首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Whitefly infestations and parasitism were monitored year-round in overlapping cotton crops sown on three dates in Burkina Faso. The relative abundance of B. tabaci (Gennadius) and its parasitoids, Eretmocerus spp. and Encarsia spp., was recorded in control and insecticide-sprayed plots. Low B. tabaci populations developed during the first half of the rainy season. Pest populations increased when rainfall was ending, and the levels reached were higher in insecticide-treated plots (48 nymphs/leaf) than in control plots (25 nymphs/leaf). Parasitism reached 88.7% in control plots, and 53.7% in insecticide-treated plots. Eretmocerus spp. nymphs were more abundant than Encarsia spp. in both treated and control plots. A positive and significant curvilinear relationship was observed where % parasitism, on a linear scale, rose to a plateau with logarithmic increase in host density. In general % parasitism was correlated with the abundance of pest populations except in March and April where parasitism increased while B. tabaci populations decreased. In a separate experiment, adult Eretmocerus spp. were released into caged cotton plants to study the impact of augmentative releases of the parasites on the population dynamics of the pest. Pest densities increased from 1.47 nymphs/leaf to 39.4 nymphs/leaf in the control, but were reduced to 0.8 and 0.6 nymphs/leaf in the cages where, respectively, 4 and 8 parasitoids were released per plant. It appears that parasitism is an important factor reducing B. tabaci populations during and after the cotton-growing season, and that Eretmocerus spp. are promising biological control candidates against the pest in cotton.  相似文献   

2.
BACKGROUND: Bemisia tabaci, the sweetpotato whitefly, is a globally invasive pest that causes serious agricultural damage by transmitting plant viruses. This pest forms a cryptic species complex that displays morphologically indistinguishable biotypes. Among them, the B and Q biotypes are the most important pests worldwide. Because they have different levels of insecticide resistance, these biotypes must be identified in order to achieve proper pest control. Therefore, a convenient, rapid and specific detection method for identifying the two biotypes is necessary. RESULTS: Loop‐mediated isothermal amplification (LAMP) was employed for rapid identification of B. tabaci B and Q biotypes. By combining a quick DNA extraction method, identification of the two biotypes was achieved within 1 h of detection time. The LAMP assay was applied to study the dynamics of B. tabaci biotypes both in the field and in greenhouses. It was found that, while temperature may be important for population dynamics of the whitefly in the field, population dynamics in greenhouse conditions may be influenced by the types of insecticide. CONCLUSION: The newly designed LAMP assay is a simple, rapid and accurate method for identifying the B and Q biotypes. It can be conducted by non‐specialists and can contribute to pest management. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
为明确山东寿光地区Q型烟粉虱对番茄褪绿病毒(Tomato chlorosis virus,To CV)感病流行的影响及其传毒特性,于2014年调查了该地区设施番茄上烟粉虱种群动态与To CV发病情况,利用特异引物对烟粉虱体内To CV进行了RT-PCR检测;并在室内测定了带毒Q型烟粉虱取食时间和种群数量对To CV感病株率的影响。结果表明,在番茄发病植株上采集的烟粉虱种群体内可检测到To CV;春茬番茄To CV发病株率随烟粉虱种群数量增加而逐渐升高,4—6月是To CV发生高峰期,6月22日发病株率达100%;秋茬番茄烟粉虱种群数量从10月下旬明显下降,而To CV发病株率升高,11月12日发病株率达100%;室内试验表明,To CV感病株率随着带毒Q型烟粉虱数量与取食时间的增加而明显升高。研究表明,Q型烟粉虱能有效传播To CV,且其种群数量对To CV发病株率存在显著影响,可通过防控烟粉虱以控制To CV的危害。  相似文献   

4.

BACKGROUND

Bemisia tabaci is a globally significant agricultural pest including in Australia, where it exhibits resistance to numerous insecticides. With a recent label change, buprofezin (group 16), is now used for whitefly management in Australia. This study investigated resistance to pyriproxyfen (group 7C), spirotetramat (group 23) and buprofezin using bioassays and available molecular markers.

RESULTS

Bioassay and selection testing of B. tabaci populations detected resistance to pyriproxyfen with resistance ratios ranging from 4.1 to 56. Resistance to spirotetramat was detected using bioassay, selection testing and sequencing techniques. In populations collected from cotton, the A2083V mutation was detected in three populations of 85 tested, at frequencies ≤4.1%, whereas in limited surveillance of populations from an intensive horticultural region the frequency was ≥75.8%. The baseline susceptibility of B. tabaci to buprofezin was determined from populations tested from 2019 to 2020, in which LC50 values ranged from 0.61 to 10.75 mg L−1. From the bioassay data, a discriminating dose of 200 mg L−1 was developed. Recent surveillance of 16 populations detected no evidence of resistance with 100% mortality recorded at doses ≤32 mg L−1. A cross-resistance study found no conclusive evidence of resistance to buprofezin in populations with high resistance to pyriproxyfen or spirotetramat.

CONCLUSIONS

In Australian cotton, B. tabaci pest management is challenged by ongoing resistance to pyriproxyfen, while resistance to spirotetramat is an emerging issue. The addition of buprofezin provides a new mode-of-action for whitefly pest management, which will strengthen the existing insecticide resistance management strategy. © 2023 Commonwealth of Australia. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

5.
The recent upsurgence ofBemisia tabaci (Genn.) as an important insect pest and vector ofTomato yellow leaf curl virus (TYLCV) is directly linked to serious damage to tomato crops grown throughout Japan. The molecular genetic identification and phylogenetic relationships of 12B. tabaci populations collected from representative locations in Japan were determined based on the mitochondrial cytochrome oxidase I (mtCOI) sequence. Phylogenetic analysis of the whitefly mtCOI sequence indicated that both the invasive B and Q biotypes now occur in Japan. The Q biotype was found at four locations: Mihara in Hiroshima, Nishigoshi in Kumamoto, Miyanojo and Okuchi in Kagoshima prefectures; the remaining eight collections were identified as the B biotype. This is the first report of the introduction of Q biotype in Japan. http://www.phytoparasitica.org posting July 21, 2006.  相似文献   

6.
Xie W  Wang S  Wu Q  Feng Y  Pan H  Jiao X  Zhou L  Yang X  Fu W  Teng H  Xu B  Zhang Y 《Pest management science》2011,67(1):87-93
BACKGROUND: The polyphagous B‐biotype Bemisia tabaci (Gennadius) has developed a high resistance to commonly used insecticides in China. To illustrate the induced changes by host plant, bioassay and biochemical research on five different host populations were investigated. RESULTS: Except for bifenthrin, all tested insecticides showed lower toxicity to the B. tabaci poinsettia population compared with other host populations. Moreover, four insecticides, the exceptions being abamectin and fipronil, showed highest toxicity towards the tomato population. The LC50 values of the poinsettia population, particularly towards acetamiprid, were 14.8‐, 10.3‐ and 7.29‐fold higher than those of tomato, cucumber and cabbage respectively. The CarE activities of B. tabaci cabbage and cucumber populations were all significantly higher than those of poinsettia, cotton and tomato populations. The ratio of the cabbage population was 1.97‐, 1.79‐ and 1.30‐fold higher than that of poinsettia, cotton and tomato respectively. The frequency profiles for this activity also have obvious differences. The GST and P450 activities of the cucumber population were the lowest in the five host populations. CONCLUSION: Long‐term induction of host plants for B‐biotype B. tabaci could influence their susceptibilities to several insecticides. Rational selection and usage of insecticides for particular hosts will be helpful for resistance management and control of this species. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14–17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64).  相似文献   

8.
The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is an important pest due to its capacity for producing strong infestations and transmitting plant viruses. The New World putative species of B. tabaci complex (NW) is the indigenous whitefly of the Americas, but only the invasive Middle East-Asia Minor 1 putative species of B. tabaci complex (MEAM1), commonly referred to as the “B biotype” was identified in a limited scope sampling in Venezuela. Similarly to MEAM1 invasions elsewhere, in this South American country there has been an increase in the geographic range and abundance of B. tabaci, and in the number of viruses that it transmits since the late 1980s. We estimated the diversity of B. tabaci to elucidate their role in the epidemiology of geminiviruses in Venezuela. Thirteen microsatellite loci were screened in samples collected from 19 localities in ten major agricultural states. A Bayesian clustering method (Structure) grouped the samples into two genetic groups. Control samples from whiteflies NW and MEAM1 and partial sequencing of the mitochondrial cytochrome oxidase I gene showed that our samples of B. tabaci populations from Venezuela fall within NW and MEAM1 groups. In this survey, MEAM1 was predominant over NW whitefly in a proportion of 35:1. No evidence was observed for gene flow between indigenous and invader whitefly. Altogether, our results stress the urgency for controlling the proliferation of the invasive whitefly.  相似文献   

9.
为明确江苏地区Q型烟粉虱的遗传多样性及其入侵来源,基于mt DNA COI基因序列,对2010、2011年采自江苏13个市的Q型烟粉虱种群进行了单倍型分析。结果显示,江苏地区Q型烟粉虱有4个单倍型,分别为单倍型Q1、Q2、Q3、Q4,不同单倍型的分布和发生频率不同,其中单倍型Q2是13个地理种群的共享单倍型,2010、2011年的发生频率均超过50%;单倍型Q1和Q3分别是部分地理种群的共享单倍型,发生频率较低;单倍型Q4仅在扬州种群中出现,发生频率最低;单倍型Q1和Q3亲缘关系较近,单倍型Q2和Q4亲缘关系较近,表明各地理种群间既有一定的基因交流,也存在一定程度的遗传分化;系统发育分析表明,江苏地区的Q型烟粉虱可能来源于西部地中海地区,与日本的Q型烟粉虱具有相同的入侵来源。  相似文献   

10.
The whitefly Bemisia tabaci has been a serious pest in protected tomato crops since 1995 in the south of Portugal (Algarve), causing severe losses mainly resulting from Tomato yellow leaf curl virus (TYLCV), first reported in the autumn/winter season. In order to manage and control the B. tabaci/TYLCV complex, experimental field trials were carried out between 1997 and 2000. Several control methods were tested, such as the application of white screen nets to windows and doors, chemical treatments against B. tabaci and the use of cucumber as a trap crop. The results show that the percentage of plants with TYLCV symptoms mainly reflects B. tabaci infestation level in the first 6 weeks. Screen net protection was the control method that clearly provided a low incidence of plants with TYLCV symptoms in the autumn/winter season. Additionally, insecticide treatments, made weekly in the first 6 weeks, may give improved protection. In the winter/spring season, the B. tabaci/TYLCV complex is a minor problem because of the low populations of B. tabaci and the climatic conditions. Information about the work in progress and results was given to growers through visits to the experimental fields and oral presentations.  相似文献   

11.
BACKGROUND: The onion thrips, Thrips tabaci Lindeman, is a major pest of several crop plants in the genus Allium, such as onions, garlic and chives. In Israel, these crops are grown in open fields and in protected housing. This thrips is usually controlled by the application of chemical insecticides. In recent years, spinosad, emamectin benzoate and carbosulfan have been the major insecticides used for the control of the onion thrips. In the last 4 years, growers of chives and green onion from several regions of Israel have reported a significant decrease in the efficacy of insecticides used to control the onion thrips. RESULTS: The susceptibility of 14 populations of the onion thrips, collected mainly from chives between the years 2007 and 2011, to spinosad, emamectin benzoate and carbosulfan was tested using a laboratory bioassay. The majority of the populations showed significant levels of resistance to at least one of the insecticides. LC50 values calculated for two of the studied populations showed that the resistance factor for spinosad compared with the susceptible population is 21 393, for carbosulfan 54 and for emamectin benzoate 36. Only two populations, collected from organic farms, were susceptible to the insecticides tested. CONCLUSION: This is the first report of a high resistance level to spinosad, the major insecticide used to control the onion thrips. Resistance cases to spinosad were associated with failures to control the pest. Populations resistant to spinosad also had partial or complete resistance to other insecticides used for controlling the onion thrips. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
为了解烟粉虱的寄生蜂海氏桨角蚜小蜂的特征、发生规律,观察了其新疆种群的形态特征,于2012年在田间比较了该寄生蜂在棉花、甜瓜、茄子和辣椒上与烟粉虱的时空动态。结果表明,在辣椒上海氏桨角蚜小蜂成虫发生期最早,7月5日始见成虫;在4种作物上海氏桨角蚜小蜂和烟粉虱成虫分别在茄子和甜瓜上的发生数量最多,单叶虫口数量最高分别为16.12和66.47头;除辣椒外,在其它作物上成蜂的发生期比烟粉虱成虫约晚20 d,而被寄生的烟粉虱若虫与未被寄生的若虫时空动态较吻合;烟粉虱和海氏桨角蚜小蜂在植株上的成虫数量均表现出明显的上部中部下部的分布特征。研究表明,与烟粉虱比较,海氏桨角蚜小蜂新疆种群的时空动态表现出明显的滞后性和跟随效应,且其可能对寄主植物有一定的选择性。  相似文献   

13.
福建省烟粉虱不同地理种群遗传结构特征   总被引:1,自引:3,他引:1  
为明确福建省烟粉虱种群遗传结构特征,基于福建省烟粉虱不同地理种群中40个代表性的线粒体COI基因序列,分析了种群遗传多样性、遗传分化及分子变异情况,并构建了单倍型系统发育树与网络图。结果显示:在590 bp长度的mt COI基因序列中有效位点558个,其中187个核苷酸位点存在变异;序列核苷酸中A、T、C、G含量分别为42.32%、24.36%、20.25%、13.06%,其中A+T的含量为66.68%,表现出明显的A+T偏向性;共检测出11个单倍型,其中Hap3、4、7、9、11为特殊单倍型;种群多样性指数为0.838,核苷酸多样性指数为0.093,表明遗传多样性水平较高;AMOVA分析表明种群遗传变异主要来自种群内,总种群遗传分化系数仅为0.027,种群遗传分化较低。表明福建烟粉虱种群基因交流未受地理距离明显影响,种群遗传分化不显著。  相似文献   

14.
Thrips tabaci (Thysanoptera: Thripidae) is a major pest of onion worldwide. In 2011, research was conducted in a commercial onion field in northwestern Italy to: (i) assess the presence of autochthonous onion thrips predators on the crop; and (ii) evaluate the impact of the commonly used insecticides and alternative pest management strategies on onion thrips and its autochthonous predators. Toxicity of the active ingredients on local populations of onion thrips and its predatory thrips was also evaluated in laboratory bioassays. During field surveys, the highest and lowest thrips infestations were observed in plots treated with lambda-cyhalothrin and spinosad, respectively. The effectiveness of spinosad on T. tabaci was also confirmed in laboratory bioassays. The dominant zoophagous species Aeolothrips intermedius (Thysanoptera: Aeolothripidae) was more adversely affected by treatment with lambda-cyhalothrin, confirmed by a decrease in predator/prey ratios. The use of spinosad and acibenzolar-S-methyl is suggested as an alternative to conventional insecticides for the preservation of A. intermedius, which proved to be a potential biological control agent of T. tabaci.  相似文献   

15.
The biotype status of samples of the whiteflyBemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) collected from several field and greenhouse sites in Israel during 1999–2000 was determined by polyacrylamide gel electrophoresis (PAGE) for general esterases, and by RAPD-PCR using primers of arbitrary sequence. Results of this survey provide the first published evidence for the occurrence of theB. tabaci Q biotype, alongside the more widely distributed B biotype. Based on the collected samples, it appears that both the B and Q biotypes are present in Israel, and that field populations consist of a mixture of the two biotypes. A possible link betweenB. tabaci biotypes and insecticide resistance is discussed. Contribution no. 508/02 from the Inst. of Plant Protection, ARO, The Volcani Center, Bet Dagan, Israel. http://www.phytoparasitica.org posting Dec. 5, 2002.  相似文献   

16.
For the UK, Bemisia tabaci poses a threat primarily to protected vegetable crops due to the transmission of several plant-pathogenic viruses. There are at least 24 different biotypes of B. tabaci that cannot be differentiated through morphological traits. The B (Middle East-Asia Minor 1 species) and Q (Mediterranean species) biotypes are widely considered to be the most important and, as such, the ability to rapidly and precisely biotype B. tabaci interceptions is vital when developing effective control strategies. Intercepted adult/pupal B. tabaci received from the UK Plant Health and Seeds Inspectorate (PHSI) during 2002–2003 (n?=?60) and 2010–2011 (n?=?42) were both biotyped and tested for the presence of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) using a real-time PCR assay based on TaqMan? chemistry. The positive results indicated that during 2002–2003 the Q biotype comprised 68.3?% of the interceptions whilst in 2010–2011 it comprised 66.7?% of the B. tabaci samples intercepted. Only three of the B biotypes collected during 2002–2003 were positive for TYLCSV, two originating from Israel and the other of unknown origin. The implications in regards to pest management of the insect are discussed.  相似文献   

17.
烟粉虱基因组和转录组研究及展望   总被引:1,自引:1,他引:0  
烟粉虱Bemisia tabaci(Gennadius)是世界性的重要害虫,为物种复合体,其中少数隐种近30年来入侵世界各国,并暴发成灾。在我国,最近几年MED隐种已经逐渐替代了之前入侵的MEAM1隐种,成为我国农田生态系统中的主要致害隐种。基因组和转录组研究的不断深入极大地推动了烟粉虱入侵机制、隐种替代机制、种系发生、不同隐种或地理种群鉴定、抗药性机制、烟粉虱与共生菌互作等领域的研究。本文简要综述了烟粉虱基因组和转录组测序的研究进展,介绍了转录组数据在种的分化和鉴定、共生菌的互作及抗药性研究领域的应用。  相似文献   

18.
为明确天津市烟粉虱Bemisia tabaci隐种的类别及其寄主适应性、传毒能力、携带内共生菌情况和抗药性,采用mt COI酶切法对从武清、西青、蓟州和宁河4个区的番茄、黄瓜及辣椒3种寄主上采集的12个烟粉虱种群进行隐种鉴定,采用PCR检测其携带番茄黄化曲叶病毒(tomato yellow leaf curl virus,TYLCV)和内共生菌情况,并采用浸叶法测定其对4种常用药剂的抗性。结果表明,采集的烟粉虱种群以MED隐种为主,占所有检测个体的93.33%,有3个种群为MED和MEAM1隐种混合发生。所有检测个体中有36.25%的个体携带TYLCV,在6个种群中检测到TYLCV,其中5个种群有超过50%的个体携带TYLCV。在12个种群中共检测到Hamiltonella、立克次氏体Rickettsia、Cardinium和杀雄菌属Arsenophnus共4种内共生菌,携带个体比例分别为90.63%、48.96%、43.75%和8.33%,进一步对内共生菌协同感染情况进行分析,发现有HARC、HRC、HAC、HR、HC和AC共6个协同感染型,感染率分别为4.17%、28.13%、3....  相似文献   

19.
BACKGROUND: Resistance to numerous insecticide classes in Bemisia tabaci Gennadius has impaired field control efficacy in south‐eastern China. The biotype and resistance status of B. tabaci collected from these areas was investigated. RESULTS: Two different biotypes of B. tabaci (B‐biotype and Q‐biotype) were detected in south‐eastern China, and the samples collected from geographical regions showed a prevalence of the Q‐biotype and the coexistence of B‐ and Q‐biotypes in some regions. Moderate to high levels of resistance to two neonicotinoids were established in both biotypes (28–1900‐fold to imidacloprid, 29–1200‐fold to thiamethoxam). Medium to high levels of resistance to alpha‐cypermethrin (22–610‐fold) were also detected in both biotypes. Four out of 12 populations had low to medium levels of resistance to fipronil (10–25‐fold). Four out of 12 populations showed low levels of resistance to spinosad (5.7–6.4‐fold). All populations tested were susceptible to abamectin. CONCLUSION: The Q‐biotype B. tabaci is supplanting the B‐biotype which used to be ubiquitous in China. Field populations of both B‐ and Q‐biotypes of B. tabaci have developed high levels of resistance to imidacloprid and thiamethoxam. Abamectin is the most effective insecticide against adult B. tabaci from all populations. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
Whiteflies are an insect group that comprises multiple species and biotypes, capable of affecting crops by phloem feeding, virus transmission and promotion of fungal colonization. The distribution of these pests is worldwide. In Costa Rica, a country located in the tropics, the most problematic whiteflies are Bemisia tabaci biotype B and Trialeurodes vaporariorum. In September 2009, two greenhouses in the Alfaro Ruiz region, northwest of the country’s capital, San Jose, were surveyed as part of a larger effort to determine the occurrence of species and races of whiteflies in this agronomically important region. In addition, the insect samples were analyzed to determine the presence of Tomato chlorosis virus (ToCV), a yield-affecting crinivirus transmitted by whiteflies. The results revealed the presence of the Q biotype of B. tabaci, and important invasive species, as well as the expected T. vaporariorum. Viral detection assays identified potentially viruliferous individuals for Tomato chlorosis virus. These results identified a new pest capable of harbouring plant viruses has been identified, as well as a viral agent (ToCV) in a region where it was not reported, and which might cause significant yield losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号