首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The objective of this study was to estimate parameters required for genetic evaluation of Simmental carcass merit using carcass and live animal data. Carcass weight, fat thickness, longissimus muscle area, and marbling score were available from 5,750 steers and 1,504 heifers sired by Simmental bulls. Additionally, yearling ultrasound measurements of fat thickness, longissimus muscle area, and estimated percentage of intramuscular fat were available on Simmental bulls (n = 3,409) and heifers (n = 1,503). An extended pedigree was used to construct the relationship matrix (n = 23,968) linking bulls and heifers with ultrasound data to steers and heifers with carcass data. All data were obtained from the American Simmental Association. No animal had both ultrasound and carcass data. Using an animal model and treating corresponding ultrasound and carcass traits separately, genetic parameters were estimated using restricted maximum likelihood. Heritability estimates for carcass traits were 0.48 +/- 0.06, 0.35 +/- 0.05, 0.46 +/- 0.05, and 0.54 +/- 0.05 for carcass weight, fat thickness, longissimus muscle area, and marbling score, respectively. Heritability estimates for bull (heifer) ultrasound traits were 0.53 +/- 0.07 (0.69 +/- 0.09), 0.37 +/- 0.06 (0.51 +/- 0.09), and 0.47 +/- 0.06 (0.52 +/- 0.09) for fat thickness, longissimus muscle area, and intramuscular fat percentage, respectively. Heritability of weight at scan was 0.47 +/- 0.05. Using a bivariate weight model including scan weight of bulls and heifers with carcass weight of slaughter animals, a genetic correlation of 0.77 +/- 0.10 was obtained. Models for fat thickness, longissimus muscle area, and marbling score were each trivariate, including ultrasound measurements on yearling bulls and heifers, and corresponding carcass traits of slaughter animals. Genetic correlations of carcass fat thickness with bull and heifer ultrasound fat were 0.79 +/- 0.13 and 0.83 +/- 0.12, respectively. Genetic correlations of carcass longissimus muscle area with bull and heifer ultrasound longissimus muscle area were 0.80 +/- 0.11 and 0.54 +/- 0.12, respectively. Genetic correlations of carcass marbling score with bull and heifer ultrasound intramuscular fat percentage were 0.74 +/- 0.11 and 0.69 +/- 0.13, respectively. These results provide the parameter estimates necessary for genetic evaluation of Simmental carcass merit using both data from steer and heifer carcasses, and their ultrasound indicators on yearling bulls and heifers.  相似文献   

2.
The purpose of this study was to determine and describe the effects of slaughter age (at constant weights) on pre- and post-weaning growth rate and carcass traits of unselected steer and heifer progeny from a crossbred beef herd. The data were obtained from 340 heifers and 377 steers weaned at 305 days of age and fed a high-energy post-weaning diet. Heifers and steers were slaughtered at individual unshrunk weights of 420 and 470 kg, respectively, and divided into slaughter age classes based on 25-day intervals. There were differences (P < 0.01) between slaughter age classes for all growth traits including 305-day (weaning) weight, post-weaning daily gain, days on feed, and weight/day. Mean 305-day weight of steers in the youngest slaughter age class (347.8 kg; 376–400 days of age) was 28% greater than the mean of steers in the oldest age class (272.2 kg;>501 days of age). The youngest steer class averaged 63% more for daily gain than the oldest steer class (1.462 vs. 0.894 kg); the corresponding value for heifers was 64%. Post-weaning time in the feedlot ranged from 84.7 days for the youngest steer to 215.6 for the oldest steer class. Calculations based on mean differences between age classes in 305-day weight, daily gain and days on feed indicated that variability in weaning weight and in daily gain were of similar importance in determining slaughter age. Marbling score was greater (P < 0.01) for older steer classes, but was not different in the heifer data. Fat thickness of the oldest steer class was 25% more than the youngest steer class (1.89 vs. 1.51 cm); the corresponding percent in heifers was 30%. With the exception of differences in untrimmed rib and chuck percents in steers (P < 0.05), and rib specific gravity in heifers (P < 0.05), carcass quantity traits were essentially unaffected by slaughter age class when marbling score and fat thickness were included as continuous independent variables. None of the organoleptic traits (tenderness, juiciness and flavour) were affected by slaughter age class.  相似文献   

3.
Experiments were conducted at 3 US locations (California, Idaho, and Texas) to determine the effects of dietary zilpaterol hydrochloride and duration of zilpaterol feeding on carcass composition and beef palatability. At each site, 160 steers and 160 heifers were stratified within sex by initial BW (study d -1) and assigned randomly within BW strata to 1 of 4 treatments in a randomized complete block design (4 blocks/treatment for each sex). The 4 treatments were arranged in a 2 (no zilpaterol vs. zilpaterol) x 2 (20- or 40-d duration of zilpaterol feeding) factorial. When included in the diet, zilpaterol was supplemented at 8.3 mg/kg (DM basis). Each pen consisted of 10 animals. After slaughter 2 carcasses per pen (n=64 per trial site) were selected. The entire right side of the selected carcasses was collected for dissection and chemical analysis of the soft tissue. Additionally, the left strip loin was collected for Warner-Bratzler shear force determinations and aged to 28 d postmortem. Sensory analysis was conducted on the Idaho trial site samples only. All data were pooled for analyses. Feeding zilpaterol hydrochloride increased carcass muscle deposition (P<0.01) of both steer and heifer carcasses. However, carcass percentage fat of steers and heifers was not affected (P>0.11) by the zilpaterol treatment. In heifer carcasses, carcass moisture percentage was increased (P=0.04) and bone percentage was decreased (P=0.02), whereas in steer carcasses, carcass moisture and bone percentage were not affected (P>0.10). In heifer carcasses, carcass ash percentage was not affected (P=0.61) by zilpaterol, whereas in steer carcasses, carcass ash percentage tended (P=0.07) to be increased. The protein-to-bone ratio was increased (P<0.001) by zilpaterol hydrochloride treatment in both steers and heifers, whereas the protein-to-fat ratio was not affected (P=0.10). Cooking loss of the LM was not affected (P=0.41) by zilpaterol treatment of steers or heifers. However, LM Warner-Bratzler shear force was increased (P=0.003) on average (3.3 vs. 4.0 kg) due to zilpaterol hydrochloride treatment of both steers and heifers. In both steers and heifers, LM sensory panel scores of overall juiciness (6.2 vs. 6.0), tenderness (6.2 vs. 6.0), and flavor intensity (6.2 vs. 6.0) tended (P=0.06) to be decreased in cattle supplemented with zilpaterol. Zilpaterol hydrochloride is a repartitioning agent that seems to affect carcass composition primarily through protein deposition. However, zilpaterol treatment can adversely affect tenderness and other palatability traits.  相似文献   

4.
Commercial slaughter steers (n = 329) and heifers (n = 335) were selected to vary in slaughter frame size and muscle thickness score, as well as adjusted 12th rib fat thickness. After USDA carcass grade data collection, one side of each carcass was fabricated into boneless primals/subprimals and minor tissue components. Cuts were trimmed to 2.54, 1.27, and .64 cm of external fat, except for the bottom sirloin butt, tritip, and tenderloin, which were trimmed of all fat. Four-variable regression equations were used to predict the percentage (chilled carcass weight basis) yield of boneless subprimals at different fat trim levels (.64, 1.27, and 2.54 cm) as influenced by sex class, frame size, muscle score, and adjusted 12th rib fat thickness. Carcass component values, total carcass value, carcass value per 45.36 kg of carcass weight, and live value per 45.36 kg of live weight were calculated for each phenotypic group and external fat trim level. Carcass fatness and muscle score had the most influence on live and carcass value (per 45.36 kg weight basis). Carcasses with .75 and 1.50 cm of fat at the 12th rib were more valuable as the trim level changed from 2.54 cm to .64 cm; however, for carcasses with 2.25 cm of fat at the 12th rib, value was highest at the 2.54 cm trim level. Value was maximized when leaner cattle were closely trimmed. There was no economic incentive for trimming light-muscled or excessively fat carcasses to .64 cm of external fat.  相似文献   

5.
Real time ultrasound (RTU) measures of longissimus muscle area and fat depth were taken at 12 and 14 mo of age on composite bulls (n = 404) and heifers (n = 514). Carcass longissimus muscle area and fat depth, hot carcass weight, estimated percentage lean yield, marbling score, Warner-Bratzler shear force, and 7-rib dissectable seam fat and lean percentages were measured on steers (n = 235). Additive genetic variances for longissimus muscle area were 76 and 77% larger in bulls at 12 and 14 mo than the corresponding estimates for heifers. Heritability estimates for longissimus muscle area were 0.61 and 0.52 in bulls and 0.49 and 0.47 in heifers at 12 and 14 mo, respectively. The genetic correlations of longissimus muscle area of bulls vs heifers were 0.61 and 0.84 at 12 and 14 mo, respectively. Genetic correlations of longissimus muscle area measured in steer carcasses were 0.71 and 0.67 with the longissimus muscle areas in bulls and heifers at 12 mo and 0.73 and 0.79 at 14 mo. Heritability estimates for fat depth were 0.50 and 0.35 in bulls and 0.44 and 0.49 in heifers at 12 and 14 mo, respectively. The genetic correlation of fat depth in bulls vs heifers at 12 mo was 0.65 and was 0.49 at 14 mo. Genetic correlations of fat depth measured in bulls at 12 and 14 mo with fat depth measured in steers at slaughter were 0.23 and 0.21, and the corresponding correlations of between heifers and steers were 0.66 and 0.86, respectively. Live weights at 12 and 14 mo were genetically equivalent (r(g) = 0.98). Genetic correlations between live weights of bulls and heifers with hot carcass weight of the steers were also high (r(g) > 0.80). Longissimus muscle area measured using RTU was positively correlated with carcass measures of longissimus muscle area, estimated percentage lean yield, and percentage lean in a 7-rib section from steers. Measures of backfat obtained using RTU were positively correlated with fat depth and dissectable seam fat from the 7-rib section of steer carcasses. Genetic correlations between measures of backfat obtained using RTU and marbling were negative but low. These results indicate that longissimus muscle area and backfat may be under sufficiently different genetic control in bulls vs heifers to warrant being treated as separate traits in genetic evaluation models. Further, traits measured using RTU in potential replacement bulls and heifers at 12 and 14 mo of age may be considered different from the corresponding carcass traits of steers.  相似文献   

6.
Beef steer carcasses from three 2 x 2 factorial feeding experiments (Exp. 1, 20 carcasses; Exp. 2 and 3, 19 carcasses each) were evaluated to study the influence of supplementing with roasted soybeans (RSB; 127 degrees C for 10 min) vs soybean meal (SBM) and implanting with the estrogenic growth promoter Synovex-S (SYN, 20 mg estradiol benzoate and 200 mg progesterone) on carcass merit, composition of dissected 9-10-11th rib section, estimated edible carcass composition, and cooking characteristics of strip loin steaks. In all experiments, steers were fed diets consisting of 15% corn silage, 15% orchardgrass silage, and 70% corn-based concentrate. There were no treatment interactions found in this study. Final BW averaged 480.4, 498.5, and 500.7 kg for Exp. 1, 2, and 3, respectively, and hot carcass weights averaged 288.4, 296.4, and 309.1 kg. Across experiments, hot carcass weight was 8.3 kg less (P < .03) for RSB steers than for SBM steers. Fat weight (P < .01) and percentage of fat (P < .01) were less and percentage of bone (P < .04) was greater in the 9-10-11th rib section of RSB steers than of SBM steers. Estimated percentage of fat (P < .02) was less and percentage of bone (P < .04) was greater in edible carcass of RSB steers than in that of SBM steers. Total 9-10-11th rib section weight tended to be less for RSB steers (P < .08) than for SBM steers. Carcass merit measurements were not affected (P > .10) by supplement, but numerically the percentage of kidney, pelvic, and heart fat was 11% greater for RSB steers than for SBM steers in Exp. 2 and 3. Final BW and carcass weight were 38.7 and 22.6 kg greater (P < .01), respectively, for SYN-implanted steers than for steers not implanted. Longissimus muscle area was greater (P < .01), percentage of kidney, pelvic, and heart fat (P < .02) was less, USDA quality grade tended to be less (P < .09), and shear force of strip loin was greater (P < .01) for SYN-implanted steers than for steers not implanted. The 9-10-11th rib section and estimated carcass compositions were not different (P > .10) between SYN-implanted steers and steers not implanted but reflected a somewhat leaner carcass. The authors conclude from this study that in feedlot steers, either implanted or not implanted, there is no benefit from supplementing with RSB in place of SBM, and that the use of RSB in place of SBM in feedlot diets may reduce the amount of edible carcass.  相似文献   

7.
The objective of this study was to evaluate the effect of growth implants on the carcass characteristics and tenderness of steers and heifers with different genetic potentials for growth, lean meat yield production, and marbling. Two experiments were conducted. Experiment 1 evaluated Angus steers sired by bulls with high EPD for retail product yield or marbling. Implant treatment was imposed randomly within sire groups. Loins (Institutional Meat Purchasing Specifications 180) were collected from each carcass and cut into three 2.54-cm steaks aged for 7, 14 and 21 d to evaluate tenderness. The second experiment evaluated steers and heifers of British and Continental breed descent. Steers and heifers were slaughtered after 120 d on feed. Loin sections were collected, and one 2.54-cm steak aged 7 d was used for tenderness analysis. When implants were used in Angus steers, HCW and LM area increased, whereas internal fat and marbling decreased (P < 0.01). In Angus steers, sire type did not affect shear force values of steaks; however, implant use significantly increased shear force values (P < 0.01). Carcasses from cattle of Continental breed descent were significantly heavier than carcasses of British breed descent with larger LM area, slightly less fat, and a reduced yield grade (P < 0.01). Also, steer carcasses were heavier than heifer carcasses with larger LM (P < 0.05), but no effect of sex on fat depth, internal fat, yield grade or marbling was observed. No significant interactions were seen between growth implant and breed or between growth implant and sex for shear force values. Shear force values were significantly less for steaks from steers and heifers of British decent compared with steers and heifers of Continental descent (P < 0.01). Steaks from implanted steers and heifers had significantly (P < 0.01) greater shear force values than steaks from steers and heifers not implanted. Use of growth implants in growing cattle resulted in significantly heavier carcass weights, larger LM area, and reduced internal fat. However, implant use also reduced the amount of marbling along with contributing to reduced tenderness. Complicating the tenderness issue is the increased shear force values reported for heifers as well as steers of Continental breed descent. Use of implants may contribute to tenderness variability because of different animal responses to implants.  相似文献   

8.
The present review has been focused largely on the sex type differences in beef quality among heifers, cows, steers and bulls in various feeding environments. Genetic groups, feeding systems and gender are the major factors that change carcass characteristics and fatty acid profiles of cattle. Studies identified that heifer beef has super characteristics in eating quality and a better healthy composition in fatty acids than steer, cow and bull. Diet influences the variation of fatty acid profile; particularly the level of polyunsaturated fatty acids (PUFA) interacts with breed and sex. Animals finished in pasture systems were reported to show better ratios of PUFA/ saturated fatty acids and n‐6/n‐3. Carcasses of roughage‐fed beef are lighter and have less marbling and lower quality grades but have higher cutability than carcasses of grain‐fed bulls. Heifers and cows are reported to deposit more fat than steers and bulls. Among males, lower production of testosterone by steers favors more fat thickness compared with bulls. Marbling greatly varies among cattle belonging to different sexes, and particularly, females have genetic makeup that efficiently controls deposition. The current review identified that heifers can be a premium beef brand, while steer beef currently take a large part of market share across the world.  相似文献   

9.
Two experiments were conducted to determine the effects of sex on carcass traits and cooked beef steak palatability. In Exp. 1, steers (n = 99), heifers (n = 51), and intravaginally spayed heifers (n = 46) were fed a high-energy diet for 161 d. No implants were administered, and heifers were not fed melengestrol acetate to suppress estrus. In Exp. 2, 60 steers and 60 intact heifers from the same ranch source used in Exp. 1 were fed in 2 locations (sites 1 and 2). All management factors were equal across experiments except that intact heifers were fed melengestrol acetate to suppress estrus in Exp. 2. Steers in Exp. 1 were 25 kg heavier (P < 0.01) in HCW than heifers at comparable (P = 0.39) carcass fat thickness. Spayed heifers (Exp. 1) had a 5.7% smaller (P < 0.05) LM area compared with steers and intact heifers, which were similar. In Exp. 2, there was no difference (P = 0.2) in carcass weight, and heifers had greater (P < 0.01) 12th rib fat thickness compared with steers. Calculated yield grades were similar (P = 0.21) among treatments in Exp. 1 and tended (P = 0.08) to be greater for heifers compared with steers in Exp. 2. In Exp. 1, USDA quality grades and marbling scores were lower (P < 0.01) for steers compared with intact and spayed heifers, which were similar. The effects of sex on tenderness were examined at a common level of fat-thickness and marbling by covariate analysis. Steaks from steers, compared with those from nonimplanted, intact heifers, in the 2 experiments combined were: (a) superior (P < 0.05) in 2 of 9 palatability assessments when subcutaneous fat thickness (at the 12th rib) was adjusted to a common level, and (b) superior (P < 0.05) in 6 of 9 palatability assessments when marbling score was adjusted to a common level. In Exp. 1, steaks from nonimplanted steers compared with those from nonimplanted spayed heifers were: (a) superior (P < 0.05) in 0 of 8 palatability assessments when subcutaneous fat thickness (at the 12th rib) was adjusted to a common level, and (b) superior (P < 0.05) in 3 of 8 palatability assessments when marbling score was adjusted to a common level. These findings suggest that sex should be added to the list of antemortem factors contributing to variation in cooked beef steak tenderness. However, more research is needed to precisely identify those factors contributing to the lower tenderness observed for steaks from heifer carcasses.  相似文献   

10.
Over a 5-yr period, spring-calving cows were used in a carry-over design experiment to evaluate effects of calf age at weaning on cow and calf performance and production economics. Weaning management groups were early (n = 60, calf age 150 d, EW), traditional (n = 60, calf age 210 d, NW), and late (n = 60, calf age 270 d, LW). Cow body condition score (BCS) and weights at the last weaning date were different (P < .05) for EW (5.8, 583 kg), NW (5.5, 560 kg), and LW (5.2, 541 kg) management groups. Pregnancy rates among groups were similar. Days on feed for groups differed (P = .001) and was 247 for EW, 204 for NW, and 164 d for LW steers. Average daily gain in the feedlot differed (P = .01) among groups and averaged 1.5 kg for LW, 1.4 kg for NW, and 1.3 kg for EW steers. Dry matter intake while steers were in the feedlot was greater (P = .001) for LW than for NW and EW calves. Hot carcass weight was greater (P = .01) for EW (328 kg) and NW (332 kg) calves than for LW (321 kg) steers, and fat depth was greater (P = .05) for EW and NW steers than for LW steers. When carcass data for the NW and LW steers were adjusted to the fat depth of EW steers, carcass characteristics among groups were similar. Net income per steer at slaughter for the feedlot phase was greater (P < .001) for the EW ($75.36) and NW ($62.16) steers than for the LW ($10.09) steers. Again, when carcass data for the NW and LW steers were adjusted to the same fat depth of the EW steers, net income differences among groups were reduced. Replacement heifers were developed in a drylot and costs were higher (P < .001) for the EW than for NW and LW heifers. Annual cow costs were greater (P < .10) for the LW ($443.45) than for the EW ($410.09) and NW ($421.35) groups. Break-even for each system on a steer financial basis was not different between the NW and LW groups, and both the NW and LW groups had lower (P = .08) break-evens than the EW group. Age of the calf at weaning affects cow weight and BCS. Net income in each system is influenced by cow costs, month of the year that steer calves are purchased into the feedlot and finished steers are sold, month of the year cull cows are marketed, and replacement heifer development costs.  相似文献   

11.
Commercial slaughter steers (n = 329) and heifers (n = 335) were selected to vary in slaughter frame size and muscle thickness score, as well as carcass adjusted 12th-rib fat thickness. After collection of USDA carcass grade data, one side of each carcass was fabricated into boneless primals, subprimals, and minor tissue components. Cuts were trimmed to 2.54, 1.27, and .64 cm of external fat, except for the knuckle, tri-tip, and tenderloin, which were trimmed of all fat. Forced four-variable regression equations were used to predict the percentage (chilled carcass weight basis) yield of boneless subprimals at the three fat trim levels as influenced by sex class, frame size, muscle score, and adjusted 12th-rib fat thickness. Independent variables that had the most influence on percentage yield of primals and boneless subprimals were adjusted 12th-rib fat thickness and sex class. Within the same phenotypic group, percentage of trimmable fat increased by 2.32% as 12th-rib fat thickness increased by .75 cm. Estimated percentage yield of the major subprimals from the loin and round tended to be higher or relatively equal for heifer carcasses at all trim levels compared with those subprimals from steer carcasses. Holding frame size, sex class, and fat thickness constant, there was a higher percentage yield of chuck roll, rib eye roll, and strip loin for carcasses from thick-muscled cattle than for those from average- and thin-muscled cattle. Frame size had little effect on percentage yield of boneless subprimals.  相似文献   

12.
Heifer and steer progeny of 2-yr-old first-cross (F1) heifers and 3- to 6-yr-old F1 cows, from Hereford dams and five sire breeds, were evaluated for postweaning feedlot growth and carcass composition. Breeds of sire of dam were Angus (A), Red Poll (RP), Tarentaise (T), Simmental (Sm), and Pinzgauer (P). Calves from 2-yr-old heifers were sired by Shorthorn, and calves from 3- to 6-yr-old dams were sired by Charolais. Breed of sire of dam was significant (P less than .05 to P less than .01) for total gain and final weight for female progeny from 2-yr-old dams. At all weights, Sm, P, and T ranked above A and RP. Progeny of A, P, Sm, and T F1 2-yr-old dams were not significantly different but were higher (P less than .05) than RP heifers in total feedlot gain. Breed of sire of dam was significant (P less than .05) for carcass weight and longissimus muscle area; T ranked highest and RP lowest. Breed was not significant for any growth traits of steer progeny of 2-yr-old dams. Breed was significant for marbling score; A ranked highest and exceeded (P less than .01) both RP and Sm steers. Breed was significant (P less than .05) for most growth traits in the heifer progeny of the 3- to 6-yr-old dams bred to Charolais sires. Heifer calves of the Sm group were heavier (P less than .05) than all other groups for most weights and total gain. For total gain, P and T were intermediate and A and RP lowest. For heifer carcass traits from 3- to 6-yr-old dams, breed was significant (P less than .05 to P less than .01) for carcass weight, longissimus muscle area, percentage of cutability, and estimated kidney, heart, and pelvic fat. Heifers from Sm-sired dams were heavier (P less than .05) than those from all other groups but ranked second to heifers from P for percentage of cutability. Marbling scores of RP heifer carcasses ranked highest of all groups. Breed was not significant (P greater than .05) for any of the weights or gains in steer progeny of 3- to 6-yr-old dams; however, the Sm and P groups ranked above A and RP for all feedlot test weights.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Live weight and ultrasound measures of fat thickness and longissimus muscle area were available on 404 yearling bulls and 514 heifers, and carcass measures of weight, longissimus muscle area, and fat thickness were available on 235 steers. Breeding values were initially estimated for carcass weight, longissimus muscle area, and fat thickness using only steer carcass data. Breeding values were also estimated for weight and ultrasound muscle area and fat thickness using live animal data from bulls and heifers, with traits considered sex-specific. The combination of live animal and carcass data were also used to estimate breeding values in a full animal model. Breeding values from the carcass model were less accurate and distributed more closely around zero than those from the live data model, which could at least partially be explained by differences in relative amounts of data and in phenotypic mean and heritability. Adding live animal data to evaluation models increased the average accuracy of carcass trait breeding values 91, 75, and 51% for carcass weight, longissimus muscle area, and fat thickness, respectively. Rank correlations between breeding values estimated with carcass vs live animal data were low to moderate, ranging from 0.16 to 0.43. Significant rank changes were noted when breeding values for similar traits were estimated exclusively with live animal vs carcass data. Carcass trait breeding values estimated with both live animal and carcass data were most accurate, and rank correlations reflected the relative contribution of carcass data and their live animal indicators. The addition of live animal data to genetic evaluation of carcass traits resulted in the most significant carcass trait breeding value accuracy increases for young replacements that had not yet produced progeny with carcass data.  相似文献   

14.
Two experiments were conducted to evaluate the effect of prenatal testosterone treatment in combination with postnatal steroid implantation (Exp. 1) and to assess the effect of time of prenatal testosterone treatment in conjunction with postnatal steroid implantation (Exp. 2) on animal performance and carcass characteristics. In Exp. 1, seventy-six pregnant cows were assigned randomly to a control group or implanted with testosterone propionate (TP) silastic implants between d 40 and 80 of gestation. Half the heifer calves were selected randomly to be implanted with 200 mg TP plus 20 mg estradiol benzoate (EB); the other half of the steer calves were implanted with 200 mg progesterone plus 20 mg EB on d 1 and 85 of the feedlot trial. Daily gain of heifers was increased 10.4% (P less than .08) due to prenatal testosterone treatment (P) and 16.4% (P less than .05) by postnatal steroid implantation (I). Feed efficiency was 12.9% greater (P less than .05) due to P and 9.5% greater (P less than .05) due to I. Prenatal testosterone treatment decreased (P less than .05) kidney, pelvic and heart fat and final yield grade but increased (P less than .05) ribeye area of heifers. Heifers had greater (P less than .07) liver weights per unit of carcass weight due to P. In Exp. 2, one hundred seventy-four pregnant cows were assigned randomly to a control group or implanted with TP silastic implants on d 42, 63, 84 or 105 of gestation. Half the heifer and steer calves were selected randomly to be implanted on d 1 and 112 of the feedlot trial. Time of P caused a quadratic effect (P less than .08) on birth weight of heifers. There was a quadratic effect (P less than .05) of time of P on daily gain and final weight per day of age of heifers. Feed efficiency of heifers was improved (P less than .05) due to P. Postnatal steroid implantation increased (P less than .05) daily gain and feed efficiency of heifers by 9.6% and 8.6%, respectively. No changes were observed in growth performance of steers due to P. Results from these two trials suggest that the combination of prenatal testosterone treatment and postnatal testosterone and estradiol implantation produced an additive improvement of daily gain, feed efficiency and carcass merit of heifers.  相似文献   

15.
The performance, intake, feed efficiency, and carcass traits of beef cattle from different gender profile were assessed. Fifteen animals (five steers, five spayed heifers, and five intact heifers) with ±250 kg of initial body weight were randomly assigned in individual pens and fed the same diet for 106 days. At the end of the trial, all the animals were slaughtered and the pH, temperature, and weight of the carcass were recorded. The right side of each carcass was then separated into chuck, shoulder, flank sirloin, and round for evaluation of commercial cuts yield. The left carcass sides were ribbed between the 12th and 13th ribs where the rib eye area and fat thickness measurements were taken. The 9th–11th rib section was removed from the left half carcass and then dissected into muscle, fat, and bones in order to estimate carcass composition. Gender had no effect (P > 0.05) on performance, intake, digestibility of dry matter and all the nutrients evaluated, feed efficiency, and carcass characteristics. It can be concluded that steers and heifers (spayed or not) have the same potential to produce beef. From a productive and welfare standpoint, there is no reason to spay heifers.  相似文献   

16.
Estimates of heritabilities and genetic correlations were obtained for weaning weight records of 23,681 crossbred steers and heifers and carcass records from 4,094 crossbred steers using animal models. Carcass traits included hot carcass weight; retail product percentage; fat percentage; bone percentage; ribeye area; adjusted fat thickness; marbling score, Warner-Bratzler shear force and kidney, pelvic and heart fat percentage. Weaning weight was modeled with fixed effects of age of dam, sex, breed combination, and birth year, with calendar birth day as a covariate and random direct and maternal genetic and maternal permanent environmental effects. The models for carcass traits included fixed effects of age of dam, line, and birth year, with covariates for weaning and slaughter ages and random direct and maternal effects. Direct and maternal heritabilities for weaning weight were 0.4 +/- 0.02 and 0.19 +/- 0.02, respectively. The estimate of direct-maternal genetic correlation for weaning weight was negative (-0.18 +/- 0.08). Heritabilities for carcass traits of steers were moderate to high (0.34 to 0.60). Estimates of genetic correlations between direct genetic effects for weaning weight and carcass traits were small except with hot carcass weight (0.70), ribeye area (0.29), and adjusted fat thickness (0.26). The largest estimates of genetic correlations between maternal genetic effects for weaning weight and direct genetic effects for carcass traits were found for hot carcass weight (0.61), retail product percentage (-0.33), fat percentage (0.33), ribeye area (0.29), marbling score (0.28) and adjusted fat thickness (0.25), indicating that maternal effects for weaning weight may be correlated with genotype for propensity to fatten in steers.  相似文献   

17.
The carcass composition of crossbred Japanese Black × Limousin F2 cattle was examined in order to find an accurate carcass composition equation. The test animals included 17 steers and 17 heifers. The 28 image measurements from the area encircling the vertical line to the thoracic vertebra and the line from the thoracic vertebra between the sixth and seventh rib‐bones were measured by computer image analysis. The relationships between the 29 parameters that added the carcass left side weight of the animal and the carcass composition were suggested. The carcass composition included muscle weight, muscle ratio, fat weight and fat ratio. The carcass composition from steers was estimated by an equation composed of these three or four parameters (R2 = 90.80%, 79.30%, 90.75% and 73.70%, respectively). The selected parameters were measured without cutting the thoracic vertebra. The carcass composition from heifers was estimated by an equation composed of two to four parameters (R2 = 96.15%, 90.98%, 93.60% and 88.22%, respectively). The parameters for the estimation of the muscle and fat weight, and muscle and fat ratio are very similar. Furthermore, the equations using the parameters could estimate the carcass composition from the Japanese Black × Limousin cattle resource population.  相似文献   

18.
Three experiments were conducted to determine the effects of whole cottonseed or cottonseed products on performance and carcass characteristics of beef cattle. In Exp. 1, 120 beef steers (initial BW = 381 +/- 31.7 kg) were fed steam-flaked corn-based finishing diets with 10% (DM basis) basal roughage, and whole cottonseed or individual cottonseed components (cottonseed hulls, meal, and oil). Over the entire feeding period, ADG did not differ (P = 0.95), but DMI increased (P = 0.07) and G:F decreased (P = 0.06) for steers fed the cottonseed diets compared with the control diet. Dressing percent (P = 0.02) and marbling scores (P = 0.02) of carcasses from steers fed the cottonseed diets were less than for steers fed the control diet. In Exp. 2, 150 beef steers (initial BW = 364 +/- 9.9 kg) were used to determine the effects of whole cottonseed or pelleted cottonseed (PCS) on performance and carcass characteristics. Cattle were fed steam-flaked corn-based finishing diets in which whole cottonseed or PCS replaced all of the dietary roughage, supplemental fat, and supplemental natural protein of the control diet. Over the entire feeding period, steers fed the cottonseed diets had lower (P = 0.04) DMI and greater (P < 0.01) G:F than steers fed the control diet. Carcass characteristics did not differ (P = 0.16 to 0.96) among dietary treatments. In Exp. 3, 150 beef heifers (initial BW = 331 +/- 17.1 kg) were used to determine the effects of PCS or delinted, whole cottonseed (DLCS) on performance and carcass characteristics. Heifers were fed rolled corn-based finishing diets in which cottonseed replaced the dietary roughage, supplemental fat, and all or part of the supplemental natural protein of the control diet. Over the entire feeding period, ADG, DMI, and G:F of heifers fed the control diet did not differ (P = 0.19 to 0.80) from those of the cottonseed diets; however, heifers fed the diets containing PCS had greater ADG (P = 0.03) and G:F (P = 0.09) than heifers fed diets containing DLCS. Carcass characteristics of heifers fed the control diet did not differ (P > or = 0.28) from those fed the cottonseed diets. Heifers fed the diets containing PCS had greater (P < or = 0.03) HCW, dressing percent, and LM area than those fed DLCS. Based on our results, whole cottonseed, or products derived from processing whole cottonseed, can replace feedstuffs commonly used in beef cattle finishing diets with no adverse effects on animal performance or carcass characteristics.  相似文献   

19.
We used data from 144 bulls, heifers, and steers to determine the repeatability of ultrasound-predicted percentage of intramuscular fat and to study the effect of repeated measurements on the standard error of prediction. Animals were scanned at an average age of 433 d by a certified technician. Individual bulls, heifers, and steers were scanned five to six times each with two Aloka 500-V machines, and the percentage of intramuscular fat was predicted from two regions of interest within an image. Variance components and repeatability values were computed for the overall data and by machine, region of interest, and sex. Animals were broadly divided into two groups based on mean ultrasound-predicted percentage of intramuscular fat. Variance components and repeatability values were then estimated within each group. The overall repeatability of ultrasound-predicted percentage of intramuscular fat was .63 +/- .03. Differences in the repeatability values between machines and between regions of interest were not different from zero (P > .05). Bulls showed a lower within-animal SD of .82% as compared to .97 and 1.02% for steers and heifers, respectively. However, steer ultrasound-predicted percentage of intramuscular fat measures were more repeatable (P < .05) than those of bulls and heifers. The difference in repeatability between bull and heifer measures was not important (P > .05). Animals with mean ultrasound-predicted percentage of intramuscular fat less than 4.79% showed less repeatable measures (P < .05) than those with means above 4.79%. The image variance contributed to nearly 70% of the total variance of observations within an animal. Standard error of animal mean measures showed a 50% reduction when the number of images per animal increased to four. Therefore, we concluded that increasing the number of images per animal plays a more significant role in reducing the standard error of prediction than taking multiple measurements within a single image.  相似文献   

20.
Over 2 yr, 45 Angus-sired steer offspring of Angus and Angus crossbred females were used to determine the effects of early weaning on feedlot performance, carcass characteristics, and economic return to the cow-calf enterprise. Steers were assigned by birth date to one of two weaning treatments: 1) weaned at an average age of 100 d (early weaned) or 2) weaned at an average age of 200 d (normally weaned). Within 36 d of weaning, steers were given ad libitum access to a high-concentrate diet (90% dry, wholeshelled corn). Steers were harvested when 12th-rib fat thickness averaged 1.27 cm within treatment as estimated by ultrasound. Carcass measurements were taken 48 h postmortem and rib steak tenderness was determined at 14 d postmortem by Warner-Bratzler shear force. Early-weaned steers had greater ADG from time of early weaning to normal weaning than suckling normally weaned steers (1.27 vs. 0.86 kg/d, respectively; P < 0.001). However, early-weaned steers tended to have lower ADG for the entire finishing period than did normally weaned steers (1.33 vs. 1.39 kg/d, respectively; P = 0.08). Compared with normally weaned steers, early-weaned steers had lower daily DMI (7.40 vs. 5.95 kg/d, respectively; P < 0.001) and lower total DMI for the finishing period (1,618 vs 1,537 kg, respectively; P < 0.05). Early-weaned steers had greater gain:feed for the finishing period than normally weaned steers (0.223 vs 0.189, respectively; P < 0.001). Carcass weights were lighter for early-weaned steers than for normally weaned steers (277.9 vs. 311.2 kg, respectively; P < 0.001). There was no difference in yield grade (3.1 vs. 3.2; P < 0.10) between treatments. All carcasses graded Low-Choice or greater, and there was no difference in the percentage of carcasses grading Mid-Choice or greater (94.5 vs 83.9% for early- and normally-weaned, respectively; P > 0.10). Warner-Bratzler shear force values were similar between treatments. Early-weaned steers had a lower cost of gain than normally weaned steers ($ 0.82 vs. 0.91/kg, respectively; P < 0.001). However, due to lighter carcass weights, early-weaned steers generated less return to the cow-calf enterprise than normally weaned steers ($ 380.89 vs 480.08/steer; P < 0.001). The early weaning of steers at 100 d of age decreased total DMI, improved gain:feed, and lowered the cost of gain; however, return to the cow-calf enterprise was decreased due to lighter carcass weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号