后开始花芽分化,一直持续到10月,一般集中分化在6—9月,此时为分化盛期,主要是顶花芽形成时期,10月以后为缓慢期。中后期的营养不足往往导致第2年花而不实,往往冬剪时,看似花芽,结果,在开花时却是大叶芽。充足的营养物质是花芽质量好坏的关键。  相似文献   

8.
<正>1樱桃树的生长特性栽培品种的樱桃树多树体高大,生长势强,干性强,层性明显。芽分叶芽和花芽,其腋芽为单生,每一叶腋间只形成一个叶芽或一个花芽,花芽为纯花芽。樱桃树萌芽力强,成枝力较弱,潜伏芽的寿命长。花芽分化具有时期集中、分化过程迅速的特点,花芽的生理分化期主要在春梢停长,采果后10 d左右;形态分化期在采果后的1~2个月。樱桃开花较早,甜樱桃花芽在平均温度10℃以上时开始萌动,15℃以上时  相似文献   

9.
葡萄品种高节位花芽分化观察研究   总被引:4,自引:0,他引:4  
花芽分化一直是包括葡萄在内的所有果树的重要研究课题之一。传统理论认为 ,果树枝条上的芽具有异质性 ,葡萄的花芽分化集中在枝蔓中部一定的节位上 ,不同品种花芽在枝蔓上分布的部位不同 ,因此相应提出了葡萄长、中、短梢的修剪概念〔1〕。 2 0世纪 60年代 ,前苏联学者曾发现葡萄品种佳里酿具有在枝蔓高节位分化花芽的现象 ,并将其称为“花序芽外分化”〔2〕。 2 0世纪 90年代初 ,作者曾报道了巨峰系葡萄品种枝蔓高节位花芽分化的现象 〔3〕,引起了人们的重视。为了进一步探讨葡萄枝蔓高节位花芽分化的普遍性 ,尤其是近年来新选育、新引进…  相似文献   

10.
通过1979~1982年在山东益都对山楂芽的观察发现:叶芽鳞片在新梢生长过程中(4月上旬~5月上旬)形成。芽在鳞片形成之后约有两个月时间的停顿,自8月上旬进入雏梢期。除徒长枝和幼旺发育枝外,一般新梢的叶节数在雏梢期已基本确定。花芽分化在叶芽雏梢形成之后约9月中旬开始,至冬季休眠期已分化到单花的花萼出现期。花瓣及雄蕊、雌蕊的分化期,于次年2~3月进行。 花芽的形成,与芽的着生位置、芽内雏梢的形成程度有关。花芽内的花朵数在冬季休眠前已基本确定。果实着色后至冬季休眠前是花芽和花朵数量形成的重要建造时期。  相似文献   

11.
研究了11个葡萄品种3年生树在四川乐山地区避雨栽培条件下的花芽分化表现。结果表明,结果母枝的花芽分化率,魏可、维多利亚、黑芭拉多、金手指、金优2号和巨玫瑰6个品种的都高于50%,较易形成花芽;户太8号、巨峰、夏黑的在43%~48%;美人指和红指较难形成花芽。结果母枝不同节位的花芽分化率,多数品种在第3节位≥50%;结果枝上花穗着生节位在第3.8~4.9节,其中双花率以巨玫瑰、巨峰和户太8号较高,分别为83.45%、73.61%和73.06%。以结果母枝的花芽分化率≥50%节位作为冬剪的最低节位,则金优2号、户太8号、巨玫瑰、金手指、维多利亚5个品种在第3~4节,黑芭拉多和巨峰2个品种在第2~3节,魏可在1~2节。夏黑表现花芽分化率较低,为43.33%,可能与夏黑不耐弱光有关,设施栽培时应加强透光性。  相似文献   

12.
为解决设施葡萄促早栽培的“隔年结果”问题,以4年生‘贝达’嫁接的不耐弱光的‘夏黑’和耐弱光的‘京蜜’为试材,通过石蜡切片法观察新梢2 ~ 7节各节位冬芽的花芽分化状况,绘制各节位冬芽群体的花芽分化进程图,研究设施促早栽培条件下耐弱光能力不同的葡萄品种冬芽的花芽分化规律。结果表明:(1)花序主轴的出现是成花起始的标志。(2)冬芽雏梢发育到含有两个叶原基至始原始体开始形成这一阶段是诱导设施葡萄成花的关键时期(生理分化期),始原始体分化期和始原始体分裂成二分枝之后是设施葡萄成花调节的两个关键时期。(3)始原始体出现之后,冬芽雏梢生长点和始原始体发育同步是成花良好的保证,冬芽雏梢生长点营养生长过旺是抑制成花,造成“隔年结果”的重要原因。(4)‘京蜜’葡萄对设施促早栽培环境具有极佳的适应性,新梢各节位冬芽花芽分化的各阶段持续时间短且重叠阶段少,均具有良好成花能力,节位优势不明显,花芽分化从新梢基部冬芽向上依次进行,高节位冬芽花芽分化稍迟,但速度较快;冬剪采取中短梢修剪即可实现连年丰产;‘夏黑’葡萄对设施促早栽培环境的适应性差,新梢各节位冬芽花芽分化的各阶段持续时间长且多阶段相互重叠,虽然从新梢基部向上成花数量逐渐增加,成花质量逐渐改善,但不能满足生产要求,存在严重的隔年结果现象,必须采取更新修剪等相应措施方能实现连年丰产。  相似文献   

13.
对节瓜4个品种花芽分化的节位进行了组织学观察,并对其开花节位和性别表现进行了统计分析.结果表明:不同品种节瓜的花芽分化规律一致,都在植株第2片真叶展平时期、第6节处开始花芽分化;分化节位与植株展平叶片数之间呈显著线性关系;不同生长阶段花芽分化速率不同,苗期较快,抽蔓期较慢;田间栽培节瓜的现蕾节位和植株花性别表现因品种不同而有明显的差异.  相似文献   

14.
以‘巨峰’等14个葡萄品种试管苗为试材,研究不同保存温度和培养基表面覆盖矿物油对其生长的影响。结果表明:低温可有效延长试管苗的继代间隔时间,转入常温培养后恢复生长良好,但不同品种适宜的温度不同。设定存活率降至30%~40%时的保存时间为最长继代时间,‘红斯威特’‘莫丽莎’‘皇家夏天’‘克瑞森无核’葡萄最适低温9℃,可保存850 d以上,部分可至1 060 d;‘巨峰’‘巨玫瑰’‘皇家秋天’‘火焰无核’‘夏黑’‘公主’‘粒粒特’‘赤霞珠’‘美人指’‘魏可’最适低温12~15℃,可保存350~600 d。葡萄试管苗低温保存前需常规培养一段时间(预培养),并根据培养温度及品种决定适宜的预培养时间,一般为7~21 d。接种不带叶片的单芽茎段并立即在培养基表面覆盖6~8 cm厚矿物油能将多个葡萄品种试管苗在常温下的继代间隔时间由150 d延长至420 d,将矿物油倒出,试管苗即可恢复生长。  相似文献   

15.
利用显微解剖和石蜡切片技术,对四季桂品种群中‘四季桂’(Osmanthus fragrans‘Sijigui’)不同季节的花芽分化及开花特性进行研究。‘四季桂’一年成花3次,分别于3月初、6月上旬和10月底开始花芽分化,4月下旬、8月底和11月底完成,分别历时约2个月、2个半月和1个月。6月开始的花芽分化和开花过程与秋桂品种群基本相似,分化后需要低温才能开花,最终形成聚伞花序,无总梗,花粉发育正常。而10月底分化的花芽在完成分化后随即开花,形成的花序有总梗,且有伸长与未伸长之分,长度分别为(0.80±0.11)cm和(3.50±0.71)cm。3月分化的花芽与新梢同时生长发育,分化完成后随即开花。春季和冬季的两次分化形成的均是圆锥状花序,具总梗,花粉均败育。结果表明‘四季桂’自身存在着不同的成花机制。  相似文献   

16.
纬度和海拔对主要苹果品种花芽分化期的影响   总被引:1,自引:0,他引:1  
花芽分化调控是苹果优质高产高效栽培的关键环节之一,准确把握花芽分化时期是精准调控的前提和基础,为探究纬度和海拔对苹果花芽分化期的影响,在陕西省杨凌示范区、甘肃省静宁县和四川省茂县3个苹果产区,用摘叶和摘果的方法研究了茂县(海拔1 425、1 680和2 050 m)、静宁(海拔1 601 m)‘长富2号’苹果,杨凌地区(海拔525 m)‘长富2号’、‘烟富6号’、‘嘎拉’和‘秦冠’苹果的花芽分化差异。结果表明:在杨凌地区花芽生理分化的时间为‘长富2号’56 d,‘烟富6号’49 d,‘嘎拉’56 d,‘秦冠’42 d。在茂县不同海拔试验点,‘长富2号’花芽生理分化期持续的时间长短为低海拔高海拔(海拔1 425 m试验点为75 d,1 680 m为70 d,2 050 m为65 d)。‘长富2号’在不同地区,花芽分化持续时间的长短为低纬度高纬度[茂县(31o33′N)为70 d,杨凌(34o18′N)为56 d,静宁(35o41′N)为49 d]。枝条停长时间与花芽分化密切相关,枝条停长越晚越不易形成花芽。在高纬度和高海拔地区枝条停长晚,但是花芽分化持续时间相对短。‘嘎拉’和‘长富2号’花芽分化从6月初开始至10月底分为6个时期,每个时期有明显的特征,各个时期相互交叉重叠;‘长富2号’各分化时期比‘嘎拉’开始的早,结束的晚,并且持续时间长,相对分散,认为这可能与富士苹果成花难有关。  相似文献   

17.
无核葡萄品种资源性状的聚类分析   总被引:5,自引:0,他引:5  
对国家果树种质郑州葡萄圃内的37个无核葡萄品种的16个描述性状和11个测量性状进行了调查,借助SPSS10.0统计软件对结果聚类分析,根据其性状相近程度,将供试的无核葡萄品种划分为3个品种群和5个亚群。同一品种群或亚群内的品种在形态特征上较为相似,遗传背景较为近似,利用不同品种群间的品种进行杂交有望提高无核葡萄育种效率。聚类分析结果可为无核葡萄育种中无核品种×无核品种杂交组合的亲本选择提供参考依据。  相似文献   

18.
杨桃新梢花芽分化及其碳水化合物含量的变化   总被引:2,自引:0,他引:2  
武萍萍  周碧燕 《园艺学报》2007,34(5):1151-1156
 以6年生盆栽甜杨桃为材料,观察了新梢上各节位芽的分化情况,比较了新梢上不同节位的碳水化合物含量。结果表明:当第2节位开始“露红”(肉眼可辨红色的花芽)时,新梢上各节位上的芽(顶芽除外)基本上进入形态分化阶段。第3和第4节位“露红”的枝条,韧皮部和木质部可溶性糖含量比第1位和第2位“露红”的枝条高。徒长枝第1节位的可溶性糖和淀粉含量都较高,第3、第5节位的含量与第1或第2节位“露红”的成花枝上相应节位的含量相当。本研究结果表明,杨桃新梢上的芽在进行形态分化的过程中,枝条仍在积累碳水化合物。  相似文献   

19.
为了解南亚热带广东果梅品种的自然休眠特性,采用插枝法对6个主栽果梅品种的自然休眠特性进行了连续4年的观察。结果表明,供试的品种可划分为较短休眠期和较长休眠期2个品种组,横核、大核青属较短休眠期品种组,花芽的休眠期为34.5d、叶芽的休眠期为44.8d;软枝大粒梅、白粉梅、李梅和桃梅属较长休眠期品种组,花芽的休眠期为46.7d、叶芽的休眠期为60.9d。果梅最早进入自然休眠在10月5日,花芽结束休眠最晚在11月30日,叶芽最晚在12月15日。果梅自然休眠期间的日均气温平均值是花芽22.1℃、叶芽21.5℃,日最低气温平均值是花芽18.4℃、叶芽17.6℃,果梅的自然休眠是在较高气温条件下通过的。认为可采用0~14℃低温模式来研究南亚热带果梅品种的低温需求量,在这个模式下,较短休眠期品种组的低温需求量为花芽55.8h,叶芽110h,较长休眠期品种组的低温需求量为花芽94.3h,叶芽180.3h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号