首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of soil factors are known to increase nutrient availability and plant productivity. The most influential might be the organisms comprising the soil microbial community of the rhizosphere, which is the soil surrounding the roots of plants where complex interactions occur between the roots, soil, and microorganisms. Root exudates act as substrates and signaling molecules for microbes creating a complex and interwoven relationship between plants and the microbiome. While individual microorganisms such as endophytes, symbionts, pathogens, and plant growth promoting rhizobacteria are increasingly featured in the literature, the larger community of soil microorganisms, or soil microbiome, may have more far-reaching effects. Each microorganism functions in coordination with the overall soil microbiome to influence plant health and crop productivity. Increasing evidence indicates that plants can shape the soil microbiome through the secretion of root exudates. The molecular communication fluctuates according to the plant development stage, proximity to neighboring species, management techniques, and many other factors. This review seeks to summarize the current knowledge on this topic.  相似文献   

2.
Interactions between crops and soil micro- and mesofauna within the root zone were investigated under field conditions on sandy loam on a larger spatial scale and in columns in the laboratory on a smaller spatial scale. During the vegetation period of summer wheat from April to July 1999 soil samples were taken monthly directly from the root zone within plant rows and between plant rows hardly penetrated by roots. Abundances of Enchytraeidae, Collembola, soil flagellates, enzyme activities and contents of total carbon and nitrogen were determined. Additionally, a laboratory experiment was carried out with soil columns. Soil from the field was defaunated and inoculated with soil fauna (Enchytraeidae, Collembola, earthworms) in different combinations. Furthermore, summer wheat was sown. Enzyme activities, soil flagellate abundance and contents of total carbon and nitrogen were measured after 2, 6 and 14 weeks. Our field results revealed considerable interactions between plant roots, sampling date and soil layer affecting Enchytraeidae and Collembola. Within plant rows flagellate numbers correlated higher with Nt and Ct than between plant rows. In the laboratory close relationships between soil fauna as well as enzyme activities and nutrients contents were found within the root zone.  相似文献   

3.
褪黑素调控根系生长和根际互作的机制研究进展   总被引:1,自引:0,他引:1  
【目的】根系生长和根际互作是影响植物对土壤养分吸收的关键因子。根系在土壤中穿插生长,不断改变其形态可塑性,进而改变根系构型,扩大与土壤的接触面积以获取所需养分。同时根系的生理可塑性协同根系形态可塑性显著影响根际互作效应,为植物经济高效获取养分资源提供可能。探究褪黑素等内源生长调节因子对根系形态和生理可塑性的调控机制,揭示通过最大化根际效应强化根际互作的有效途径,对集约化作物体系提高养分利用效率,促进绿色增产增效,具有重要的理论与实践意义。主要进展褪黑素作为新型植物生长调节信号分子,在盐害、干旱和低温等非生物胁迫中具有增强植物抗逆性、改善植物生长等重要调节作用。褪黑素显著改变根系生长,对植物主根生长主要表现为抑制作用,对侧根及不定根的发育和生长具有浓度依赖性调节,从而深刻影响植物根系构型。褪黑素调控根系生长的机制尚不清楚,总结已有进展表明:一方面褪黑素调节光周期,影响光合产物的运输和糖信号,从而调控地下部碳分配和根系生长;另一方面,褪黑素还能与生长素等植物激素互作,参与激素对植物生长调控的信号通路,从而对植物的生长发育和新陈代谢产生影响。这些进展对深入揭示褪黑素调控根系生长发育的机制提供了重要依据。问题与展望根系的生长发育以及根系构型的改变显著影响根际过程和根际互作,褪黑素作为调控因子在不同养分环境条件下显著影响根系的形态可塑性。然而,褪黑素在根际过程和根际互作中的作用机制并不清楚,有关研究亟待加强。深入探究褪黑素参与根际互作的机制,理解褪黑素调控根系生长和根际过程的作用途径,可为集约化农业体系下精准调控作物根系生长,强化根际互作,提高养分利用效率提供科学依据。  相似文献   

4.
Water uptake by roots and resulting water redistribution along the soil profile depend on soil hydraulic properties and root distribution, as well as on the physical, chemical, and biological soil–plant interactions that occur in the root zone. The hydraulic properties of the soil in the root zone are difficult to investigate in situ at the needed high spatial resolution, and they still present important open questions. For instance, is there more or less water at the root–soil interface compared to the bulk soil? Neutron radiography (2‐D) and tomography (3‐D) are efficient methods to answer such questions, providing the possibility to image simultaneously water distributions and root structure in situ at high spatial resolution. We planted a lupin and a maize in rectangular boxes filled with sandy soils. The plants were grown for 3 weeks at controlled conditions. Infiltrated water and subsequent water redistribution were imaged for 5 d at regular intervals by means of neutron radiography and tomography. Soil water‐content distributions were quantified from the radiographs after correcting for neutron scattering. The radiographs showed that the water content in the root zone was higher than in the bulk soil both during and after infiltration. Similarly, the tomograms showed localized regions of high water content around some locations of the roots, in particular near the tips of the lupin. Local regions of water depletion, which are expected as a consequence of water uptake, were visible along the main root where laterals branched. These results reflect the complexity of soil–plant–water relations, showing the different properties of bulk soil and root zone, as well as the varying moisture gradients along the root system.  相似文献   

5.
We studied microbe-plant interactions of white lupin, a cluster root-forming plant, under low P and N conditions to examine increased nutrient acquisition by plants either by a shift to a more specialized microbial community or changes in microbial enzyme production. White lupin plants were grown in rhizoboxes filled with either P- or N-deficient soil; fertilized soil was used as control. After cultivation of plants in a glasshouse for 41 d, plant growth (shoot and roots) and P and N accumulation in shoots were measured. Microbial functions were analyzed by P- and N-cycling enzymes. The microbial community structure was estimated by fingerprinting (denaturing gradient gel electrophoresis) and sequencing techniques. P deficiency induced the released citrate and acid phosphomonoesterases from cluster roots and stimulated the production of microbe-derived alkaline phosphomonoesterase in the rhizosphere. P deficiency decreased microbial diversity in the cluster root rhizosphere. Increased relative abundance of Burkholderiales in the rhizosphere of P deficient plants might be responsible for the degradation of different organic P fractions such as phytates. N deficiency induced an increase of the number of nodules and P concentration in shoot as well as roots of white lupin. We clarified that high release of citrate from cluster roots might be the preferred mechanisms to meet the P demand of nodulated plants under N deficiency. In addition, the high abundance of Rhizobiales and Rhodospirillales in the rhizosphere of cluster roots showed that the importance of N-fixing microorganisms under N deficiency. The contribution of rhizosphere microorganisms due to similar activities of N-cycling enzymes under the two different N treatments is less important for N nutrition of plants. Further understanding of the regulation of cluster roots under N-deficiency will provide new information on the interactions between P and N nutrition.  相似文献   

6.
化感植物根际生物学特性研究现状与展望   总被引:19,自引:7,他引:19  
植物的根际是一个复杂的微生态系统,植物的根必须与入侵的邻近植物根及大量以有机物质为营养的细菌、真菌、土存害虫相互竞争空间、水分、矿质营养等。在土壤中,根与根际生物体的相互作用相当复杂且受到许多土壤因素的影响,地下根际生物体以根分泌物为媒介相互作用的机制比发生在地表的生物体的相互作用复杂的多。越来越多的试验表明,根分泌物在根与根、根与根际微生物间起着重要作用,并以其为媒介在植物与环境的相互作用中起着传递信息的作用。本文在简要综述前人研究的基础上,深入探讨了化感植物根际生物学问题及攻克途径,以期为深入研究植物化感作用提供依据。  相似文献   

7.
植物化感作用类型及其在农业中的应用   总被引:8,自引:2,他引:6  
本文总结前人研究成果的基础上,对不同植物化感作用类型及其作用机制和在农业中的应用进行了探讨。植物化感作用包括化感偏害作用、自毒作用、自促作用和互惠作用。植物化感偏害作用是由植物根系分泌物介导下的植物与特异微生物共同作用的结果。利用植物化感偏害作用控制田间杂草是一项环境友好型的可持续农业技术,并已在水稻化感抑草研究方面取得了较突出的成果。植物化感自毒作用(作物连作障碍)是造成作物产量降低、生长状况变差、品质变差、病虫害频发的现象。药用植物,特别是以根部入药的药用植物中,连作障碍表现更为突出。近年来研究结果认为根系分泌物生态效应的间接作用及土壤微生物区系功能紊乱是导致植物连作障碍的主要因素。因此,改善土壤生长环境,恢复和修复根际土壤微生物结构平衡,增强生态系统机能是克服作物连作障碍的关键。植物化感自促作用(连作促进作用)是在植物根系分泌物促进下,根际土壤微生物之间此消彼长,有益微生物之间互利协作,土壤肥力和营养补给能力明显改善,从而增强植物根系抗性,促进植物生长发育,提高产量和品质的结果。牛膝的连作促进作用明显,有学者试图通过牛膝与其他不耐连作药用植物间作套种或轮作,实现药用植物生产的可持续发展。植物间的正相互作用(互惠作用)是作物间套种系统超产和养分等资源高效利用的重要机制,根系分泌物在介导根际微生物与植物的有利互作中起到重要作用。最后作者强调指出,存在于根际土壤的微生物群落的宏基因组组成是决定植物能否健康生长的关键。深入研究存在于土壤生态系统中的植物体外基因组的组成与演化机制,将成为借用现代合成生物学原理与技术,定向控制植物根际生物学过程,促进作物生产可持续发展的优先研究领域。  相似文献   

8.
黄土区植物根系对营养元素在土壤剖面中迁移强度的影响   总被引:12,自引:2,他引:12  
不同植物群落根系对土壤元素迁移具有显著影响,不同基因型植物细根的特殊剖面分布特征,是其适应和改善土壤养分物理化学逆境的生理生态学基础。采用原状土柱淋滤实验装置及大型挖掘剖面壁法,在陕北黄土丘陵沟壑区研究并定量分析了不同径级根系对黄土中营养元素K、Na、Ca、Mg、Cu、Mn、Fe、Si、Al迁移强度的影响,旨在探索土壤养分生物有效性的提高途径。结果表明,不同植被类型土壤营养元素淋溶迁移的剖面差异并非完全取决于土壤中元素或矿物含量的大小,而是主要受制于直径1mm的须根根系在剖面中的缠绕分布特征。不同植被类型土壤中营养元素的迁移强度随土层深度增加呈递减规律。不同植物根系对黄土中营养元素迁移强度的影响具有显著差异,其大小顺序为:林地草地农地。林、草地土壤中元素迁移强度序列有明显变异的临界土层深度分别在30cm和10cm处。在林、草地和农地土层中常量元素水迁移强度序列为CaNaMgKSiAl,微量元素基本为CuMnFe。植物根系对营养元素迁移能力的影响具有明显的区域范围,随着直径1mm有效根密度和根量的增大,根系对土壤元素迁移强度的影响显著增强。  相似文献   

9.
It is well established that increasing soil bulk density (SBD) above some threshold value reduces plant root growth and thus may reduce water and nutrient acquisition. However, formation and elongation of maize seminal roots and first order lateral (FOL) roots in various soil layers under the influence of SBD has not been documented. Two studies were conducted on a loamy sand soil at SBD ranging from 1.25 g cm–3 to 1.66 g cm–3. Rhizotrons with a soil layer 7 mm thick were used and pre‐germinated plants were grown for 15 days. Over the range of SBD tested, the shoot growth was not influenced whereas total root length was reduced by 30 % with increasing SBD. Absolute growth rate of seminal roots was highest in the top soil layer and decreased with increasing distance from the surface. Increasing SBD amplified this effect by 20 % and 50 % for the top soil layer and lower soil layers, respectively. At the end of the experiment, total seminal roots attributed to approximately 15 % of the total plant root length. Increasing SBD reduced seminal root growth in the lowest soil layer only, whereas FOL root length decreased with SBD in all but the uppermost soil layer. For FOL, there was a positive interaction of SBD with distance from the soil surface. Both, increasing SBD and soil depth reduced root length by a reduction of number of FOL roots formed while the length of individual FOL roots was not influenced. Hence, increasing SBD may reduce spatial access to nutrients and water by (i) reducing seminal root development in deeper soil layers, aggravated by (ii) the reduction of the number of FOL roots that originate from these seminal roots.  相似文献   

10.
The soil organic matter plays a key role in ecological soil functions, and has to be considered as an important CO2 sink on a global scale. Apart from crop residues (shoots and roots), left over on the field after harvest, carbon and nitrogen compounds are also released by plant roots into the soil during vegetation, and undergo several transformation processes. Up to now the knowledge about amount, composition, and turnover of these root‐borne compounds is still very limited. So far it could be demonstrated with different plant species, that up to 20 % of photosynthetically fixed C are released into the soil during vegetation period. These C amounts are ecological relevant. Depending on assimilate sink strength during ontogenesis, the C release varies with plant age. A large percentage of these root‐borne substances were rapidly respired by microorganisms (64—86 %). About 2—5 % of net C assimilation was kept in soil. The root exudates of maize were mainly water‐soluble (79 %), and in this fraction about 64 % carbohydrates, 22 % amino acids/amides and 14 % organic acids could be identified. Plant species and in some cases also plant cultivars varied strongly in their root exudation pattern. Under non‐sterile conditions the exuded compounds were rapidly stabilized in water‐insoluble forms and bound preferably to the soil clay fraction. The binding of root exudates to soil particles also improved soil structure by increasing aggregate stability. Future research should focus on quantification and characterization of root‐borne C compounds during the whole plant ontogenesis. Apart from pot experiments with 14CO2 labeling, it is necessary to conduct model field experiments with 13CO2 labeling in order to be able to distinguish between CO2 originating from the soil C pool and rhizosphere respiration, originating from plant assimilates. Such a separation is necessary to assess if soils are sources or sinks of CO2. The incorporation of root‐borne C (14C, 13C) into soil organic matter of different stability is also of particular interest.  相似文献   

11.
The arrangement of a plant's roots in the soil determines the ability of the plant to resist uprooting. We have investigated the influence of root morphology on anchorage using simple patterns of root systems and numerical simulation. The form and mechanical properties of roots were derived from results found in the literature. Major parameters determining soil characteristics, root patterns and strength were varied so that their influence could be evaluated. The design of the experimental method we used generated an optimal number of configurations of different root systems, the tensile resistances of which were calculated by two‐dimensional finite element analysis. We could quantify the influence of specific parameters, e.g. branching angle, number of lateral roots and soil cohesion, as well as global parameters such as total contact area, basal diameter and volume of the whole root system. We found that the number of roots and the diameter of roots were major components affecting the resistance to uprooting. The combination of topology and biomass explained 70% of the variation of tensile resistance.  相似文献   

12.
Considerable progress has been made during the last decade towards understanding and quantifying the input and turnover of plant carbon in the rhizosphere. This was made possible by the development (partially by the authors) and combination of appropriate new methods, such as:
  • –homogeneous labelling of whole plants with 14C
  • –distinction between root and microbial respiration
  • –separation of soil zones of known distances from the roots
  • –determination of microbial soil biomass.
These methods were applied to study the following aspects:
  • –release of organic plant carbon into the soil by growing roots
  • –utilization of this plant carbon by the microbial biomass in the rhizosphere
  • –related influence on the turnover of soil organic matter, and
  • –spatial range of such root influence in the soil.
About 19% of the total photosynthetic production of the investigated plants was released into the rhizosphere as organic material. Most of this (15%) was transformed by the rhizosphere microorganisms into CO2, while only a small fraction (4%) remained in the soil, mainly as microbial cells (2.5%). As a result, microbial rhizosphere biomass increased considerably. Relative to the organic C-input, however, the incorporation of root derived carbon by the microbial biomass was remarkably low (13%). Along with the increase in microbial rhizosphere biomass, the presence of plant roots also enhanced the decomposition of soil organic matter and affected soil aggregate stability. Root carbon and root influences were even detected up to 20 mm away from the roots. This may be partially attributed to the contribution of root derived volatiles. Accordingly, both the actual volume of the rhizosphere and its metabolic significance is greater than what has so far been assumed. Possible interactions involving root, soil and microbial carbon are discussed.  相似文献   

13.
We used neutron radiography (NR), a non-invasive and in situ technique, to study living plant roots in soil. Plant roots have a larger water content than their unsaturated surrounding media. As water strongly attenuates a neutron-beam, NR can identify root structures in detail. We investigated the use of NR to visualize the root growth of lupin in quartz sand and in a loamy sand field soil. Further experiments elucidated the root growth of lupin in the loamy sand heterogeneously contaminated with 10 and 20 mg kg−1 boron (B) and 100 mg kg−1 zinc (Zn). We obtained high-quality images of root growth dynamics in both media with a resolution range of 110–270 μm. The images with quartz sand revealed fine structures such as proteoid roots that are difficult to locate in situ by other methods without destruction of the soil. Though quartz sand provided excellent visibility of roots, it proved to be a poor medium for growing plants, probably because of its bulk density (1.8 Mg m−3). The images with field soil showed normal root growth with slightly less contrast than the quartz sand. The poorer contrast was due to the greater neutron interaction with soil water and soil organic matter. In the heterogeneously contaminated soil, root growth was significantly reduced in the contaminated part of the soil in all B and Zn treatments. This study shows that NR has potential as a non-invasive method to investigate root growth over time as well as the response of roots to various abiotic stress factors.  相似文献   

14.
特大暴雨下油松林根系对土壤元素迁移的影响   总被引:1,自引:0,他引:1  
根际是元素由土壤进入植物体的主要界面,降水对根际土壤元素的迁移有显著影响。本文用原状土柱淋滤实验装置及大型挖掘剖面壁法,定量分析了特大暴雨下不同深度土层油松林根系影响土壤元素的稳定输出通量的剖面特征,旨在探索黄土区林木根系对土壤养分生物有效性的提高途径。研究结果表明,特大降雨条件下,油松林地的元素随土层深度增加呈明显的递减规律,在农地土壤剖面中变异不明显。油松林地元素稳定输出通量的平均值显著大于无根系土壤。油松林030.cm土壤剖面中的元素输出通量占总剖面元素输出通量的96.32%;油松林根系对常量元素K、Na、Mg、Ca、有益元素Si、微量营养元素Mn有明显稳定强化作用的土层深度范围为030cm,对有益元素Al和微量元素Cu、Fe有明显稳定强化作用的土层深度范围为045.cm。  相似文献   

15.
Intercropping is practised globally because of its advantages in terms of productivity and resource use efficiency. However, our knowledge on the molecular mechanisms underlying belowground interspecific interactions in intercropping systems is still very limited. Pot experiments involving both intercropped millet and peanut were conducted to quantify the differentially expressed proteins in each component crop under conditions of complete, partial and no interspecific interactions based on tandem mass tag (TMT) labelling. The results showed that the yields of both crops in the intercropping system increased in response to complete root interactions due to increases in nutrient acquisition as well as increases in root length and surface area. There were 73 differentially expressed proteins in the millet roots and 41 in the peanut roots, most of which were involved in C metabolism, N metabolism, transport and signal transduction. Additional bioinformatic analyses revealed that root interactions improved N and P assimilation via relatively high amounts of proteins such as urease and inorganic phosphate transporter in the millet roots and malate dehydrogenase increased P assimilation related proteins in the peanut roots. These results would contribute to a comprehensive understanding at molecular level in cereal/legume intercropping systems in response to interspecific root interactions.  相似文献   

16.
一种新型根系分泌物收集装置与收集方法的介绍   总被引:2,自引:0,他引:2  
王占义  潘宁  罗茜  沈宏 《土壤学报》2010,47(4):747-752
根系分泌物在养分活化、改善环境胁迫方面具有重要作用,很多科技工作者对根系分泌物的研究表现出极大兴趣,取得了一系列进展。但土壤栽培条件下,根系分泌物收集是一个难点。本文介绍了一种新型根系分泌物的收集装置与收集方法。该装置由根系生长箱和分泌物收集箱组成,植物在生长箱土壤中生长,通过定向引导作用,根系从生长箱穿过琼脂层进入收集箱中生长,待收集箱内积累一定根系后,通过淋洗收集箱内的介质,实现根系分泌物收集。研究发现,利用该装置收集分泌物,植物总根尖数的90%分布在收集箱。外源有机酸加样回收率可达70%以上。土壤栽培条件下,随生长时期延长,大豆有机酸分泌量逐渐增加,苹果酸分泌量高于柠檬酸。而且土壤栽培条件下大豆柠檬酸和苹果酸分泌量是溶液栽培时的11.4倍和6.7倍。上述研究表明,该装置可以用于土壤栽培条件下根系有机酸的分泌研究。  相似文献   

17.
Preferential flow is expected to provide preferential channels for plant root growth and variations in soil water flow, but few studies were conducted to imply the impacts of these changes, particularly for preferential flow in stony soils. This study aimed to characterize soil water flow and plant root distribution in response to preferential flow paths and quantitatively describe the relation between plant root distribution and soil water flow. Field dye‐tracing experiments centered on experimental plants were conducted to determine the root length density and soil water flow process. Laboratory analyses were performed to characterize changes in the relative concentration of the accumulated effluent and the degree of interaction between plant roots and soil water flow. The amount of fine plant roots with preferential flow paths decreased with increasing soil depth for all experimental plots. The largest plant roots were recorded in the upper soil layers to a depth of 20 cm. The relative concentration of the accumulated effluent increased with time and decreased with soil depth under saturated soil conditions, whereas a distinct early turning point for the relative concentration of the accumulated effluent was observed in the 0–20‐cm soil columns, and the relative concentration of the accumulated effluent initially decreased and then increased with time under unsaturated soil conditions. This study provides quantitative information with which to characterize the interaction between plant roots and soil water flow in response to preferential flow paths in soil–plant–water systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
集约化互作体系植物根系高效获取土壤养分的策略与机制   总被引:6,自引:1,他引:5  
【目的】植物根系的形态与生理变化是植物从土壤中高效获取养分资源的重要机制,由相同物种或不同物种组成的互作体系中植物根系对养分的吸收利用受相邻植物竞争的强烈影响,阐明互作体系不同竞争条件下植物根系获取养分的策略并揭示其作用机制,这是基于根系觅食行为探讨养分高效利用的根际调控途径与技术措施的重要理论基础。主要进展根系属性的互补性有利于降低根系间对养分的竞争。根系构型的互补性,例如深根系与浅根系植物互作,促进个体植株对土壤剖面不同深度养分的吸收利用;由根系可塑性介导的水平方向上根系空间分布的互补性,提高了植物根系对同一土层不同空间位点土壤养分的挖掘;个体植株根系形态属性与相邻植物根际生理过程的互补性促进根系对不同形态养分的利用。互作体系根系获取养分的策略具有高度互补性,这有助于提高整个作物系统的养分利用效率,进而提高生产力。根系空间生态位的分离 (包括垂直与水平方向) 以及根际生物化学特征生态位的分离,是驱动互作体系根系高效获取养分资源的主要机制。合理的根层调控可以提高植物根系挖掘土壤养分的能力;优化互作体系物种的搭配能充分发挥根的互作效能,提高养分利用的生物潜力。问题与展望今后应进一步针对集约化高投入作物体系,通过管理根层养分供应和物种间的互作效应,强化根际养分信号的调控作用,调节根系形态与生理特性,降低种间竞争,增强种间互利,以最大化根系和根际的生物学潜力,提高养分利用效率和作物产量,为实现以节肥增效为核心的可持续集约化作物生产提供重要的调控策略与途径。  相似文献   

19.
Understanding the movement of cations in soil, particularly trace metals, is required in many applications such as phytoremediation and pollution control. A dynamic mechanistic model has been developed to describe the long‐term root uptake of a surface‐applied, strongly adsorbed, pollutant metal cation, such as radiocaesium, from soil. It consists of two submodels. The first calculates uptake per unit root length at a local scale over a root's lifetime, for various initial conditions. The second calculates cumulative uptake at a whole‐plant scale for the entire rooting depth as a function of time. The model takes into account the renewal of roots which are considered to have a limited lifetime. Root density may be a function of soil depth and a proportion of roots need not contribute to uptake. Recycling from decaying, or grazed, roots and shoots is considered. Simulations show that removal of cations from soil is exaggerated unless some recycling by roots or shoots is considered or the entire root length does not contribute to uptake. Because of root turnover, uptake is not rapidly limited by diffusive flux of the cation from the bulk soil solution to the solution–root interface. Uptake is very sensitive to root architecture and plant physiology.  相似文献   

20.
The intimate relationships between plant roots, rhizosphere, and soil are fostered by the release of organic compounds from the plant into soil through various forms of rhizodeposition and the simultaneous harvesting of nutrients from the soil to the plant. Here we present a method to spatially track and map the migration of plant‐derived carbon (C) through roots into the rhizosphere and surrounding soil using laser ablation‐isotope ratio mass spectrometry (LA‐IRMS). We used switchgrass microcosms containing soil from field plots at the Kellogg Biological Station (Hickory Corners, Michigan, USA) which have been cropped with switchgrass since 2008. We used a 13CO2 tracer to isotopically label switchgrass plants for two diel cycles and tracked subsequent movement of labeled C using the spatially specific (< 100 µm resolution) δ13C analysis enabled by LA‐IRMS. This approach permitted assessment of variable C flow through different roots and enabled mapping of spatial variability of C allocation to the rhizosphere. Highly 13C‐enriched C (consistent with production during the 13CO2 application period) extended ≈ 0.5–1 mm from the root into the soil, suggesting that the majority of recent plant‐derived C was within this distance of the root after 48 h. Tracking the physical extent of root exudation into the rhizosphere can help evaluate the localization of plant‐microbe interactions in highly variable subsurface environments, and the use of the isotopic label can differentiate freshly fixed C (presumably from root exudates) from other types of subsurface C (e.g., plant necromass and microbial turnover). The LA‐IRMS technique may also serve as a valuable screening technique to identify areas of high activity for additional microbial or geochemical assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号