首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of anabolic implants, growth phase (growing vs finishing) and rate of growth on the priorities for protein and fat deposition were determined in yearling cattle. Santa Gertrudis crossbred yearling steers weighing 290 kg were individually fed diets varying in forage and grain content and either not implanted (n = 16) or implanted (90-d intervals) with Ralgro (n = 13) or Synovex-S (n = 12) implants. The cattle were fed toward a similar expected final empty BW (455 kg). Initial and interim empty body composition was measured via deuterium oxide dilution; final composition was determined by carcass specific gravity. During a 100-d growing phase, rates of protein gain were increased (P less than .12) to 118 and 131 g/d from 98 g/d for Ralgro and Synovex vs nonimplanted cattle, respectively. Concurrently, the fraction of protein in empty body growth was increased (P less than .09) from 17.5% for controls to 23.8 and 19.7% for Ralgro- and Synovex-implanted steers, respectively. This change in protein growth occurred concomitant with mobilization of fat and a reduction (P less than .04) in fat gain with Ralgro and Synovex implants. During the 136-d finishing phase, protein accretion was 115 and 132 vs 93 g/d for Ralgro- and Synovex-implanted cattle vs nonimplanted cattle; this represented a 24 and 42% increase (P less than .03) with Ralgro and Synovex, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Eighty Charolais-cross steer calves (283 kg) were fed a moderately high-energy (2.89 Mcal ME/kg) diet for 189 d to examine the effects of reimplantation of 36 mg of zeranol (Ralgro) or 200 mg progesterone plus 20 mg estradiol benzoate (Synovex-S) on the rate, composition and efficiency of gain, skeletal size and carcass parameters in a comparative slaughter trial. The implant treatments included unimplanted controls (C), Ralgro initially (R1), Synovex-S initially (S1), Ralgro initially and a reimplant at 84 d (R2) and Synovex-S initially and a reimplant at 84 d (S2). Both implants increased (P less than .06) gains by 8.1% from 0 to 84 d. Ralgro and Synovex-S increased (P less than .01) daily gains by 11.5% and 25.2%, respectively, from 84 to 189 d. The duration of the response to a single implant appeared to be in excess of 140 d; thus, reimplantation did not further increase daily gains. Reimplantation did improve (P less than .05) feed utilization in Ralgro implanted steers, however. Ralgro and Synovex-S increased (P less than .01) the rate of empty body (EB) protein accretion by 14.1% and 24%, respectively, without affecting EB fat growth. The efficiency of protein gain per unit protein (P less than .05) or energy intake (P less than .04) was improved, but the efficiency of energy gain per unit energy intake was not affected by implantation. Carcass weights of implanted steers were 5% greater (P less than .04) when adjusted to an equal carcass fatness. Both growth stimulants increased hip height (P less than .02), wither height (P less than .08) and body length (P less than .08) over C steers at slaughter.  相似文献   

3.
Rates of growth and partitioning of nutrients among tissues were measured in large (Simmental x [Hereford x Brahman]; n = 34) and very large (Chianina x Angus and Maine Anjou x Angus; n = 37) steers implanted with different anabolic growth regulators. All cattle were fed individually a whole shelled corn (13% crude protein) diet. Implant strategies were: none (n = 13), Ralgro 36 mg (n = 15), Ralgro 72 mg (n = 14), Synovex-S (n = 15) and Ralgro 36-Synovex-S (n = 14) administered at d 0 and 90. Empty body composition of all cattle was measured initially and at 90 d by D2O dilution procedures and at slaughter (average, 182 +/- 4.1 d) by carcass specific gravity. Empty body weight for large and very large cattle averaged 274 and 324 kg (P less than .05) initially and 497 and 603 kg (P less than .05) at slaughter. Empty body protein differed (P less than .05) for large and very large steers and averaged 51 and 61, 67 and 79, and 87 and 103 kg initially, at midpoint and at slaughter, respectively. Percentage empty body fat was lower for very large steers (13.5 vs 15.6%) initially (P less than .05) but was similar for very large and large steers at the midpoint (18.7 vs 18.1%) and at slaughter (23.2 vs 21.9%). Daily rates of empty body gain (DEBG) were greater (P less than .05) for very large vs large steers for both growing and finishing periods and averaged 1.53 vs 1.26 kg/d overall. Daily rates of protein gain (DPG) were similar for very large and large steers for the growing phase (204 vs 202 g/d) but greater (P less than .05) in very large steers for the finishing phase and overall (253 vs 204, and 229 vs 202 g/d). All implant strategies, except R36, increased DEBG and DPG and tended to decrease the percentage of fat in daily gain. In both large and very large cattle, implant growth regulators increased growth rate and partitioned nutrient use away from fat toward protein accretion, with the magnitude of partitioning toward protein increasing with greater rates of growth. These data indicate that anabolic growth regulators are viable strategies to enhance lean beef production in steers, regardless of animal size.  相似文献   

4.
Fifty-eight Holstein and 58 crossbred beef steers were individually fed one of four isonitrogenous diets to evaluate the effects of forage source (corn silage and alfalfa haylage) and protein source (soybean meal and fish meal) on feedlot performance. Phase 1 diets (up to 354 kg of BW) were 40% forage and 60% concentrates and were fed for 70 to 136 d (depending on diet and breed group). Phase 2 diets (354 kg of BW until slaughter) were 20% forage and 80% concentrates and were fed for 127 to 150 d (depending on diet and breed group). Slaughter end points were .6 cm of 12th rib fat for Holsteins and 1.0 cm of rib fat for crossbreds using real-time ultrasonic estimates. The steers were fed for a maximum of 330 d each year. Forage source was a significant component of variation for most growth, efficiency, and carcass traits. Holstein and crossbred steers fed alfalfa haylage had significantly lower average daily gain, feed efficiency, dressing percentage, and empty body fat and required more days on feed to reach slaughter end points, but had higher total feed energy intake available for production. Steers fed corn silage diets had significantly greater energetic efficiency (P less than .05) than those fed alfalfa haylage, due to increased use of ME to produce fat in the carcass. Protein type did not influence gain, feed or energetic efficiency, energy intake, or most carcass traits. A significant protein system x forage source interaction among the four diets was detected for crossbred steers fed corn silage and fish meal, for which there was significantly greater feed conversion with lower energy intake above maintenance, possibly due to better fiber digestion and(or) amino acid flow to the lower tract. Alfalfa haylage plus soybean meal diets decreased (P less than .05) the percentage of Holsteins grading USDA Choice or higher. These results indicate that corn silage, because of greater energy concentration, was a more desirable forage in feedlot diets composed of less than or equal to 40% forage and that protein type (soybean meal and fish meal) in growing diets is not an important factor in feedlot performance or carcass traits of Holstein or crossbred steers that are fed these diets.  相似文献   

5.
Twelve Charolais-crossbred steers (256 kg) received one of three treatments: nonimplanted controls (C), implanted initially and at 84 days with 36 mg zeranol (Ralgro, R) and implanted initially and at 84 days with 200 mg of progesterone and 20 mg of estradiol benzoate (Synovex-S,S). All steers were fed a corn-based diet (calculated metabolizable energy 2.89 Mcal/kg dry matter) ad libitum. In a parallel comparative slaughter trial, rates of empty body protein accretion were increased 14% in R and 24% in S steers (P less than .01). R and S steers in the present study had heavier pituitary weights (P less than .001), more pituitary growth hormone content (P less than .04) and more pituitary weight/unit live weight (P less than .05) than did C steers. Cattle implanted with R or S exhibited an increased growth hormone (GH) secretory response to a pituitary challenge with thyrotropin releasing hormone (TRH). Plasma insulin profiles were not significantly altered, but tended to be greater for steers given implants. Overall 9-hr GH secretory profiles were not affected by implantation. Plasma urea N at 94 days post-implantation was decreased (P less than .01) by implantation. Plasma glucose was increased (P less than .04) at both 94 and 199 days in R and S vs C steers. Overall mean and total (integrated area) plasma GH, as well as secretory profile components (baseline mean, amplitude of secretory spikes) were negatively correlated with body weight and size on days 94 and 199. Overall mean, baseline and integrated area of plasma insulin on days 94 and 199 were positively related to body weight and size. Thus positive protein anabolic growth responses from implantation (parallel comparative slaughter trial) were coupled with increased pituitary GH content and little change in circulating plasma GH concentrations between implanted and control steers. This may suggest that changes in tissue sensitivity, an increased plasma clearance rate of GH and/or a direct effect on target tissues may be involved in the improved growth performance of cattle implanted with R or S.  相似文献   

6.
Experiments were conducted to evaluate the effects of dietary energy density or genetic background on protein and fat gain of growing cattle. In Exp. 1, 24 Limousin steers were used in a growing-finishing trial. A 2 X 2 factorial arrangement was used with steers randomly allotted to four treatment combinations and fed the following diets: 80% concentrate, high moisture corn-corn silage diet (HI) or a corn silage diet (LO) during both the growing (GRO) and(or) the finishing (FIN) phases. Body composition for both experiments was determined by a deuterium oxide dilution technique. Empty body weight gains were greater (P less than .05) for HI during GRO, FIN and the total trial. Daily protein gains (DPG) were greater (P less than .05) for HI during GRO and FIN, while cattle receiving HI during at least FIN had the greatest (P less than .05) overall DPG. Daily fat gains (DFG) followed the pattern of DPG, being more rapid (P less than .05) for cattle fed HI during either GRO or FIN. Cattle fed the HI diet also tended to be more energetically efficient. In Exp. 2, large frame (LG) and small frame (SM) cattle were used for the evaluation of frame size effects on protein and fat deposition. Steers were individually fed an 80% concentrate, corn-based diet during the entire trial. Average daily gains and daily dry matter intake (P less than .05, P less than .01) were greater for LG, while feed efficiency was similar for both cattle types. Large cattle had greater (P less than .05) DPG than SM cattle, however, DFG were not different. Small frame steers were energetically more efficient (P less than .05), apparently due to composition of gain difference.  相似文献   

7.
To evaluate the effect of zeranol implants in steers on compensatory ++growth, 80 steer calves (9 mo of age; 200 kg) were fed at two feeding levels (RO = 9.2 MJ ME/kg DM; R1 = 6.9 MJ ME/kg DM) for 119 d (Period 1). During Period 2, steers were full-fed to 400 kg BW with (Z1) or without (ZO) zeranol implants. Ten steers were slaughtered at the end of Period 1 to estimate carcass composition. Differences of 100 kg in BW were achieved by restriction in Period 1. Subsequent to restriction, cumulative ADG remained greater (P less than .05) up to the 24th wk of recuperation and implants increased (P less than .001) BW gain by 31% and 24% for RO and R1, respectively. The average daily energy intake (ME/W(.75) in Period 2 was similar for all treatments. Feed conversion was improved by 21.5% (P less than .05) by implants. At the end of Period 2 the R1ZO had 8.6 kg less muscle (P less than .001), 2.9 kg less bone (P less than .001) and 5.9 kg more fat (P less than .05) than the ROZO. In comparison, the carcasses of the implanted animals did not show significant differences (P greater than .05) due to restriction. Carcass daily gains were increased by previous restriction (P less than .01) and implants (P less than .05). Zeranol increased daily live weight gain and feed conversion in animals in continuous growth as well as in those observed in compensatory growth an tended to eliminate a tendency for higher content of fat in carcasses of nonimplanted animals making compensatory growth.  相似文献   

8.
The composition of carcass and noncarcass tissue growth was quantified by serial slaughter of 26 Angus x Hereford crossbred steers (initial age and weight 289 +/- 4 d and 245 +/- 4 kg) during continuous growth (CON) or compensatory growth (CG) after a period of growth restriction (.4 kg/d) from 245 to 325 kg BW. All steers were fed a 70% concentrate diet at ad libitum or restricted levels. Homogenized samples of 9-10-11th rib and noncarcass tissues were analyzed for nitrogen, fat, ash, and moisture. Growth rate from 325 to 500 kg BW was 1.54 and 1.16 kg/d for CG and CON steers. The weight of gut fill in CG steers was 10.8 kg less (P less than .05) before realimentation and 8.8 kg more (P less than .10) at 500 kg BW than in CON steers. The allometric accretive rates for carcass chemical components relative to the empty body were not affected by treatment. However, the accretive rates for CG steers were greater (P less than .01) for noncarcass protein (.821 vs .265), noncarcass water (.861 vs .507), and empty-body protein (.835 vs. .601) than for CON steers. Final empty-body fat was lower (P less than .001; 24.2 vs 32.4%) and empty-body protein higher (P less than .001; 16.6 vs 14.8%) in CG steers than in CON steers. Consequently, net energy requirements for growth (NEg) were approximately 18% lower for CG steers. We conclude that reduced NEg requirements and changes in gut fill accounted for most of the compensatory growth response exhibited in these steers.  相似文献   

9.
Effects of dry corn gluten feed (DCGF) on feedlot cattle performance and fiber digestibility were investigated. In Trial 1, 120 growing steers were fed corn silage-based diets containing 0, 40, 60 or 80% DCGF. Increasing levels of DCGF resulted in a curvilinear response in gain (P less than .05) and a linear increase in feed/gain (P less than .01). When the same steers subsequently were fed the same levels of DCGF in corn-based diets (Trial 2), increasing the percentage of dietary DCGF resulted in a linear decrease in gain (P less than .01) and a linear increase in feed/gain (P less than .01). In Trial 3, 46 crossbred steers were fed individually in a 2 x 2 factorial design to determine effects of 60 or 80% dietary high-moisture corn (HMC) or DCGF on feedlot cattle performance. Steers fed HMC had faster (P less than .08) and more efficient (P less than .05) gains than those fed DCGF, which had greater feed intakes (P less than .05). In Trial 4, 120 Angus crossbred steers were used to compare effects of 20 or 40% dietary HMC or DCGF on feedlot performance. Steers fed diets containing 40% HMC or DCGF had greater gains (P less than .01) and feed intakes (P less than .01) than those fed 20% diets. Steers fed HMC gained more efficiently than those fed DCGF (P less than .01). In an in situ trial, 0, 40, 60 or 80% dietary DCGF did not affect in situ DCGF DM or NDF disappearance. When DCGF was fermented in vitro in combination with corn silage, increasing the level of DCGF from 0 to 100% resulted in a linear increase (P less than .01) in 24 and 48 h NDF disappearance. These results suggest that at high dietary levels DCGF will support feedlot cattle gains that are nearly equal to those of cattle fed corn silage but somewhat less than those fed corn.  相似文献   

10.
Two split-plot designed experiments were conducted to determine the effects of breed (Angus, A, or Brangus, B) and diet (fescue hay, FH; corn silage, CS; or concentrate) on composition and rate of growth, diet digestibility and plasma hormones of steers. In Exp. 1, 10 steers (five of each breed) were fed a CS-based diet followed by a FH-based diet for two consecutive 60-d periods. Both breeds had lower (P less than .01) DM intake and digestibility when fed FH than when fed CS diets. The B steers had higher (P less than .01) plasma insulin concentrations than A steers when fed the CS diet. In Exp. 2, during two consecutive years, 10 steers previously fed CS- and FH-based diets were finished with a corn silage-whole shelled corn-based diet. During yr 1, A steers had higher (P less than .01) DM intake and plasma triiodothyronine (T3) and thyroxine (T4) concentrations (P less than .05) than B steers did. Although final weights were similar (P greater than .10), A steers had heavier (P less than .05) carcass weights than B steers did. During yr 2, A steers had higher (P less than .07) DM and starch digestibilities and higher (P less than .01) plasma T4 concentrations than B steers did. The greater (P less than .01) energetic efficiency of A steers was attributed to the greater rates of fat deposition during yr 2. Regardless of type of diet fed, A steers were more efficient at depositing energy. Higher circulating T4 concentrations of A than B steers may explain some of the physiological differences between these breeds.  相似文献   

11.
A 2 X 2 factorially arranged trial was conducted to compare effects of implant (zeranol) and frame size on weight and compositional gain, and plasma hormone concentrations. Angus, Charolais X Hereford and Hereford X Angus yearling steers (34 steers averaging 270 kg body weight) were randomly assigned to treatments of small (SF) vs large frame (LF) and implant (I) vs no implant (NI). Steers were implanted at 0 and 97 d and individually fed an 81% whole shelled corn and 11.5% corn silage-based diet (dry basis) for a 175-d period. Shrunk weights and body measurements for frame size determination were taken initially and at approximately 28-d intervals; blood was collected via venipuncture at 14-d intervals for analyses of insulin (IN), triiodothyronine (T3), thyroxine (T4) and glucose concentrations. Steers were also counted in a whole body counter for measurement of 40K content and prediction of whole body protein and fat. The I steers showed an improvement (P less than .05) in daily gain regardless of frame size for the total trial. The I LF steers required 18% more dry matter to attain higher daily gain for 97 to 175 d; I steers were more efficient (P less than .05) at converting dry matter to gain during 0 to 97 d and 0 to 175 d. Daily fat deposition was increased (P less than .05) in I steers, while protein deposition was not affected by I. Plasma IN concentrations were numerically elevated (P less than .10) in I steers regardless of frame size, during the initial 97 d. Implant did not influence (P greater than .10) plasma T3, T4 and glucose concentrations regardless of frame size. Steers responded differently to zeranol implant over time regarding plasma T4 concentrations (P less than .003). Steers differing in frame size responded similarly in rate of gain, in feed conversion and in patterns of plasma insulin concentrations to zeranol implants.  相似文献   

12.
A feeding trial involving 160 crossbred steers (357 kg) and a metabolism trial involving eight Holstein steers (189 kg) cannulated in the rumen and proximal duodenum were conducted to evaluate the interaction of dietary Mg level (.18 vs .32%, DM basis) and supplemental fat (0% supplemental fat vs 4% tallow [T], yellow grease [YG], or griddle grease [GG]) on growth performance and NE value of the diet. Dietary Mg level did not influence (P > .10) growth performance. Daily weight gain was lower (11%, P < .05) for steers fed GG than for those fed YG. Supplemental fat decreased (5%, P < .10) DMI and increased (P < .05) gain efficiency (7%). There was a fat x Mg level interaction (P < .01) for dietary NE. The increase in dietary NEg with T and YG supplementation was similar (8.6 vs 8.0%) for diets containing .18 and .32% Mg. In contrast, the increase in dietary NEg with GG supplementation was 8.9% with .18% dietary Mg, but the NEg value of the diet did not increase when GG was added to diets with .32% dietary Mg. Dressing percentage was lower (1.5%, P < .1) and retail yield was greater (2.2%, P < .05) for steers fed GG- than for steers fed YG-supplemented diets. Increasing dietary Mg level increased kidney, pelvic, and heart fat (5.5%, P < .05). There was a fat x Mg level interaction (P < .1) for marbling score. With diets containing no supplemental fat, increasing dietary Mg decreased (15.2%) the marbling score, and with diets containing supplemental fat, increasing dietary Mg increased (7.2%) the marbling score. Fat supplementation decreased (P < .01) ruminal and total tract digestion of OM (10 and 3.5%, respectively) and NDF (37 and 17%, respectively). Supplemental fat did not affect (P > .10) Ca digestion but decreased (41.7%, P < .01) apparent Mg digestion. Increasing dietary Mg level increased (77.7%, P < .05) apparent Mg digestion. There were no treatment effects (P > .10) on postruminal fatty acid digestion. Fat supplementation decreased (17.3%, P < .01) the acetate:propionate molar ratio. Total ruminal protozoal counts were increased (12.7%, P < .05) by increasing dietary Mg level and decreased (12.9%, P < .05) by fat supplementation. We conclude that supplemental fats may depress Mg absorption. Increasing dietary magnesium levels beyond current recommendations may increase marbling scores in cattle fed fat-supplemented diets but may not affect growth performance or dietary NE. The NE value of fat is a predictable function of level of fat intake.  相似文献   

13.
Two experiments were conducted to examine the effect of previous BW gain during winter grazing on subsequent growth, carcass characteristics, and change in body composition during the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range (NR) supplemented with 0.91 kg/d of cottonseed meal. Winter grazing ADG (kg/d) for HGW, LGW, and NR steers were, respectively, 1.31, 0.54, 0.16 (Exp. 1) and 1.10, 0.68, 0.15 (Exp. 2). At the end of winter grazing, four steers were selected randomly from each treatment to measure initial carcass characteristics and chemical composition of carcass, offal, and empty body. All remaining steers were fed a high-concentrate diet to a common backfat end point. Six steers were selected randomly from each treatment for final chemical composition, and carcass characteristics were measured on all steers. Initial fat mass and proportion in carcass, offal, and empty body were greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both experiments. Live BW ADG and gain efficiency during the finishing phase did not differ (P = 0.24) among treatments, but DMI (% of mean BW) for NR and LGW was greater (P < 0.003) than for HGW steers. Final empty-body composition did not differ (P = 0.25) among treatments in Exp. 1. In Exp. 2, final carcass and empty-body fat proportion (g/kg) was greater (P < 0.03) for LGW and NR than for HGW steers. Accretion of carcass fat-free organic matter was greater (P < 0.004) for LGW than for HGW and NR steers in Exp. 1, but did not differ (P = 0.22) among treatments in Exp. 2. Fat accretion in carcass, offal, and empty body did not differ (P = 0.19) among treatments in Exp. 1, but was greater (P < 0.05) for LGW and NR than for HGW steers in Exp. 2. Heat production by NR steers during finishing was greater (P < 0.02) than by HGW steers in Exp. 1 and 2. Differences in ADG during winter grazing and initial body fat content did not affect rate of live BW gain or gain efficiency during finishing. Feeding steers to a common backfat thickness end point mitigated initial differences in carcass and empty-body fat content. However, maintenance energy requirements during finishing were increased for nutritionally restricted steers that were wintered on dormant native range.  相似文献   

14.
Forty-five Angus steers (avg initial wt 330 kg) were individually fed for 112 d to assess the value of supplemental Zn and source on performance and carcass quality. Steers had ad libitum access to a control diet (81 ppm Zn) of 33% whole corn, 33% ground milo, 15% cottonseed hulls and 13% cottonseed meal, or this control diet with 360 mg Zn/d added from either zinc methionine or zinc oxide. Steers were slaughtered on d 114, and carcass composition was determined by specific gravity. Average daily gain and feed efficiency were not affected by dietary treatments. Steers fed zinc methionine had a higher (P less than .05) USDA quality grade than those fed the control and zinc oxide diets. Marbling score was higher (P less than .05) for steers fed zinc methionine than for those fed control and zinc oxide treatments (4.4 vs 4.0 and 4.0, respectively, where 3 = slight, 4 = small, 5 = modest). Steers fed zinc methionine tended to have more (P less than .10) external fat (13 mm) than steers fed the control diet (10 mm); steers supplemented with zinc oxide had intermediate amounts of external fat (11 mm). Steers fed zinc methionine had 10.5 and 12.8% more (P less than .05) kidney, pelvic and heart (KPH) fat than steers fed control or zinc oxide diets, respectively. The effects of zinc methionine on carcass quality grade and marbling score may be due to Zn and (or) methionine. Regardless of the mechanism, the difference represents a potential economic benefit to producers.  相似文献   

15.
Previous research has demonstrated that increasing the CP concentration from 16 to 26% in milk replacers fed to male preruminant dairy calves at 1.5% of BW (DM basis) daily resulted in increased ADG, G:F, and deposition of lean tissue. However, the effects of dietary CP would be expected to vary depending on ME intake. Here, male Holstein calves < 1 wk old were used to determine the effects of feeding rate and CP concentration of isocaloric, whey protein-based milk replacers on growth and body composition. After a 2-wk standardization period, calves were assigned randomly to an initial baseline group or to treatments in a 2 x 4 factorial arrangement of feeding rate (1.25 or 1.75% of BW daily, DM basis) and milk replacer CP concentration (14, 18, 22, or 26% of DM). No starter was offered, but calves had free access to water. After a 5-wk feeding period, calves were slaughtered and body composition was determined. Increasing the feeding rate increased (P < 0.05) ADG, G:F, empty-body gains of chemical components and energy, the percentage of fat in empty BW gain and in the final empty body, and concentrations of IGF-I and insulin in plasma. Increasing the feeding rate decreased (P < 0.01) percentages of water and protein in the empty body and decreased urea N in plasma. Increasing dietary CP concentration linearly increased (P < 0.05) ADG, body length, heart girth, and gains of water and protein but linearly decreased (P < 0.05) fat gain. As dietary CP increased, fat content in empty body gain decreased, and water and protein increased. Increasing CP concentration increased (quadratic, P < 0.02) G:F, with greatest efficiencies for calves fed 22% CP. Gross energetic efficiency (retained energy:intake energy) was greater (P < 0.05) for calves fed at 1.75% of BW daily. Efficiency of dietary protein use for protein gain was greater for calves fed at 1.75% of BW daily but was not affected by dietary CP. The ratio of protein gain to apparently digestible protein intake above maintenance decreased as dietary CP increased. Interactions (P < 0.05) of feeding rate and CP concentration for gains of water and protein indicated that when dietary CP was 26% the ME supply limited protein use by calves fed at 1.25% of BW daily. Body composition of preruminant calves can be markedly altered by manipulating the protein to energy ratio in milk replacers. These dietary effects on body composition and growth are not predicted by current NRC standards.  相似文献   

16.
The effects of nutrition on plasma concentrations of insulin-like growth factor-I (IGF-I) were characterized in steers under basal conditions and following single i.m. injection of bovine growth hormone (bGH, .1 mg/kg BW). Nutritional effects on IGF-I were studied in three trials. In all trials steers were individually fed and penned Angus or Hereford x Angus (280 kg). In the first trial, two diets (LPLE1: 8% CP and 1.96 Mcal ME/kg, 4.5 kg.hd-1.d-1; MPHE1: 11% CP, 2.67 Mcal ME/kg, 6.5 kg.hd-1.d-1) were fed (n = 5/diet). Plasma IGF-I concentrations averaged 74 (LPLE1) and 152 (MPHE1) ng/ml (P less than .02). Following bGH injection, IGF-I increased to peak concentrations between 12 and 24 h (averaging 105 and 208 ng/ml at peak for LPLE and MPLE, respectively, P less than .01). In the second trial, steers were fed diets composed of 8, 11 or 14% CP and 1.96 or 2.67 Mcal ME/kg dry matter (6.35 kg.hd-1.d-1 in a factorial arrangement for 84 d, n = 4/diet). Within the low ME diet groups, plasma IGF-I was similar in steers fed 11 and 14% CP but greater at these two CP levels than in steers fed 8% CP (P less than .05). Within the high ME diet groups, plasma IGF-I increased linearly with CP (P less than .01). In the third trial, steers were fed diets to result in a negative N status. Insulin-like growth factor-I was lower (P less than .02) during feed restriction than when steers were full-fed. The IGF-I response to bGH was diminished or absent in underfed steers (P less than .01). These data are interpreted to suggest that diet composition and intake affect plasma concentrations of IGF-I in steers. In cattle, CP may be the primary nutritional determinant of basal IGF-I, but the IGF-I response to CP may be affected by the available ME. Undernutrition can attenuate the IGF-I response to GH and uncouple the regulation of IGF-I normally ascribed to GH.  相似文献   

17.
A 111-d finishing study evaluated animal growth and carcass characteristics using 138 steers (366 kg) in a randomized complete block design with a 2 x 3 factorial arrangement of treatments. The dietary treatments consisted of no supplemental fat or 3.5% tallow or soybean oil soapstock (SS) fed with .6% and .9% dietary Ca. Fat increased DMI (P less than .05) but interacted with Ca level (P less than .05) for gain/feed and ADG. All diets containing fat or .9% Ca were converted more efficiently to gain than the .6% Ca, no supplemental fat diet (P less than .05). The .9% Ca interacted with fat source to decrease gain (P less than .05) and tended to decrease efficiency in the tallow diet but improved efficiency (P less than .05) and tended to improve gain in the no-fat diet. In the SS diet, .9% Ca had no effect on ADG, DMI, or efficiency of gain. Fat addition increased backfat (P less than .10) and interacted with Ca on hot carcass weight, final weight, and dressing percentage (P less than .05). Feeding fat increased the proportion of 18:0 (P less than .02) and decreased the proportion of 16:1 fatty acids (P less than .06) in intermuscular fat. A replicated 3 x 3 Latin square design, using six Holstein steers (349 kg) fed three diets, with no supplemental fat or 3.5% SS or tallow with 1.0% Ca, was used to explore the effects of fat sources when fed with high Ca on digestion and metabolism. Ruminal fluid pH was higher (P less than .10) when steers were fed fat. Adding fat did not affect (P greater than .10) duodenal or ileal pH, VFA proportions or total concentration, or ruminal liquid volume or flow rate. Liquid retention time was shorter and liquid rate of passage was higher (P less than .05) with dietary fat addition. Adding fat did not affect site or extent of starch or DM digestion. There was net synthesis of 16:0, 18:0, and 18:1 fatty acids in the rumen. When steers were fed tallow, synthesis of 16:0 and 18:0 fatty acids in the rumen was lower (P less than .10) than when steers were fed SS. Feeding fat tended to decrease (P = .11) bacterial N flowing at the duodenum but did not affect nonbacterial N or total N. Fat addition seems to affect ruminal kinetics, and the effects may vary with fat source, particularly relative to fatty acid synthesis and digestion.  相似文献   

18.
Effects of growth rate and compensatory growth on body composition in lambs   总被引:2,自引:0,他引:2  
Fifty lambs were used in a comparative slaughter experiment to determine the effects of growth rates and compensatory growth on body composition. The study consisted of a growing and a finishing phase. During the growing phase, lambs (20 to 30 kg) were fed three different concentrate levels (30, 50 or 70%) to gain at three different rates (slow, medium and rapid). The finishing phase was evaluated in two periods (early, 30 to 38 kg; late, 38 to 45 kg). All lambs received 70% concentrate diets during the finishing phase. Groups of five lambs were sacrificed at 20, 30, 38 and 45 kg fleece-free weights for whole-body chemical analysis. At 30 kg live weight, lambs on a rapid growth diet were the fattest (P less than .01) and contained the least protein (P less than .05) in their empty bodies. The slower the lambs gained during the growing phase, the greater (P less than .05) was the response in rate of gain and feed efficiency during both periods of the finishing phase. Compensatory growth occurred in two stages; a greater proportion of protein gain was made early while a greater proportion of the fat gain was made during the late period of the finishing phase.  相似文献   

19.
Studies were conducted to determine the effects of lysocellin on growth performance and metabolism of steers fed forage-based diets. Treatments in all experiments consisted of 1) control, 2) 100 mg lysocellin/d, 3) 200 mg lysocellin/d and 4) 200 mg monensin/d. In each of two 90-d performance studies, 24 Hereford steers were individually fed greenchop (fungus-free tall fescue and Coastal and Tifton-44 bermudagrass) ad libitum and .91 kg/d of a corn-trace mineral salt supplement. In Exp. 1, tall fescue was fed from d 1 to 45 and bermudagrass from d 46 to 90. Bermudagrass was offered during d 1 to 45 and tall fescue during d 46 to 90 in Exp. 2. Lysocellin improved gain (Exp. 1, P less than .01) and feed conversion (Exp. 1 and 2 combined, P less than .05), decreased total VFA concentrations (P less than .05), increased molar proportions of propionate, isobutyrate and isovalerate (P less than .01), decreased molar proportions of acetate and butyrate (P less than .01) and lowered acetate:propionate (P less than .01). Two metabolism studies involving a total of 16 Hereford steers were conducted. Steers were fed tall fescue greenchop and .91 kg/d supplement for a 34-d adjustment period followed by a 5-d total collection period. Lysocellin increased N digestibility (P less than .01) and N retention (P less than .06) but did not (P greater than .05) affect DM, NDF or ADF digestibility. Data indicate that lysocellin results in major alterations in ruminal fermentation and can increase growth performance and N retention in steers fed forage-based diets.  相似文献   

20.
The purpose of this experiment was to evaluate the effects of energy intake, implantation, and fat end point on feedlot performance and carcass composition of steers. Three hundred eighty-four yearling crossbred steers (368 +/- 23.1 kg) were allotted in a completely randomized design. Treatments were arranged in a 2 x 3 x 2 factorial experiment. Main effect factors were two levels of intake, three implant strategies, and two compositional fat end points at slaughter. The levels of intake were ad libitum (AL) and restricted (RS) intake (90% ad libitum). The three implant strategies were Revalor-S (REV) (120 mg trenbolone acetate, 24 mg estradiol), Synovex-Plus (SYN) (200 mg trenbolone acetate, 28 mg estradiol benzoate), and no implant (control). The compositional target end points were 1.0 and 1.4 cm s.c. fat cover over the 12th and 13th rib. Restricted-intake steers consumed 9.2% less (P < .01) DM than AL steers. Ad libitum-intake steers gained weight 15.5% more rapidly (P < .01) than RS-intake steers. Steers implanted with REV tended (P < .07) to gain faster than SYN steers, who in turn gained 15.2% more (P < .01) than control steers. Ad libitum-intake steers were 4.8% more (P < .01) efficient than RS steers. Steers fed to a targeted 1.4 cm s.c. backfat cover were 2.9% less (P < .05) efficient than steers fed to 1.0 cm, and steers implanted with either REV or SYN had similar (P = .47) feed efficiencies, whereas control steers had lower (P < .01) feed efficiencies. Steers fed to a targeted compositional fat end point of 1.4 cm had 1.3% higher (P < .01) dressing percentage (DP) than steers fed to 1.0 cm. Control and SYN steers had similar (P = .13) DP; however, REV steers had 6.1% greater (P < .01) DP than SYN steers. Steers fed to 1.4 cm s.c. fat end point had higher (P < .01) numerical yield grades than steers fed to 1.0 cm (3.34 vs 2.71). There was an interaction (P < .01) for intake level and implant for marbling score. Marbling scores were lower (P < .05) for RS x SYN and AL x REV than in other treatments. Steers on the RS x REV treatment were intermediate in marbling to all treatments except AL control, which was higher (P < .01) than RS x SYN, AL x REV, and RS x REV. No interaction for dry matter intake level and anabolic implants was observed for growth performance. The depression in carcass quality resulting from implanting is reduced as backfat increases from 1.0 to 1.4 cm at slaughter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号