首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ten type traits and a final score were analysed in 5868 records of the Asturiana de los Valles beef cattle breed. Traits were grouped into two classes: (i) traits scoring skeletal and muscular development and (ii) traits scoring adjustment to the breed standard. Heritabilities were moderate to low, ranging from 0.04 to 0.26. Genetic correlations among traits were, in general, in the same direction as, but higher than, phenotypic correlations. The genetic variability shown, in general, for the analysed traits would justify the inclusion of morphological assessment in the Asturiana de los Valles beef cattle breed sire selection programme. Main characteristics of the current type classification system are criticized. The knowledge of (co)variances among type and economically important productive and reproductive traits is recommended before revision of the classification methodology.  相似文献   

4.
This study estimated genetic and phenotypic parameters and annual trends for growth and fertility traits of Charolais and Hereford cattle in Kenya. Traits considered were birth weight (BW, kg), pre-weaning average daily gain (ADG, kg/day) and weaning weight (WW, kg); calving interval (CI, days) and age at first calving (AFC, days). Direct heritability estimates for growth traits were 0.36 and 0.21; 0.25 and 0.10; 0.23 and 0.13 for BW, ADG and WW in Charolais and Hereford, respectively. Maternal heritability estimates were 0.11 and 0.01; 0.18 and 0.00; 0.17 and 0.17 for BW, ADG and WW in Charolais and Hereford, respectively. Direct-maternal genetic correlations ranged between −0.46 and 1.00; −0.51 and −1.00; −0.47 and −0.39 for BW, ADG and WW in Charolais and Hereford, respectively. Genetic correlations ranged from −0.99 to unity and −1.00 to unity for growth and fertility traits respectively. Prospects for improvement of growth and fertility traits exist.  相似文献   

5.
Carcass measurements were taken on 1,537 steers produced over four generations in a rotational crossbreeding study. Breed direct and maternal additive and heterotic genetic effects were estimated for hot carcass weight (HCWT), retail yield (RY), longissimus muscle area (LM), fat thickness (FT), marbling score (MS), and Warner-Bratzler shear force (WBS). Angus (A), Brahman (B), Charolais (C), and Hereford (H) breeds were involved in straightbred, first-cross, and two-, three-, and four-breed rotational crossbred matings with each crossbred combination including the B. Breed direct (Ig) and maternal (Mg) additive genetic effects and direct (Ih) and maternal (Mh) heterotic genetic effects were estimated using a multiple-regression model. The Ig and Mg effects were expressed as deviations from the overall mean. The IgC effects (Ig for C breed) were significant for HCWT, RY, and LM and resulted in leaner, heavier carcasses. The IgA and IgH effects were, in general, negative (P < .05) for HCWT, RY, LM, and WBS, and positive (P < .01) for FT and MS. The IgB effects were large and undesirable for HCWT, RY, LM, MS, and WBS (P < .01). The majority of Ih effects were beneficial (P < .05) for HCWT, RY, LM, and WBS. The Ih effects exhibited by B combinations were of greater (P < .05) magnitude with positive influences for HCWT, RY, and LM and desirable effects for WBS. The maternal additive and heterotic effects were of lesser importance than the direct additive and heterotic effects for the carcass traits studied.  相似文献   

6.
Reproductive data were collected on 4,595 cow exposures and subsequent calvings over four generations in a rotational crossbreeding study involving Angus, Brahman, Charolais and Hereford breeds. Direct and maternal additive (Ig and Mg) and nonadditive (Ih and Mh) genetic effects were estimated for calving rate, calf survival, weaning rate, calving assistance and calf birth date. Genetic effects were estimated by regressing individual animal response on the proportion of genes from breed of origin and gene combinations expected for the four breeds in offspring and in dams. Breed direct and maternal additive and nonadditive genetic effects were expressed as a deviation from the least squares mean. Brahman Ig effects decreased calving and weaning rate (-9.5 +/- 4.0 and -11.8 +/- 4.4%) but Mh effects for weaning rate that included Brahman were positive, ranging from 16.5 +/- 6.7% for Angus-Brahman to 27.8 +/- 6.9% for Brahman-Hereford. The Brahman Ig effect delayed calf birth date (9.8 +/- 2.1 d; P less than .01), whereas Angus and Hereford Ig effects influenced earlier calf birth dates (-4.3 +/- 1.9 and -4.1 +/- 1.9 d; P less than .05). Brahman combination Mh effects also influenced earlier calf birth dates (P less than .01). The Charolais Ig effect for calving assistance was positive (4.3 +/- 1.9%; P less than .05), whereas Angus-Brahman and Brahman-Charolais Mh effects for calving assistance were negative (-6.5 +/- 3.2 and -7.0 +/- 3.2%; P less than .05) and more desirable. Predicted reproductive traits for rotational mating systems were intermediate between predicted reproductive traits for two- and three-breed terminal crosses. Predicted calving and weaning rates were maximized when Brahaman first-cross and Charolais-Hereford cows were used in three-breed cross mating systems.  相似文献   

7.
Divergent selection for serum insulin-like growth factor-I (IGF-I) concentration began at the Eastern Ohio Resource Development Center (EORDC) in 1989 using 100 spring-calving (50 high line and 50 low line) and 100 fall-calving (50 high line and 50 low line) purebred Angus cows. Following weaning, bull and heifer calves were fed in drylot for a 140-d postweaning period. At the conclusion of the postweaning test, bulls not selected for breeding were slaughtered and carcass data were collected at a commercial abbatoir. At the time of this analysis, IGF-I measurements were available for 1,283 bull and heifer calves, and carcass data were available for 452 bulls. A set of multiple-trait, derivative-free, restricted maximum likelihood (MTDFREML) computer programs were used for data analysis. Estimates of direct heritability for IGF-I concentration at d 28, 42, and 56 of the postweaning period, and for mean IGF-I concentration were .32, .59, .31, and .42, respectively. Direct heritabilities for carcass traits ranged from .27 to 1.0, .26 to 1.0, and .23 to 1.0 when the age-, fat-, and weight-constant end points, respectively, were used, with marbling score having the smallest heritability and longissimus muscle area having the highest heritability in each case. Maternal heritability and the proportion of phenotypic variance due to permanent environmental effect of dam generally were < or = .21 for IGF-I concentrations and for carcass traits other than longissimus muscle area. Additive genetic correlations of IGF-I concentrations with backfat thickness, longissimus muscle area, hot carcass weight, marbling score, quality grade, and yield grade averaged -.26, .19, -.04, -.53, -.45, and -.27, respectively, when carcass data were adjusted to an age-constant end point. Bulls with lower IGF-I concentrations had higher marbling scores and quality grades, but also had higher backfat thickness and yield grades regardless of the slaughter end point. Serum IGF-I concentration may be a useful selection criterion when efforts are directed toward improvement of marbling scores and quality grades of beef cattle.  相似文献   

8.
Published information on relative performance of beef breed crosses was used to derive combined estimates of purebred breed values for predominant temperate beef breeds. The sources of information were largely from the United States, Canada, and New Zealand, although some European estimates were also included. Emphasis was on maternal traits of potential economic importance to the suckler beef production system, but some postweaning traits were also considered. The estimates were taken from comparison studies undertaken in the 1970s, 1980s and 1990s, each with representative samples of beef breeds used in temperate agriculture. Weighting factors for breed-cross estimates were derived using the number of sires and offspring that contributed to that estimate. These weights were then used in a weighted multiple regression analysis to obtain single purebred breed effects. Both direct additive and maternal additive genetic effects were estimated for preweaning traits. Important genetic differences between the breeds were shown for many of the traits. Significant regression coefficients were estimated for the effect of mature weight on calving ease, both maternal and direct additive genetic, survival to weaning direct, and birth weight direct. The breeds with greater mature weight were found to have greater maternal genetic effects for calving ease but negative direct genetic effects on calving ease. A negative effect of mature weight on the direct genetic effect of survival to weaning was observed. A cluster analysis was done using 17 breeds for which information existed on nine maternal traits. Regression was used to predict breed-cross-specific heterosis using genetic distance. Only five traits, birth weight, survival to weaning, cow fertility, and preweaning and postweaning growth rate had enough breed-cross-specific heterosis estimates to develop a prediction model. The breed biological values estimated provide a basis to predict the biological value of crossbred suckler cows and their offspring.  相似文献   

9.
Records of 9,055 lambs from a composite population originating from crossing Columbia rams to Hampshire x Suffolk ewes at the U.S. Meat Animal Research Center were used to estimate genetic parameters among growth traits. Traits analyzed were weights at birth (BWT), weaning (7 wk, WWT), 19 mo (W19), and 31 mo (W31) and postweaning ADG from 9 to 18 or 19 wk of age. The ADG was also divided into daily gain of males (DGM) and daily gain of females (DGF). These two traits were analyzed with W19 and with W31 in three-trait analyses. (Co)variance components were estimated with REML for an animal model that included fixed effects of sex, age of dam, type of birth or rearing, and contemporary group. Random effects were direct and maternal genetic of animal and dam with genetic covariance, maternal permanent environmental, and random residual. Estimates of direct heritability were .09, .09, .35, .44, .19, .16, and .23 for BWT, WWT, W19, W31, ADG, DGM, and DGF, respectively. Estimates of maternal permanent environmental variance as a proportion of phenotypic variance were .09, .12, .03, .03, .03, .06, and .02, respectively. Estimates of maternal heritability were .17 and .09 for BWT and WWT and .01 to .03 for other traits. Estimates of genetic correlations were large among W19, W31, and ADG (.69 to .97), small between BWT and W31 or ADG, and moderate for other pairs of traits (.32 to .45). The estimate of genetic correlation between DGM and DGF was .94, and the correlation between maternal permanent environmental effects for these traits was .56. For the three-trait analyses, the genetic correlations of DGM and DGF with W19 were .69 and .82 and with W31 were .67 and .67, respectively. Results show that models for genetic evaluation for BWT and WWT should include maternal genetic effects. Estimates of genetic correlations show that selection for ADG in either sex can be from records of either sex (DGM or DGF) and that selection for daily gain will result in increases in mature weight but that BWT is not correlated with weight at 31 mo.  相似文献   

10.
The aim of this study was to estimate genetic associations between temperament and performance traits. Temperament was evaluated in yearling male and female Nellore cattle, using four traits: temperament score (TS), for assessing animals’ reactions in a corral pen (n = 25 691); movement score (MOV), for animals’ movements recorded inside the crush; crush score (CS), for animal's general reactivity inside the crush; and flight speed (FS), for the speed (in m/s) at which the animals exited the crush (n = 11 697, for the last three methods); for all the temperament traits, lower scores indicate animals with calmer temperament. Performance traits were visual scores for conformation (C), finishing precocity (P) and muscling (M) evaluated at yearlings, and average daily gain (ADG) was estimated from weaning to yearling. Bayesian inference using Gibbs sampling was applied to estimate (co)variance components and genetic and phenotypic parameters. Heritability estimates for the temperament traits ranged from 0.07 (CS) to 0.28 (FS). Genetic correlations of the temperament traits with ADG and C, P and M were negative and ranged from −0.02 to −0.31. Phenotypic correlations were negative and consistently lower than the genetic, ranging from −0.08 to −0.02. It was concluded that the temperament traits assessed had favourable genetic correlation estimates with the performance traits studied. However, indirect responses in temperament when selecting for higher ADG and visual scoring system of C, P and M, will be low.  相似文献   

11.
全基因组关联分析(genome-wide association studies,GWAS)是研究家畜复杂经济性状和疾病遗传变异的有效方法,GWAS的核心是挖掘遗传变异与目标表型性状间的关系.随着牛全基因组测序工作完成,海量单核苷酸多态性(single nucleotide polymorphism,SNP)位点被标记...  相似文献   

12.
The aim of this study was to estimate genetic parameters for growth traits in Mexican Nellore cattle. A univariate animal model was used to estimate (co)variance components and genetic parameters. The traits evaluated were birth weight (BW), weaning weight (WW), and yearling weight (YW). Models used included the fixed effects of contemporary groups (herd, sex, year, and season of birth) and age of dam (linear and quadratic) as a covariate. They also included the animal, dam, and residual as random effects. Phenotypic means (SD) for BW, WW, and YW were 31.4 (1.6), 175 (32), and 333 (70) kg, respectively. Direct heritability, maternal heritability, and the genetic correlation between additive direct and maternal effects were 0.59, 0.17, and −0.90 for BW; 0.29, 0.17, and −0.90 for WW; and 0.24, 0.15, and −0.86 for YW, respectively. The results showed moderate direct and maternal heritabilities for the studied traits. The genetic correlations between direct and maternal effects were negative and high for all the traits indicating important tradeoffs between direct and maternal effects. There are significant possibilities for genetic progress for the growth traits studied if they are included in a breeding program considering these associations.  相似文献   

13.
SUMMARY: Estimates of variance components for birth weight, weaning weight and average daily gain were obtained comparing different animal and sire univariate models for an important local beef cattle breed. Problems encountered with models involving maternal effects were discussed. Direct and maternal heritabilities were respectively 0.32 and 0.13 for birth weight, 0.60 and 0.30 for weaning weight and 0.49 and 0.37 for average daily gain. The correlation between direct and maternal genetic effects was not important for birth weight, but high and negative for weaning weight (-0.73), and average daily gain (-0.87), in close agreement with the most recent estimates in other breeds. ZUSAMMENFASSUNG: Sch?tzung Direkter und Maternal-Genetischer Parameter von K?lbermerkmalen in der "Asturiana de los Valles' Fleischrinderrasse mittels Tier- und Vatermodellen. Varianzkomponentensch?tzungen für Geburtsgewicht, Absatzgewicht und Durchschnittstageszuwachs wurden zwischen verschiedenen univariablen Tier- und Vatermodellen bei dieser wichtigen lokalen Rinderrasse verglichen. Die durch Einbeziehung maternaler Wirkungen entstandenen Probleme werden diskutiert. Direkte und maternale Heritabilit?tswerte sind für Geburtsgewicht 0.32 und 0.13, für Absatzgewicht 0.60 und 0.30 und für Durchschnittstageszuwachs 0.49 und 0.37. Die Korrelation zwischen direkten und maternalen Wirkungen war für Geburtsgewicht unwichtig, aber hoch negativ für Absatzgewicht (-0.73) und für Zuwachs (-0.87), was mit zahlreichen neueren Sch?tzungen übereinstimmt.  相似文献   

14.
15.
Postweaning growth data, collected from a Hereford herd located in the Southwest, were used to estimate genetic parameters for weights and gains. The herd was maintained on unsupplemented range forage, and average weight losses from weaning to yearling age were 9% for bulls and 12% for heifers. Data were grouped into years with poor and good environments based on contemporary group means for gain from 8 to 12 mo. Postweaning growth data (12- and 20-mo weights, 8- to 12-mo gain and 12- to 20-mo gain) were analyzed by least squares methods with a model that included year of birth, sire within year of birth, age of dam and a covariate of age for 12- and 20-mo weights. Heritability estimates of 12- and 20-mo weights for bulls were .58 +/- .15 and .55 +/- .22 in good environments vs .32 +/- .11 and 1.09 +/- .15 in poor environments; for heifers these estimates were .19 +/- .08 and .35 +/- .12 in good environments vs .38 +/- .07 and .47 +/- .09 in poor environments. Heritability estimates of 8- to 12-mo and 12- to 20-mo gain for bulls were .32 +/- .14 and .51 +/- .24 in good environments vs .16 +/- .11 and .09 +/- .14 in poor environments; for heifers these estimates were .21 +/- .08 and .14 +/- .10 in good environments vs .10 +/- .06 and .44 +/- .10 in poor environments. Genetic correlations among the preweaning traits of birth and weaning weight and postweaning weight traits were positive and of a moderate to large magnitude, with the exception of birth and 12-mo weight in a poor environment (-.06 +/- .49). Genetic correlations between 8- to 12-mo gain and birth weight in poor environment and weaning weight in all environments were negative (range from -.06 +/- .33 to -.53 +/- .41). Genetic correlations among 12- and 20-mo weights were large and positive in all environments. Relationships among gains were more variable.  相似文献   

16.
The importance of genotype x country interactions for weaning and birth weight and postweaning gain between Argentina (AR), Canada (CA), Uruguay (UY), and the United States (US) for populations of Hereford cattle was investigated. Three sample data sets of computationally manageable sizes were formed for each trait and pairwise combination of countries to investigate possible interactions. Parameters were estimated for each sample data set via an accelerated EM-REML algorithm and multiple-trait animal models that considered either weaning or birth weight as a different trait in each country. Direct and maternal (in parentheses) weaning weight genetic correlation estimates for AR-CA, AR-UY, AR-US, CA-UY, CA-US, and UY-US were 0.82 (0.80), 0.81 (0.72), 0.81 (0.79), 0.83 (0.78), 0.85 (0.82), and 0.86 (0.81), respectively. Direct and maternal (in parentheses) birth weight genetic correlation estimates were 0.92 (0.62), 0.97, (0.85), and 0.99 (0.97) for AR-CA, AR-US, and CA-US, respectively. Birth weight was not analyzed for UY due to small amounts of data. Postweaning gain in CA and US was 160-d gain, and in AR and UY 345-d gain was used. Across-country direct genetic correlations for postweaning gain were estimated for each pairwise country data set using a model that considered weaning weight as the same trait across each country, whereas postweaning gain was treated as a different trait in each country. Direct genetic correlation estimates for postweaning gain for AR-CA, AR-UY, AR-US, CA-UY, CA-US, and US-UY were 0.64, 0.80, 0.51, 0.84, 0.92, and 0.83, respectively. The overall results indicate that weaning and birth weights of Hereford calves can be analyzed as the same trait in all countries with a common set of heritabilities and genetic correlations, after adjustment for heterogenous phenotypic variances across countries. Postweaning gain in CA and US can be considered as the same trait and analyzed using a single set of parameters. Postweaning gain in AR and UY should be considered as a separate trait from postweaning gain in CA and US, and postweaning gain in AR and UY can be considered as the same trait and analyzed using a common heritability, after adjustment for phenotypic variance differences between the two countries.  相似文献   

17.
Growth and carcass measurements were made on 2,411 Hereford steers slaughtered at a constant weight from a designed reference sire program involving 137 sires. A second data set consisted of ultrasound measures of backfat (USFAT) and longissimus muscle area (USREA) from 3,482 yearling Hereford cattle representing 441 sires. Restricted maximum likelihood procedures were used to estimate genetic parameters among carcass traits and live animal weight traits from these two separate data sets. Heritability estimates for the slaughter weight constant steer carcass backfat (FAT) and longissimus muscle area (REA) were .49 and .46, respectively. In addition, FAT had a negative genetic correlation with REA (-.37), weaning weight (-.28), and yearling weight (-.13) but positive with marbling (.19) and carcass weight (.36). Marbling was moderately heritable (.35) and highly correlated with total postweaning average daily gain (.54) and feedlot relative growth rate (.62). Heritability estimates for weight constant USFAT and USREA were .26 and .25, respectively. The genetic correlation between weight constant USFAT and USREA was positive (.39), indicating that in these young animals USFAT does not seem to be an indication of maturity. Mean USFAT measures and variability were small (.48 +/- .17 cm, n = 3,482). Results indicate that carcass fat on slaughter steers and ultrasound measures of backfat on young breeding animals may have different relationships with growth and muscling. These relationships need to be explored before wide scale selection based on ultrasound is implemented.  相似文献   

18.
Data collected from 1957 through 1985 from a Hereford herd located in the Southwest were analyzed separately for each sex to evaluate the heritabilities of and genetic correlations among preweaning growth traits within groups of environmentally similar years. Data were grouped into years with poor, moderate and good environments based on contemporary group means for male calves' weaning weight. A total of 7,690 records were analyzed for birth weight, weaning weight and preweaning daily gain with a model that included year of birth, sire within year of birth, age of dam and a covariate of day of birth for birth weight or age at weaning for the weaning traits. Year of birth was a significant source of variation in all environments for all traits, accounting for more of the variation in the good and poor years than in moderate years. Heritability estimates for all traits were greater in good and moderate years than in poor years for bull calves. For heifers, however, estimates for weaning weight and preweaning daily gain were greater in the poor environment. Genetic correlations among birth weight and preweaning gain increased from the good environment to the poor environment (-.49 +/- .26 to .82 +/- .56 for male calves and -.09 +/- 2.6 to .46 +/- .25 for female calves) but phenotypic correlations were near zero in all environments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Direct and maternal genetic and environmental variances and covariances were estimated for weaning weight and growth and maturing traits derived from the Brody growth curve. Data consisted of field records of weight measurements of 3,044 Angus cows and 29,943 weaning weight records of both sexes. Growth traits included weights and growth rates at 365 and 550 d, respectively. Maturing traits included the age of animals when they reached 65% of mature weight, relative growth rates, and degrees of maturity at 365 and 550 d. Variance and covariance components were estimated by REML from a set of two-trait animal models including weaning weight paired with a growth or maturing trait. Weaning and cow contemporary groups were defined as fixed effects. Random effects for weaning weight included direct genetic, maternal genetic, and permanent environmental effects. For growth and maturing traits, a random direct genetic effect was included in the model. Direct heritability estimates for growth traits ranged from .46 to .52 and for maturing traits from .31 to .34. Direct genetic correlations between weaning weight and weights and growth rates at 365 and 550 d ranged from .56 to .70. Correlations of maternal weaning genetic effects with direct genetic effects on weights at 365 and 550 d were positive, but those with growth rates were negative. Between weaning weight and degrees of maturity at both 365 and 550 d, direct genetic correlation estimates were .55 and maternal genetic correlations estimates were -.05, respectively. Direct genetic correlations of weaning weight with relative growth rates and age at 65% of mature weight ranged from .04 to .06, and maternal-direct genetic correlation estimates ranged from -.50 to -.56, respectively. These estimates indicate that higher genetic capacity for milk production was related to higher body mass and degrees of maturity between 365 and 550 d of age but was negatively related to absolute and relative growth rates in that life stage.  相似文献   

20.
In beef cattle maternally influenced traits, estimates of direct-maternal genetic correlations (rdm) are usually reported to be negative. In international evaluations, rdm can differ both within countries (rdm_WC) and between countries (rdm_BC). The rdm_BC are difficult to estimate and are assumed to be zero in the current model for international beef cattle evaluations (Interbeef). Our objective was to investigate re-ranking of international estimated breeding values (IEBVs) in international beef cattle evaluations between models that either used estimated values for rdm or assumed them to be 0. Age-adjusted weaning weights and pedigree data were available for Limousin beef cattle from ten European countries. International EBVs were obtained using a multi-trait animal model with countries modeled as different traits. We compared IEBVs from a model that uses estimated rdm_BC (ranging between −0.14 and +0.14) and rdm_WC (between −0.33 and +0.40) with IEBVs obtained either from the current model that assumes rdm_BC to be 0, or from an alternative model that assumes both rdm_BC and rdm_WC to be 0. Direct and maternal IEBVs were compared across those three scenarios for different groups of animals. The ratio of population accuracies from the linear regression method was used to further investigate the impact of rdm on international evaluations, for both the whole set of animals in the evaluation and the domestic ones. Ignoring rdm_BC, i.e., replacing estimated values with 0, resulted in no (rank correlations > 0.99) or limited (between 0.98 and 0.99) re-ranking for direct and maternal IEBVs, respectively. Both rdm_BC and rdm_WC had less impact on direct IEBVs than on maternal IEBVs. Re-ranking of maternal IEBVs decreased with increasing reliability. Ignoring rdm_BC resulted in no re-ranking for sires with IEBVs that might be exchanged across countries and limited re-ranking for the top 100 sires. Using estimated rdm_BC values instead of considering them to be 0 resulted in null to limited increases in population accuracy. Ignoring both rdm_BC and rdm_WC resulted in considerable re-ranking of animals’ IEBVs in all groups of animals evaluated. This study showed the limited impact of the current practice of ignoring rdm_BC in international evaluations for Limousin weaning weight, most likely because the estimated rdm_BC was close to 0. We expect that these conclusions can be extended to other traits that have reported rdm values in the range of rdm_WC values for weaning weight in Limousin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号