首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage clamp electrophysiological studies using wild type CaV2.2 and its β3 subunit coexpressed in Xenopus oocytes revealed that deltamethrin increased the rate of activation, prolonged inactivation and reduced peak current. Site-directed mutagenesis of threonine 422 to glutamic acid (T422E, one of five protein kinase C (PKC)-dependent phosphorylation sites) resulted in a channel that acted as if it were permanently phosphorylated. This resulted in an increased probability of opening during depolarization and a reduced inhibition by the βγ subunit of heterotrimeric G-protein. Deltamethrin treatment of T422E CaV2.2 enhanced peak current ∼50% over ethanol-treated controls with an EC50 of 9.8 × 10−11 M.Phosphorylation of wild type CaV2.2 is evoked by the phorbol ester, phorbol 12-myristrate, 13 acetate (PMA), by activating endogenous protein kinase C (PKC) in oocytes. PKC-dependent phosphorylation activated by PMA of wild type CaV2.2 has been previously shown to slow channel deactivation and increased Ca2+ influx and subsequent neurotransmitter release. Following PMA-activated phosphorylation, deltamethrin significantly increased peak current and slowed deactivation of the phosphorylated channel, which would be consistent with slower channel closure, greater Ca2+ influx and enhanced neurotransmitter release seen in vivo. Deltamethrin treatment in the absence of PMA-activated phosphorylation resulted in no effect on the deactivation kinetics of unphosphorylated CaV2.2 or the T422E mutant. Thus, CaV2.2 is modified by deltamethrin but the resulting perturbations are dependent upon its PKC-dependent phosphorylation state.  相似文献   

2.
Effects of deltamethrin, a powerful pyrethroid insecticide, on the protein phosphorylation and dephosphorylation processes during depolarization in rat brain synaptosomes were studied by using [32P]phosphoric acid as a starting radiotracer and high external concentration of potassium ions or veratridine (10?-5 M) as depolarizing agents. At the onset of depolarization there was a quick rise in phosphorylation in various synaptic proteins for about 15–30 s followed by a gradual decline in levels of phosphorylation. The effect of deltamethrin (10?-7 M) on this system was found to be dependent on the length of preincubation of the synaptosome with the pesticide prior to depolarization. At an early stage (0–3 min preincubation period) it caused a modest suppression of protein phosphorylation activities. When the period of deltamethrin preincubation was extended to 5–20 min, however, it caused a significant increase in protein phosphorylation throughout the depolarization period. At the later stage of the action of deltamethrin (e.g. preincubation period of 30–40 min), deltamethrin-treated synaptosomes no longer responded to the depolarization signal to raise the level of phosphorylation on many proteins. These results indicate that deltamethrin's actions on the synaptic process are complex. Depending on the length of exposure, its effects on protein phosphorylation responses in intact synaptosomes could be either stimulatory or inhibitory. To study the cause of deltamethrin-induced synaptic block at the later stage, effects of deltamethrin on protein kinases were studied by using lysed synaptic membranes with [gamma-32P]ATP. Deltamethrin was shown to inhibit calcium–calmodulin-dependent protein phosphorylation activities at 10?-7 M when given directly to the enzyme source 10 min prior to the addition of [32P]ATP. Such an observation helps to explain the inhibitory action of deltamethrin on protein phosphorylation which occurs at the late stage of its action (i.e. preincubation time > 20 min).  相似文献   

3.
Isolated presynaptic nerve terminals (synaptosomes) prepared from rat brain were used to evaluate the actions of a tremor (T)-syndrome (cismethrin) and a choreoathetosis-salivation (CS)-syndrome (deltamethrin) pyrethroid on the functional attributes of synaptosomes by measuring calcium influx and endogenous neurotransmitter (l-glutamate) release with fluorescent assays. Both cismethrin and deltamethrin stimulated calcium influx, however, only deltamethrin enhanced Ca2+-dependent neurotransmitter release and its action was stereospecific, concentration-dependent, stimulated by depolarization, unaltered by tetrodotoxin, and blocked by ω-conotoxin GVIA. Our results delineate a separate action of deltamethrin on presynaptic nerve terminals from that elicited by cismethrin and implicate Cav2.2 calcium channels as target sites for deltamethrin that is consistent with the observed in vivo release of neurotransmitter at the onset of convulsive symptom caused by CS-syndrome pyrethroids. This information will allow a more complete understanding of the molecular and cellular nature of pyrethroid-induced neurotoxicity and expands our knowledge of the structure–activity relationships of pyrethroids in regards to their action on voltage-sensitive calcium channels.  相似文献   

4.
[3H]Flunitrazepam ([3H]Flu) was used to identify benzodiazepine binding sites in house fly thorax muscle membranes using a filter assay. [3H]Flu bound to a finite number of sites in a concentration- and time-dependent manner, reaching equilibrium in 10 min. Scatchard plots of the binding indicated a high-affinity site at 0.2 pmol/mg protein (Kd 24.3 nM) and a low-affinity site at 8.2 pmol/mg protein (Kd994nM). Binding of [3H]Flu to the high-affinity binding site was inhibited by several benzodiazepine analogs, with Flu, diazepam, and Ro 5-4864 being more potent than β-CCE, Ro 5-3027, and Ro 5-2180. Clonazepam was least potent in inhibiting [3H]Flu binding. Thus, the drug specificity of these insect muscle benzodiazepine binding sites was quite different from both the mammalian central and peripheral benzodiazepine receptor sites, though closer to the peripheral ones. GABA (γ-aminobutyric acid) and its agonists enhanced the specific binding of [3H]Flu in a dose-dependent manner, and this effect was inhibited with the GABA antagonist bicuculline. The effect was biphasic since at high GABA concentrations this stimulation was reduced. The data suggest that house fly muscles have benzodiazepine receptors, which are coupled allosterically to GABA receptors, analogous to the GABA/benzodiazepine receptors of vertebrates, but with some differences in their drug specificities.  相似文献   

5.
The effects of methamidophos and tri-o-cresyl phosphate (TOCP) on the endogenous phosphorylation of specific brain proteins were studied in Beijing white laying hens during the early stage of delayed neurotoxicity. Phosphorylation of mitochondrial and synaptosomal proteins was assayed in vitro by using [γ-32P]ATP as phosphate donor. Tri-o-cresyl phosphate (TOCP) administration enhanced the phosphorylation of synaptosomal proteins with molecular weight of 40 and 55 kDa by as much as 36% and 65%, respectively, and decreased the phosphorylation of mitochondrial protein (35 kDa) by 33%. A single dose of methamidophos enhanced the phosphorylation of 32-kDa synaptosomal protein by 44%; however, it had no effect on brain mitochondrial proteins. The activity of neuropathy target esterase (NTE) in dosed hens’ brain and spinal cord was assayed for the effects of methamidophos and TOCP. These results showed that methamidophos inhibited brain NTE by 41% compared with that of control after 7-day exposure, while TOCP inhibited brain NTE by 66%. Moreover, NTE activity from spinal cord in treated hens also exhibited a similar trend of activity inhibition. Together, these results suggested that methamidophos and TOCP induced changes of protein phosphorylation level from hen brain and resulted in different kinds of neurotoxicity.  相似文献   

6.
To investigate the effect of deltamethrin and other pyrethroids on nonexcitable cells, we tested these molecules on animal (fibroblasts) and plant (algae) cells in culture. The effects of pyrethroids on cellular proliferation vary according to their structure. Deltamethrin (from 5 × 10−5 M) affected the growth of fibroblasts, but was inactive on other cells. Commercial formulations (DECIS EC and DECIS FLO) were more active to cells, but this effect was due mostly to the matrix. However, these matrices facilitated the penetration of deltamethrin into cells. Studies of [3H]deltamethrin uptake indicated the labeling of macromolecules, but labeling was reduced significantly after treatment with organic solvents. Autoradiographic studies with [3H]deltamethrin showed labeling of cells at the cytpolasmic level.  相似文献   

7.
The action of deltamethrin on the calcium/calmodulin-dependent protein kinase (CaM-Kinase II) and phosphatase system in the rat brain synapse was studied under various experimental conditions to optimize these enzyme activities and to facilitate the studies of the mechanism of interaction of this pesticide with several components of this enzyme system. To obtain a clear-cut inhibition of this enzyme by deltamethrin the following conditions must be met: (a) the enzyme system should be purified by precipitation with ammonium sulfate (450 g litre?1) prior to the addition of deltamethrin, (b) both Ca2+ and calmodulin (CaM) should be added to the incubated media before the addition of [y-32P]ATP, (c) deltamethrin should be incubated at least 10 min (but less than 30 min) with the enzyme system before [y-32P]ATP addition, (d) the incubation temperature should be above 20°C (optimum 30°C), (e) [y-32P]ATP concentration should be in the order of 10? M (concentration adjusted using cold ATP), and (f) the incubation time with [y?P]ATP for incorporation of 32P into the protein should be in the neighborhood of 60 s. Under these conditions, the inhibitory potency of various active and inactive isomers or analogs of pyrethroids and DDT was tested. The order of the inhibitory power of these active forms of pesticides was 1 R-deltamethrin > (S)(RS) fenvalerate ≥ p,p′-DDT. Other compounds were not active at the concentration tested, indicating the differential sensitivity of this enzyme and the existence of a correlation of inhibitory power to insecticidal activity.  相似文献   

8.
Monoterpenoids and their derivatives from plant essential oils showed good insecticidal activities in previous studies, but the mechanisms of their action as natural insecticides are not known yet. In the present work, we evaluated the pharmacological action of five monoterpenoids (α-terpineol, carvacrol, linalool, pulegone, and thymol) on native insect GABA receptors from house flies and American cockroaches using radiotracer methods. In the [3H]-TBOB binding assay, carvacrol, pulegone, and thymol all enhanced the [3H]-TBOB binding to membrane preparation of house fly heads with EC50 values of 48 μM, 432 μM, and 6 mM, respectively. Moreover, these three monoterpenoids at concentrations of 500 μM and 1 mM also significantly increased the 36Cl uptake induced by GABA in membrane microsacs prepared from American cockroach ventral nerve cords. These results revealed that carvacrol, pulegone, and thymol are all positive allosteric modulators at insect GABA receptors. The other two monoterpenoids that were tested, α-terpineol and linalool, showed little or no effect in both the [3H]-TBOB binding and 36Cl uptake assays.  相似文献   

9.
The reactivation of the rat brain muscarinic acetylcholine receptor (mACh-R) binding with dimercaptosuccinic acid (DMSA) after in vitro and in vivo inhibition by mercuric chloride (HgCl2) and methylmercuric chloride (MeHg) was investigated. Receptor binding was estimated by the potent and specific antagonist l-[3H]quinuclidinyl benzilate ([3H]QNB). Rat brain synaptosomal membranes were exposed to HgCl2 and MeHg. At 1 × 10?4M. HgCl2 caused complete inhibition of the [3H]QNB binding. The inhibition of [3H]QNB binding by HgCl2 was still higher than 50% at 1 × 10?8M. MeHg caused less inhibition of [3H]QNB binding than HgCl2. The inhibited receptors showed a significant degree of reactivation when treated with DMSA. The recovery was almost complete after MeHg inhibition or with the lower HgCl2 concentrations. Generally, the reactivation was dependent on the concentration of DMSA. When rats injected with either early or delayed doses of DMSA following administration with five consecutive daily doses (8 mg/kg body wt, Gavage method) of MeHg or HgCl2, the inhibition of [3H]QNB binding was less than untreated ones. The early treatment with DMSA decreased the inhibition of [3H]QNB binding due to MeHg or HgCl2 intoxication. However, DMSA was more effective in reducing HgCl2 inhibition than MeHg either in vitro or in vivo treatment. The ability of DMSA to reactivate the mACh-R after inhibition with the mercurials emphasizes the involvement of essential sulfhydryl groups in [3H]QNB binding sites, and also shows that these sulfhydryl groups are the primary target for the MeHg and HgCl2 inhibition of the rat brain muscarinic receptors.  相似文献   

10.
Buprofezin (Applaud, 2-tert-butylimino-3-isopropyl-5-phenyl-3,4,5,6-tetrahydro-2H-1,3,5-thiadiazin-4-one) strongly inhibited the [3H]chitin synthesis from N-acetyl-d-[1-3H]glucosamine in the brown rice planthopper, Nilaparvata lugens Stål. No inhibition was observed for [3H]-labeled protein biosynthesis from [5-3H]glucose or l-[3,5-3H]tyrosine but [3H]-labeled nucleic acid synthesis from [5-3H]glucose was weakly reduced by buprofezin. The lethal activity of buprofezin analogs related well to their inhibitory potency against chitin biosynthesis in N. lugens nymphs.  相似文献   

11.
Membranes from house fly heads were tested for the presence of mucarinic acetylcholine receptors using as a probe [3H]quinuclidinyl benzilate ([3H]QNB). Based on the presence of saturable and reversible high-affinity binding of [3H]QNB, which is inhibited by muscarinic drugs, it is suggested that these sites may be muscarinic receptors. However, these putative muscarinic receptors differ in several characteristics from the ones in mammalian brain. They have lower affinities for muscarinic drugs and lower stereoselectivity, a relatively higher affinity for the nicotinic antagonist d-tubocurarine, a lower Hill coefficient for binding of muscarinic antagonists, and a lower concentration relative to α-bungarotoxin binding sites in the same membranes. Also, unlike mammalian muscarinic receptors, they are sensitive to treatments with N-ethylmaleimide and 5,5′-dithiobis(2-nitrobenzoic acid). The effect of reduction of disulfide bonds by dithiothreitol or mercaptoethanol suggests that only the insect receptor has one or more disulfide bonds which are important to binding. On the other hand, the putative muscarinic receptors of both insect and mammalian brains have important SH group(s), whose alkylation by p-chloromercuribenzoate inhibits binding. Also, chlorobenzilate is equally effective in inhibiting [3H]QNB binding to muscarinic putative receptors of house fly and bovine brains.  相似文献   

12.
The interactions of natural pyrethrins and nine pyrethroids with the nicotinic acetylcholine (ACh) receptor/channel complex of Torpedo electric organ membranes were studied. None caused significant reduction in [3H]ACh binding to the receptor sites, but all inhibited [3H]perhydrohistrionicotoxin ([3H]H12-HTX) binding to the channel sites in presence of carbamylcholine. Allethrin inhibited [3H]H12-HTX binding noncompetitively, but [3H]imipramine binding competitively, suggesting that allethrin binds to the receptor's channel sites that bind imipramine. The pyrethroids were divided into two types according to their actions: type I, which included pyrethrins, allethrin, bioallethrin, resmethrin, and tetramethrin, was more potent in inhibiting [3H]H12-HTX binding and acted more rapidly (i.e., in <30 sec). Type II, which included permethrin, fluvalinate, cypermethrin and fenvalerate, was less potent and their potency increased slowly with time. Also, inhibition of the initial rate of [3H]H12-HTX binding by type I compounds increased greatly by the presence of the agonist carbamylcholine, but this was not so with type II compounds. The receptor-regulated 45Ca2+ flux into Torpedo microsacs was inhibited by pyrethrins and pyrethroids, suggesting that their action on this receptor function is inhibitory. There was very poor correlation between the potencies of pyrethrins and pyrethroids in inhibiting [3H]H12-HTX binding and their toxicities to house flies, mosquitoes, and the American cockroach. However, the high affinities that several pyrethroids have for this nicotinic ACh receptor suggest that pyrethroids may have a synaptic site of action in addition to their well known effects on the axonal channels.  相似文献   

13.
The calcium channel and the ‘calcium release channel’ of muscle membrane of the cockroach Periplaneta americana have been characterized. Biological assays with calcium channel blockers and ryanodine on different insects and acari revealed pronounced insecticidal effects with ryanodine, but not with calcium channel blockers, at concentrations between 0·1 and 300 μg ml−1. Skeletal muscle membranes derived either from the tubular network or from the sarcoplasmatic reticulum of P. americana were characterized with respect to the binding of the dihydropyridine (DHP) [3H]isradipine (PN 200-110), the phenyl-alkylamine [3H]verapamil and the alkaloid [3H]ryanodine. Preliminary binding studies with the benzothiazepine [3H]diltiazem suggest a low-affinity binding site with a IC50 value of 3·3 μM . All binding sites tested were sensitive to treatment with proteinase K. Optimal conditions for binding of the radioligand ryanodine revealed the highest specific binding at pH 8 and at calcium chloride concentrations between 100 and 500 μM . EGTA at 10 μM abolished 95% of the ryanodine binding. Binding studies with calcium channel binding sites revealed a pronounced effect of low Ca2+ concentrations on specific isradipine binding, whereas verapamil and diltiazem binding were only reduced by the presence of 200 μM EGTA. With respect to high Ca2+ concentrations, specific binding of diltiazem, isradipine and verapamil was reduced by 73, 40 and 20%, respectively, at 5 mM Ca2+. Radioligand binding experiments showed high-affinity binding sites for ryanodine and isradipine. KD values of 0·95 nM (Bmax=550 fmol mg−1 protein) and 0·75 nM (Bmax=213 fmol mg−1 protein) were determined respectively. A lower-affinity binding site was identified in binding studies with verapamil (KD=7·4 nM and Bmax=27 fmol mg−1 protein). [3H]isradipine displacement studies with several dihydropyridines revealed the following ranking of affinity: nitrendipine>isradipine>Bay K8664≪nicardipine. Displacement of [3H]verapamil binding by effectors of the phenylalkylamine binding site showed that bepridil and S(-)verapamil had the highest affinities of the compounds tested followed by (±)verapamil, nor-methylverapamil and R(+)verapamil.  相似文献   

14.
Deltamethrin and NRDC 157, pyrethroid insecticides that produce different poisoning syndromes in mammals, enhanced veratridine-dependent, sodium channel-mediated 22Na+ uptake in mouse brain synaptosomes. Concentrations producing half-maximal enhancement were 2.5 × 10?8M (deltamethrin) and 2.2 × 10?7M (NRDC 157). This effect was stereospecific: The nontoxic 1S enantiomers had no significant effect on veratridine-dependent activation. At high deltamethrin concentrations, enhancement was maximal at 5 × 10?5?1 × 10?4M veratridine. Pyrethroid enhancement was completely blocked by 5 × 10?6M tetrodotoxin, and neither pyrethroid affected 22Na+ uptake in the absence of veratridine at concentrations up to 1 × 10?5M. The relative potencies of deltamethrin and NRDC 157 in the synaptosomal sodium channel assay agree well with their relative acute toxicities to mice when administered by intracerebral injection. These findings demonstrate that pyrethroids exemplifying both characteristic poisoning syndromes are potent, stereospecific modifiers of sodium channel function in mammalian brain.  相似文献   

15.
The rapid effects of the thiocarbamate herbicide S-ethyl dipropyl thiocarbamate (EPTC) and the herbicide protectant N,N-diallyl-2,2-dichloroacetamide (DDCA) on macromolecular syntheses and glutathione (GSH) levels in maize cell cultures were studied to determine whether stimulation of GSH could be the primary mechanism of action of DDCA. EPTC (0.5 and 1 mM) reduced incorporation of radioactive precursors within 1 hr after treatment, and affected incorporation of [3H]acetate into lipids more than incorporation of [3H]adenosine into acid-precipitable nucleic acids, or [14C]protein hydrolysate into protein. [14C]EPTC was rapidly biotransformed within 8 hr by maize cell suspensions. Measureable decreases in GSH levels following treatment with 1 mM EPTC occurred after 15 hr. DDCA stimulated incorporation of [3H]acetate into lipids within 4 hr but did not affect incorporation of [14C]protein hydrolysate into protein or [3H]adenosine incorporation into nucleic acids. Measureable increases in GSH following DDCA treatment began after 12 hr. Treatment with EPTC and DDCA in combination inhibited incorporation of [3H]acetate into lipids less than EPTC given alone. Increases in GSH levels could be observed following pretreatments with glutathione precursors, but no protectant activity could be detected, in contrast to treatments with DDCA. It is suggested that DDCA has an initial rapid effect on lipid metabolism followed by a slower effect involving increases in cellular GSH.  相似文献   

16.
Colony growth and germ tube emergence of sporangia and encysted zoospores of Phytophthora infestans were highly sensitive to cymoxanil (ED50 0.5–1.5 μg/ml), whereas differentiation of sporangia and zoospore release were insensitive at concentrations up to 100 μg/ml. Treated sporangia did not show distorted germ tubes. Oxygen consumption for glucose oxidation by germinating sporangia and zoospore motility were not inhibited at concentrations up to 100 μg/ml. Cymoxanil hardly affected the uptake of radiolabeled precursors of DNA, RNA, and protein at concentrations up to 100 μg/ml. Incorporation of [14C]phenylalanine into protein was completely insensitive. RNA synthesis as measured by [3H]uridine incorporation was differentially inhibited in the various developmental stages of the fungus. Inhibition did not occur at differentiation of sporangia, whereas at cyst and sporangial germination and mycelial growth this process was inhibited 20–45% at a concentration of 100 μg cymoxanil/ml. Endogenous RNA polymerase activity of isolated nuclei was not inhibited by cymoxanil. DNA synthesis as measured by [methyl-3H]thymidine incorporation was inhibited 20–80% at the various stages of development at cymoxanil concentrations higher than 10 μg/ml. Metalaxyl, a specific inhibitor of ribosomal RNA synthesis, inhibited [3H]uridine incorporation 40–60% at all developmental stages. The data suggest that although DNA synthesis is affected more than RNA synthesis, inhibition of both biosynthetic processes is a secondary effect. The primary mode of action of cymoxanil thus remains unknown.  相似文献   

17.
The effects of pyrethroids were studied upon isolated segmental nerves and neuromuscular junctions in both susceptible (Cooper) and knockdown-resistant (kdr; super-kdr) strains of housefly larvae (Musca domestica L.). Isolated segmental nerves contained neither cell bodies nor synaptic contacts; thus, any effects of pyrethroids were attributed solely to their actions upon voltage-dependent Na+ channels. Threshold concentrations of the type II pyrethroid, deltamethrin, required to elevate the spontaneous firing rate of these nerves were determined. Both resistant strains were about ten times less sensitive to deltamethrin than the susceptible strain, but insensitivity of super-kdr nerves was no greater than in the less resistant kdr strain. At neuromuscular junctions, the minimum concentrations of pyrethroids needed to trigger massive increases in the frequency of miniature excitatory postsynaptic potentials (mEPSPs) were determined for deltamethrin and the type I pyrethroid, fenfluthrin. With fenfluthrin there was no detectable difference between the junctions of kdr and super-kdr strains, which were both about ten-fold less sensitive than Cooper junctions. With deltamethrin, kdr junctions were about 30 times less sensitive than those of Cooper; super-kdr junctions were dramatically insensitive to deltamethrin, being some 10000- and 300-fold less sensitive than those of Cooper and kdr respectively. Thus, in the synaptic assay, super-kdr conferred an extension in resistance over kdr only against the type II pyrethroid, it being ineffective against fenfluthrin. We suggest that kdr resistance comprises at least two site-insensitive areas within the nervous system. One involves insensitivity of the Na+ channel and has similar efficacy in both kdr and super-kdr strains against type I and II pyrethroids; the other is associated with the presynaptic terminal and is particularly effective in super-kdr resistance against type II pyrethroids. The latter could be associated with Ca2+-activated phosphorylation of proteins involved with neurotransmitter release. Such phosphorylation reactions are known to be perturbed by pyrethroids, especially by type II compounds.  相似文献   

18.
This study attempts to use [3H] α-endosulfan to examine directly the binding site(s) for cyclodienes, lindane and toxaphene (collectively referred to as the polychlorocycloalkane or PCCA insecticides) in the 4-aminobutyric acid (GABA)-gated chloride channel. [3H] α-Endosulfan was prepared by reduction of hexachloronorbornenedicarboxylic anhydride with sodium borotritide, then coupling the labelled alcohol with thionyl chloride followed by HPLC purification (35 Ci mmol?1, > 99% radiochemical purity). This new candidate radioligand readily partitions into lipid membranes and undergoes indiscriminate adsorption to surfaces resulting in high levels of non-specific binding. This makes it very difficult to differentiate the small portion of specific binding at the site relevant to toxic action. This problem was partially circumvented by incubating [3H] α-endosulfan (0.1 nM) with house-fly head membranes (0.2 mg protein) for 70 min at 22°C giving 23 (±4)% specific binding (40 fmol mg?1 protein) determined as the difference between the radioligand alone and on preincubation for 15 min with unlabelled α-endosulfan (final concentration 100 nM). This procedure is not appropriate for determination of saturation isotherms and standard binding kinetics. However, the effectiveness of 16 PCCAs (also at 100 nM final concentration) in blocking the specific binding of [3H] α-endosulfan is generally consistent with their relative potencies as inhibitors of 4-[3H] propyl-1-(4-ethynylphenyl)-2,6,7-trioxabicyclo[2.2.2] octane ([3H]EBOB) binding suggesting that the binding site for both [3H]α-endosulfan and the PCCAs is part of the GABA-gated chloride channel. Insecticidal channel blockers of other types (e.g. picrotoxinin, trioxabicyclooctanes, a dithiane, and phenylpyrazoles) and GABA are poor inhibitors of [3H] α-endosulfan binding relative to their potencies as inhibitors of [3H] EBOB binding. It therefore appears that the PCCAs compete directly for the [3H] α-endosulfan site, whereas the other channel blockers bind with different inhibition kinetics or at a site more closely coupled to the EBOB than the α-endosulfan binding domain.  相似文献   

19.
5-tert-Butyl-2-(4-ethynylphenyl)pyrimidine and the corresponding 2,5-disubstituted-4H-1,3-thiazine block the GABA-gated chloride channel at c.20and c.200 nm , respectively, measured as 50% inhibition of the binding of 1-(4-ethynylphenyl)-4-[3H]propyl-2,6,7-trioxabicyclo[2.2.2]octane (4′-ethynyl-4-n-[3H]propylbicycloorthobenzoate; [3H]EBOB) in house fly and mouse brain membranes, and they are also toxic to topically-treated flies with LD50 values of 6–27 μg g−1 alone and 2–6 μg g−1 with piperonyl butoxide (PB) as synergist. In the pyrimidine series, the general pattern of effectiveness of substituents in the 5-position is tert-butyl>isopropyl≈cyclohexyl≈cyclopropyl>methyl, phenyl and 3- and 4-fluorophenyl, and in the 2-position is 4-ethynylphenyl≪4-bromophenyl. These planar pyrimidines and nearly-planar 4H-1,3-thiazines with 2-ethynylphenyl or 2-bromophenyl and 5-tert-butyl or 5-isopropyl substituents are more effective than the corresponding 6H-1,3-thiazine, 6-oxo-1,3-thiazines and 4,6-dioxo-1,3-thiazine examined, but they are less active than the analogous conformationally flexible trans-1,3-dioxanes and -1,3-dithianes. The heterocyclic moiety confers a region of high electron density and positions the 2- and 5-substituents in a linear or parallel relationship for optimal affinity at the receptor. Two observations indicate that the new pyrimidines and thiazines probably act as chloride channel blockers. First, the poisoning signs are identical to those of EBOB in both mice and house flies. Second, each of the pyrimidines, thiazines and dioxanes falls on the same correlation line for inhibition of [3H]EBOB binding and toxicity to house flies (with PB) as that obtained earlier for EBOB analogs, dithianes and polychlorocycloalkanes, suggesting that they all act at the same or closely coupled binding sites in the GABA-gated chloride channel.  相似文献   

20.
The preparation and cholinergic properties of a subcellular fraction, enriched in pinched-off nerve-endings (synaptosomes) from the central nervous system of the cockroach Periplaneta americana, are described. The endings retained their cytoplasmic components, as shown by the presence of marker enzymes and by ultrastructural examination. A carrier-mediated, high-affinity uptake of [3H] choline into the synaptosomes was demonstrated, and this uptake was saturable, depended on a Na+-gradient, and was inhibited by hemicholinium-3. It had an apparent Km value of 0.6 (±0.1) μM, and a Vmax of 20.5 (±2.5) pmol min?1 per mg of protein. The high-affinity [3H]choline uptake was associated with the synthesis of [3H]phosphocholine and [3H]O-acetylcholine. The rate of [3H]choline uptake in synaptosomes was increased by DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] at 100 nM concentration, and this increase was inhibited by tetrodotoxin, while neostigmine appeared to be a potent inhibitor (I50 = 10 pM) of the DDT-activated uptake of [3H]choline. The site of action of the insecticides was specifically on the pre-synaptic nerve terminals because the synaptosomes preparation did not retain the post-synaptic membrane of the original nerve-endings. Cockroach synaptosomes provided a useful in-vitro preparation for studying the effects of insecticides on the pre-synaptic nerve endings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号