首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorimuron ethyl (2-([(4-chloro-6-methoxypyrimidine-2-yl)amino carbonyl]amino sulfonyl)benzoic acid, ethyl ester) is a highly active sulfonylurea herbicide for preemergence and postemergence use in soybeans. Excised soybean (Glycine max. cv. ‘Williams’) seedlings rapidly metabolized [14C]chlorimuron ethyl with a half-life of 1–3 hr. Common cocklebur (Xanthium pensylvancium Wallr.) and redroot pigweed (Amaranthus retroflexus L.), which are sensitive to chlorimuron ethyl, metabolized this herbicide much more slowly (half-life >30 hr). The major metabolite of chlorimuron ethyl in soybean seedlings is its homoglutathione conjugate, formed by displacement of the pyrimidinyl chlorine with the cysteine sulfhydryl group of homoglutathione. A minor metabolite is chlorimuron, the deesterified derivative of chlorimuron ethyl. Each of these metabolites is inactive against plant acetolactate synthase, the herbicidal target site of chlorimuron ethyl. Thus, soybean tolerance to chlorimuron ethyl results from its rapid metabolism in soybean seedlings to herbicidally inactive products.  相似文献   

2.
The concentrations of haloxyfop in nutrient solution required to reduce the total plant dry weight of soybean (Glycine max L. Merr. ‘Evans’), red fescue (Festuca rubra L. ‘Pennlawn’), and tall fescue (Festuca arundinacea Schreb. ‘Houndog’) by 50% (GR50) were determined. The GR50) values for soybean, red fescue and tall fescue were 76 μM, 3μM and 0.4 μM, respectively. The reduction in growth in roots and shoots of soybean was similar. In contrast, the relative reduction in root tissue weight was greater than that for foliar tissue in both grass species. The amount of 14C-haloxyfop in soybean roots or shoots was higher than in red fescue or tall fescue. Red fescue accumulated less haloxyfop in the foliage than in the roots. On the other hand, similar amounts of 14C-haloxyfop accumulated in both organs in both soybean and tall fescue. 14C-haloxyfop appeared to be actively absorbed by the roots of all species. Soybean absorbed more nutrient solution, but utilized it less on a per gram dry matter produced basis than the grass species. Differences in the uptake and translocation of haloxyfop by roots do not account for differences in tolerance between species. However, a higher level of retention of haloxyfop in the roots of red fescue than in tall fescue may provide the former with an additional selectivity advantage under conditions where there is significant root exposure to the herbicide.  相似文献   

3.
Over a concentration range of 5.0 × 10?6?7.5 × 10?4M, the selective herbicide difenzoquat (1,2-dimethyl-3,5-diphenyl-1H-pyrazolium) caused more pronounced inhibition of potassium ion (K+) absorption by excised seedling roots of susceptible wild oat (Avena fatua L.) compared to those of tolerant barley (Hordeum vulgare L. cv. Bonanza) or wheat (Triticum aestivum L. cv. Neepawa). At 2.5 × 10?5M difenzoquat, the relative inhibition of K+ (86Rb) absorption by wild oat root segments inceased from 30% with a 10-min uptake period to 75% with an uptake period of 90 min, whereas no inhibition at all was evident for wheat root segments even after a 90-min exposure to the herbicide. An ion efflux compartmental analysis procedure demonstrated that difenzoquat did not affect the passive permeability properties of the plasma membrane of wild oat root cells. The experimental findings indicated that difenzoquat interfered directly with the process of active ion transport across the plasma membrane of root cells.  相似文献   

4.
The absorption and loss of four chloro-s-triazines was investigated in excised roots of four Setaria taxa. Different taxa absorbed the various triazines at different rates. In general, triazine absorption was greater at 2°C than at 22.5°C, and absorption rates were linear functions of external concentrations. Efflux studies showed marked differences in the rate of loss of 14C-atrazine, 14C-simazine, and 14C-propazine from root sections of robust white foxtail (Setaria viridis var. robustaalba Schreiber). The roots lost 14C-atrazine very quickly, and the loss was similar in either water or 12C-atrazine. Atrazine appears to be restricted to the apoplast of the root. 14C-atrazine was lost more rapidly than either 14C-simazine or 14C-propazine to water or to solutions containing the unlabelled herbicide. Efflux of 14C-simazine was greater than that of 14C-propazine to solutions of CaCl2. From the pattern of efflux, it was concluded that 14C-simazine and 14C-propazine accumulated in the root symplast. Furthermore, the decreases in chloro-s-triazine absorption in the presence of metabolic inhibitors (dinitrophenol, sodium arsenite) may suggest that 14C-simazine and 14C-propazine entered the symplast by an energy-dependent process.  相似文献   

5.
The uptake of 2,4,5-T by spines of gorse (Ulex europaeus L.) was limited and not enhanced when picloram was added to the application solution. Translocation of 2,4,5-T in 6-month-old cuttings after treatment of a single spine or lateral branch was poor. The most significant accumulation of translocated herbicide occurred in stem tissue, with lesser amounts detected in root tissues, root nodules, stem apices and flowers. Untreated lateral branches or spines accumulated minimal amounts of herbicide. The pattern and extent of distribution of 2,4,5-T was not increased by addition of picloram. The lack of efficient control of gorse by 2,4,5-T can largely be attributed to its inadequate uptake and lack of true systemic translocation.  相似文献   

6.
W. MERSIE 《Weed Research》1995,35(1):15-18
Witloof chicory (Cichorium intybus L.) is tolerant to propyzamide and common amaranth (Amaranthus retroflexus L.) is sensitive. The absorption, translocation, and metabolism of propyzamide was studied in seedlings of witloof chicory and common amaranth to determine if differences in these processes cause the differential sensitivity. At 24,48, and 72 h after root treatment, there was no difference in the concentration of 14C (g?1 plant dry wt) in com-mon amaranth and witloof chicory. Approximately 50% of the absorbed 14C was translocated out of the roots to shoots of both species at 24 and 48 h after treatment. After 72 h about 55 and 74% of the absorbed 14C was translocated to shoots of witloof chicory and common amaranth, respectively. Distribution of 14C (g?1 plant dry wt) in plant parts of witloof chicory and common amaranth seedlings was similar. Roots of both species accumulated the highest concentration of total 14C, whereas shoots contained the lowest. Thin layer chromatography revealed that the herbicide was metabolized in neither species 48 h after treatment. No differences were found in absorption, translocation, or metabolism between witloof chicory and common amaranth with regard to propyzamide.  相似文献   

7.
Imazaquin; a promising herbicide for the control of dodder (Cuscuta spp.) in soybean (Glycine max) Imazaquin, a systemic herbicide, when applied to the leaves of Phaseolus aureus parasitized by Cuscuta lupuliformis was transported and accumulated in the apical part of the stem of the parasite. Similar results were obtained with soybean parasitized by Cuscuta australis. The herbicide was rapidly metabolized by the soyabean plant, but stops the development of dodder by inhibiting cell division. The phloemmobility of imazaquin, its physiological selectivity on soybean, and its efficacy on dodder make this a promising herbicide for the chemical control of dodder in soybean, as was shown by preliminary trials in greenhouse.  相似文献   

8.
Sprangletop (Leptochloa chinensis L. Nees) is a serious grass weed in direct‐seeded rice cropping systems in Thailand. One population of sprangletop, BLC1, was found to be resistant to fenoxaprop‐p‐ethyl at 62‐fold the concentration of a susceptible biotype, SLC1. This study elucidated the inheritance of resistance to fenoxaprop‐p‐ethyl in this sprangletop BLC1 genotype. The reaction to the herbicide at 0.12–2.4 mg ai L?1 was determined in the seedlings of self‐pollinated resistant BLC1, susceptible SLC1 and SLC1 that had been allowed to cross‐pollinate with BLC1. At 0.24 mg ai L?1, all the seedlings of SLC1 were killed, while 99% of BLC1 survived, along with 5% of the cross‐pollinated SLC1 seedlings, which were considered to be putative F1 hybrids. The root and shoot lengths of the F1 hybrids in 0.24 mg ai L?1 of fenoxaprop‐p‐ethyl, relative to those in the absence of the herbicide, were close to or the same as the resistant parent, indicating that the resistance is a nearly complete to complete dominant trait. One‐hundred‐and‐forty‐one of the F2‐derived F3 families were classified by their response to the herbicide at 0.24 and 0.48 mg ai L?1 into 39 homozygous susceptible : 72 segregating : 30 homozygous resistant, fitted with a 1:2:1 ratio at χ2 = 1.21 and P = 0.56, indicating that the resistance to fenoxaprop‐p‐ethyl in the sprangletop BLC1 genotype is controlled by a single gene.  相似文献   

9.
The activity of imazapyr and glyphosate against Imperata cylindrica was studied in field and glasshouse experiments using two methods of direct contact application; a rope-wick wiper and a cloth soaked in herbicide solution. The effect of concentration and position of application on herbicide uptake and translocation was also measured. At the lowest dose of imazapyr (5 mg acid equivalent (a.e.) per plant), phytotoxicity was greater from applications by a rope-wick wiper than by a cloth. However, when the dose of imazapyr was increased, the cloth applicator was more effective than the rope-wick wiper. At all doses of glyphosate, rope-wick application was more effective than wiping with a cloth. Herbicide performance in the glasshouse was similar to that in the field. Radiotracer studies showed that increasing the concentration of imazapyr, while keeping herbicide dose constant, decreased uptake and translocation of radiolabel. In contrast, the rate of uptake of 14C-glyphosate increased with increasing herbicide concentration. Position of application did not significantly affect the amount of uptake and translocation of radiolabel to the rhizomes. It is concluded that rope-wick wipers are more effective than wiping with a cloth for applying imazapyr and glyphosate to I. cylindrica, provided that the concentration of imazapyr does not exceed 10 g a.e. l?1.  相似文献   

10.
Benfuresate (2-3-dihydro-3,3-dimethylbenzofu-ran-5-yl ethanesulfonate) is a selective herbicide for the control of purple nutsedge in cotton. Under outdoor conditions, purple nutsedge was sensitive to benfuresate incorporated in soil up to eight days after initiation of shoot sprouting from the tuber. Older seedlings recovered from the damage. During the period of susceptibility to benfuresate, young shoots more sensitive than the roots. Under controlled environmental conditions, benfuresate applied directly to apical buds developing from the tuber caused severe damage to the treated bud and induced abrupt development of axillary buds. Negligible amounts of the applied herbicide were translocated from the treated part to the other buds and roots. Application of the herbicide to fully developed leaves had no effect, probably because of its rapid metabolism and low basipetal mobility. Its relatively high volatility may also contribute to its low foliar post-emergence activity. Tubers also absorbed herbicide vapours. Root uptake of 14C-benfuresate resulted in a rapid accumulation of 14C in the shoot, which had no effect on the purple nutsedge plant, regardless of concentration. The herbicide is rapidly converted, mainly to a non-phytotoxic polar product. These results may explain the high sensitivity of the weed to benfuresate at early growth stages, and the lack of sensitivity in mature plants.  相似文献   

11.
The absorption of norflurazon by 1-cm segments cut from the apical 5-cm roots of sicklepod (Cassia obtusifolia L.), corn (Zea mays L. cv. Sunbelt 1860), and cotton (Gossyipium hirsutum L. cv. DPL 90) was investigated. Norflurazon absorption by all root tissues was rapid in the first 10 min but there was very little increase thereafter up to 60 min. Norflurazon also penetrated the entire root tissue volume within 30 min, indicating its movement into both the apoplast and the symplast of root cells by simple diffusion. The initial (0–10 min) rate of norflurazon absorption was faster in sicklepod and cotton than in corn. Corn also accumulated less 14C than did the other species. Norflurazon diffused freely out of sicklepod and corn root tissues but not out of cotton roots. Metabolism was not the basis for this differential retention as norflurazon was not degraded by the root tissues over a 24-hr period. These experiments show that differential accumulation and retention of norflurazon by root tissues was not related to the selectivity of this herbicide among these three species.  相似文献   

12.
Following seed treatment of wheat (Triticum aestivum L.) with 14C-labelled triticonazole at a dose of 1·8 g kg-1 seed, the uptake of radioactivity by shoots and roots was investigated from the two- to three-leaf stage up to the beginning of the booting phase, 80 days after sowing. Triticonazole equivalents taken up by wheat plants reached 5·7% and 14·6% of the applied dose in the shoots and the roots, respectively. Between the two- to three-leaf stage and the beginning of the booting phase, the concentration of triticonazole equivalents in the shoots decreased from 2·5 to 0·15 μg g-1 fresh weight. This was attributed to uptake of triticonazole by roots not keeping pace with shoot growth and increased retention in the roots of triticonazole taken up. The main factor limiting the uptake of triticonazole by the roots may be the rapid growth of the uptake-active apical root parts out of the dressing zone which had formed in the soil. Distribution of triticonazole equivalents taken up by the main shoot showed a decreasing concentration gradient from the oldest to the youngest leaf. An increase in the seed treatment dose was investigated as a way to increase the concentration of triticonazole in the shoots, but its influence remained limited. © 1998 SCI  相似文献   

13.
Cinidon-ethyl (BAS 615H) is a new herbicide of isoindoldione structure which selectively controls a wide spectrum of broadleaf weeds in cereals. The uptake, translocation, metabolism and mode of action of cinidon-ethyl were investigated in Galium aparine L, Solanum nigrum L and the tolerant crop species wheat (Triticum aestivum L). When plants at the second-leaf stage were foliarly treated with cinidon-ethyl equivalent to a field rate of 50 g ha−1 for 48 h, the light requirement for phytotoxicity and the symptoms of plant damage in the weed species, including rapid chlorophyll bleaching, desiccation and necrosis of the green tissues, were identical to those of inhibitors of porphyrin synthesis, such as acifluorfen-methyl. The selectivity of cinidon-ethyl between wheat and the weed species has been quantified as approximately 500-fold. Cinidon-ethyl strongly inhibited protoporphyrinogen oxidase (Protox) activity in vitro, with I50 values of approximately 1 nM for the enzyme isolated from the weed species and from wheat. However, subsequent effects of herbicide action, with accumulation of protoporphyrin IX, light-dependent formation of 1-aminocyclopropane-1-carboxylic acid-derived ethylene, ethane evolution and desiccation of the green tissue, were induced by cinidon-ethyl only in the weed species. After foliar application of [14C] cinidon-ethyl, the herbicide, due to its lipophilic nature, was rapidly adsorbed by the epicuticular wax layer of the leaf surface before it penetrated into the leaf tissue more slowly. No significant differences between foliar and root absorption and translocation of the herbicide by S nigrum, G aparine and wheat were found. After foliar or root application of [14C]- cinidon-ethyl, translocation of 14C into untreated plant parts was minimal, as demonstrated by combustion analysis and autoradiography. Metabolism of [14C]cinidon-ethyl via its E-isomer and acid to further metabolites was more rapid in wheat than in S nigrum and G aparine. After 32 h of foliar treatment with 50 g ha−1 of the [14C]-herbicide, approximately 47%, 36%, and 12% of the absorbed radioactivity, respectively, were found as unchanged parent or its biologically low active E-isomer and acid in the leaf tissue of G aparine, S nigrum and wheat. In conclusion, cinidon-ethyl is a Protox-inhibiting, peroxidizing herbicide which is effective through contact action in the green tissue of sensitive weed species. It is suggested that a more rapid metabolism, coupled with moderate leaf absorption, contribute to the tolerance of wheat to cinidon-ethyl. © 1999 Society of Chemical Industry  相似文献   

14.
Structure-concentration–foliar uptake enhancement relationships between commercial polyoxyethylene primary aliphatic alcohol (A), nonylphenol (NP), primary aliphatic amine (AM) surfactants and the herbicide glyphosatemono(isopropylammonium) were studied in experiments with wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants growing under controlled-environment conditions. Candidate surfactants had mean molar ethylene oxide (EO) contents ranging from 5 to 20 and were added at concentrations varying from 0·2 to 10 g litre?-1 to [14C]glyphosate formulations in acetone–water. Rates and total amounts of herbicide uptake from c. 0·2–μl droplet applications of formulations to leaves were influenced by surfactant EO content, surfactant hydrophobe composition, surfactant concentration, glyphosate concentration and plant species, in a complex manner. Surfactant effects were most pronounced at 0·5 g acid equivalent (a.e.) glyphosate litre?-1 where, for both target species, surfactants of high EO content (15–20) were most effective at enhancing herbicide uptake: surfactants of lower EO content (5–10) frequently reduced, or failed to improve, glyphosate absorption. Whereas, at optimal EO content, AM surfactants caused greatest uptake enhancement on wheat, A surfactants gave the best overall performance on field bean; NP surfactants were generally the least efficient class of adjuvants on both species. Threshold concentrations of surfactants needed to increase glyphosate uptake were much higher in field bean than wheat (c. 2 g litre?-1 and < 1 g litre?-1, respectively); less herbicide was taken up by both species at high AM surfactant concentrations. At 5 and 10 g a.e. glyphosate litre?-1, there were substantial increases in herbicide absorption and surfactant addition could cause effects on uptake that were different from those observed at lower herbicide doses. In particular, the influence of EO content on glyphosate uptake was now much less marked in both species, especially with AM surfactants. The fundamental importance of glyphosate concentration for its uptake was further emphasised by experiments using formulations with constant a.i./surfactant weight ratios. Any increased foliar penetration resulting from inclusion of surfactants in 0·5 g litre?-1 [14C]glyphosate formulations gave concomitant increases in the amounts of radiolabel that were translocated away from the site of application. At these low herbicide doses, translocation of absorbed [14C]glyphosate in wheat was c. twice that in field bean; surfactant addition to the formulation did not increase the proportion transported in wheat but substantially enhanced it in field bean.  相似文献   

15.
The effects of the herbicides hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione] and chlorsulfuron (2-chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide) on the metabolism of enzymatically isolated leaf cells from soybean [Glycine max (L.) Merr., cv. ‘Essex’] were examined. Photosynthesis, protein, ribonucleic acid (RNA), and lipid syntheses were assayed by the incorporation of specific radioactive substrates into the isolated soybean leaf cells. These specific substrates were NaH14CO3, [14C]leucine, [14C]uracil, and [14C]acetate, respectively. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10, and 100 μM of both herbicides. Photosynthesis was the most sensitive and first metabolic process inhibited by hexazinone. RNA and lipid syntheses were also inhibited significantly by hexazinone whereas the effect of this herbicide on protein synthesis was less. The most sensitive and first metabolic process inhibited by chlorsulfuron was lipid synthesis. Photosynthesis, RNA, and protein syntheses were affected significantly only by the highest concentration of this herbicide and longest exposure. Although these two herbicides may exert their herbicidal action by affecting other plant metabolic processes not examined in this study, hexazinone appears to be a strong photosynthetic inhibitor, while the herbicidal action of chlorsulfuron appeared to be related to its effects on lipid synthesis.  相似文献   

16.
The transport and differential phytotoxicity of glyphosate was investigated in maize seedlings following application of the herbicide to either roots or shoots. One-leaf maize seedlings (Zea mays L.) were maintained in graduated cylinders (250 mL) containing nutrient solution. Half of the test plants were placed in cylinders (100 mL) containing different 14C-glyphosate concentrations; the remainder received foliar appliation of 14C-glyphosate. After 26 h, the roots and the treated leaves were washed with distilled water, and the plants placed again in cylinders (250 mL) containing fresh nutrient solution for 5 days. Plants were weighed, and split into root, seed, cotyledon, coleoptile, mesocotyl, first leaf and apex. The recovery of 14C-glyphosate was over 86%. For both application treatments, the shoot apex was the major sink of the mobilized glyphosate (47.9 ± 2.93% for root absorption and 45.8 ± 2.91% for foliar absorption). Expressed on a tissue fresh weight basis, approximately 0.26 μg a.e. g−1 of glyphosate in the apex produced a 50% reduction of plant fresh weight (ED50) when the herbicide was applied to the root. However, the ED50 following foliar absorption was only 0.042 μg a.e. g−1 in the apex, thus maize seedlings were much more sensitive to foliar application of the herbicide.  相似文献   

17.
Imazapyr absorption, translocation, root release and metabolism were examined in leafy spurge (Euphorbia esula L.). Leafy spurge plants were propagated from root cuttings and [14C]imazapyr was applied to growth-chambergrown plants in a water + 28% urea ammonium nitrate + nonionic surfactant solution (98.75 + 1 + 0.25 by volume). Plants were harvested two and eight days after herbicide treatment (DAT) and divided into: treated leaf, stem and leaves above treated leaf, stem and leaves below the treated leaf, crown, root, dormant and elongated adventitious shoot buds. Imazapyr absorption increased from 62.5% 2 DAT to 80.0% 8 DAT. Herbicide translocation out of the treated leaf and accumulation in roots and adventitious shoot buds was apparent 2 DAT. By the end of the eight-day translocation period only 14% of applied 14C remained in the treated leaf, while 17% had translocated into the root system. Elongated and dormant adventitious shoot buds accumulated 3.2- and 1.8-fold more 14C, respectively, 8 DAT than did root tissue based on Bq g?1 dry weight. Root release of 14C was evident 2 DAT, and by 8 DAT 19.4% of the 14C reaching the root system was released into the rooting medium. There was no metabolism of imazapyr in crown, root or adventitious shoot buds 2 DAT; however, imazapyr metabolism was evident in the treated leaf 2 and 8 DAT. Imazapyr phytotoxicity to leafy spurge appears to result from high imazapyr absorption, translocation to underground meristematic areas (roots and adventitious shoot buds), and a slow rate of metabolism.  相似文献   

18.
Fosamine (ammonium ethyl carbamoylphosphonate) formulated as a 1% w/v solution in 0–25%v/v Tween 20 was absorbed slowly by detached leaves of Rubus procerus P.J. Muell., 35% of the applied herbicide being absorbed after 96 h. Fosamine does not appear to be rainfast, as up to 80% of the applied herbicide and 99.9% of the removable herbicide were removed from the leaves by washing for 5 min in distilled water. Translocalion of fosamine was rapid in small R. procerus plants and followed a pattern similar to that taken by assimilates: 2,4,5–T did not translocate to the root system as readily as fosamine or assimilates.  相似文献   

19.
Root-fed or foliar-applied glyphosate [N-(phosphonomethyl) glycine] reduced uptake and translocation of Ca2+ and Mg2+, but not K+, by soybean [Glycine max (L.) Merr. “Hill”] seedlings as measured by atomic absorption spectrometry. Histochemical techniques revealed that cells of secondary roots that were formed after glyphosate treatment were deficient in Ca2+. The relative distribution of Ca2+ in control root and leaf cells was mitochondria > plastids > cytoplasm. Glyphosate severely reduced Ca2+ content and eliminated intracellular concentration of Ca2+ in the mitochondria of both root and leaf cells. Glyphosate had no effects on K+ distribution at the ultrastructural level. These results support the view that glyphosate effects on distribution of divalent metal cations may be related directly or indirectly to the phytotoxicity of the herbicide.  相似文献   

20.
D. J. TURNER 《Weed Research》1985,25(4):289-299
In pot experiments, mixtures of ammonium sulphate with surfactants or oil additives increased the phytotoxicity of commercially formulated bentazone (‘Basagran’) to Stellaria media (chickweed). Ammonium sulphate with a proprietary oil adjuvant Actipron had similar effects with benazolin potassium salt, but not with an ethyl ester formulation of benazolin. The phytotoxicity of bentazone and benazolin salts to Trifolium repens (white clover) and Lolium perenne (perennial ryegrass) was almost unaffected by these additives. In a field experiment, a mixture of ammonium sulphate with Actipron improved the control of S. media by bentazone and benazolin salts. Oils and surfactants markedly increased rates of entry of 14C bentazone into leaves of S. media, white clover and Chrysanthemum segetum. Ammonium sulphate sometimes had similar effects but on other occasions reduced uptake. In some circumstances the additives apparently interacted synergistically, to increase uptake of labelled herbicide into the leaf or to enhance its transport within the plant. In these test species, differential absorption of bentazone could not explain differences in species susceptibility, suggesting that the main cause of resistance was the ability of plants to degrade the herbicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号