共查询到20条相似文献,搜索用时 0 毫秒
1.
C.K. Morikawa M. Saigusa H. Nakanishi N.K. Nishizawa K. Hasegawa S. Mori 《Soil Science and Plant Nutrition》2013,59(7):1013-1021
Abstract Co-situs is the placement with one application of a sufficient amount of controlled-release fertilizer for an entire growing season at any site, together with seeds or seedlings, without causing fertilizer salt injury. An experiment was conducted to find an efficient method for ameliorating Fe deficiency in two rice cultivars (cv. Tsukinohikari and cv. Sasanishiki) grown in a calcareous soil (pH 9.2, CaCO3 384 g kg?1), which was poor in organic matter (0.1 g kg?1) and available Fe (3.0 μg g?1 soil). The field treatments consisted of co-situs application of the following fertilizers: 1) controlled-release NPK fertilizer (CRF-NPK) containing no micronutrients; 2) controlled-release NPK fertilizer containing micronutrients (CRF-M1); and 3) controlled-release NPK fertilizer containing micronutrients (CRF-M2). The main difference between CRF-M1 and CRF-M2 was that the former had larger granules than the latter. All the fertilizers were placed in contact with the roots of rice seedlings at transplanting time. Plants in the CRF-M1 and CRF-M2 treatments had similar lengths, number of stems, leaf age, and leaf color (SPAR value) during the cultivation period. By contrast, plants from the CRF-NPK treatments grew poorly, showed severe chlorosis symptoms of Fe deficiency, and all died on 30 DAT. Plants of both cultivars accumulated more macroand micronutrients with the CRF-M2 treatment than with the CRF-M1 treatment. The grain yield of cv. Tsukinohikari was 0.0, 1,910, and 2,160 kg ha?1 for the CRF-NPK, CRF-M1, and CRF-M2 treatments, respectively, and 0.0, 2,490, and 2,860 kg ha?1 for the same treatments for cv. Nihonbare. Chlorosis due to iron deficiency was successfully ameliorated and world-average grain yields were obtained with the co-sites application of both controlled-release fertilizers. 相似文献
2.
Green iron nanoparticles (Fe NPs) can be a practical solution to combat iron (Fe) deficiency in calcareous agricultural soils. The main aim of the present work was to assess the effects of green Fe NPs on Fe availability in calcareous soils. For this purpose, green Fe NPs were synthesized using green tea (G-Fe NPs), Shirazi thyme (T-Fe NPs), walnut green hull (W-Fe NPs), and pistachio green hull (P-Fe NPs) extracts and applied as a source of Fe fertilizer to sorghum (Sorghum bicolor L. Moench) plants. Results of X-ray diffraction (XRD), scanning electron microscopy (SEM), and dynamic light scattering (DLS) indicated that the green Fe NPs were amorphous in nature and the polyphenols obtained from plant-part extracts acted as both capping and reducing agents. Similar to the behavior of Fe-ethylenediamine-N,N''-bis(2-hydroxyphenyl) acetic acid (Fe-EDDHA) in calcareous soils, G-Fe NPs, T-Fe NPs, W-Fe NPs, and P-Fe NPs increased Fe release compared with the control and FeSO4 treatment. Cumulative Fe release data fitted well to the power function, intra-particle diffusion, and Elovich kinetic models. According to the pot experiment, the increment in soil Fe availability upon Fe-EDDHA and Fe NPs application led to an increase in Fe uptake, growth, and photosynthetic pigment contents of the sorghum plants. Although further research is needed to evaluate the residual effect and environmental impact of green Fe NPs, they may be an appropriate substitute for traditional Fe fertilizers in calcareous soils. 相似文献
3.
Gurmeet Singh Sidhu 《Journal of plant nutrition》2018,41(8):980-995
A greenhouse experiment was conducted in North-west India to study the effect of soil applied boron on yield of berseem (Trifolium alexandrium L.) and soil boron fractions in boron deficient calcareous soils. Three soils with varying calcium carbonate content viz. 0.75% (Soil I), 2.6% (Soil II), and 5.7% (Soil III) were collected from different sites of Ludhiana, Bathinda, and Shri Muktsar Sahib districts, Punjab, India. The treatments consisted of six levels of soil applied boron viz. 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0 mg B kg?1 along with control. The green fodder yield and dry matter yield increased significantly at 0.75 mg B kg?1 soil treatment level in the first cutting, while these were significant at 1.0 mg B kg?1 soil treatment level in all soils at second, third, and fourth cuttings. Among all three calcareous soils, Soil I with lower calcium carbonate was the best soil in respect of mean yield in comparison to Soil II and Soil III. Combined effect of boron level and soils had significant effect on yield of berseem. There was a significant increase in mean dry root biomass at 1.0 mg B kg?1 soil level over control and then remained non-significant with further high levels of soil applied boron. The mean dry root biomass decreased significantly for the soils having 0.75%, 2.6%, and 5.7% calcium carbonate levels. Readily soluble fraction is considered to be easily available fraction of B for plant uptake and consisted of 0.47–0.62% in Soil I, 0.31–0.43% in Soil II, and 0.24–0.34% in Soil III of the total boron. Among all B fractions, mean readily soluble, specifically adsorbed, and oxide-bound fractions got increased significantly with increase in B levels. Readily soluble and organically bound B fractions were more in Soil I as compared to Soil II and Soil III. Specifically adsorbed boron, oxide bound fraction, residual and total boron were more in Soil III in comparison to Soil I and Soil II. Among all fractions, residual fraction accounted for the major portion of the total B. It comprised of 92.71–93.90% in Soil I, 94.51–95.40% in Soil II, and 94.91–95.25% in Soil III of the total boron. 相似文献
4.
A two-year experiment was conducted in an iron(Fe)-deficient orchard with calcareous soil to find out an alternate method for soil application of Fe ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (Fe-EDDHA) in orange trees. Foliar sprays of Fe-EDDHA (5 g l?1, pH = 7.8), sulfuric acid (pH = 3), citric acid (5 g l?1, pH = 2.4), Fe (II) sulfate solutions (250, 500, and 750 mg Fe l?1) with their initial pH (6.5, 6.35, and 6.12) and reduced ones to pH of 3 were compared with soil applied (75 g tree?1) Fe-EDDHA and a control test. Although optimum chlorophyll content, leaf Fe concentration, fruit quantitative and qualitative attributes were resulted from soil application of Fe-EDDHA, repeated sprays of Fe-EDDHA or acidified Fe solutions created suitable results. Acidification of Fe solutions made them more effective in alleviation of leaf Fe concentration and Fe chlorosis, probably due to remobilization of inactive Fe within the plant and prevention of Fe oxidation and precipitation in foliar solutions. 相似文献
5.
6.
Abstract A glasshouse study employing a split-root technique was conducted to investigate the influence of intercropping with maize (Zea mays L.) in a calcareous soil on N2 fixation by peanut (Arachis hypogaea L.) at early stages of growth. In this intercropping system, competitive interactions between maize and peanut for N and improvement of Fe uptake were likely to be important factors affecting N2 fixation of peanut. The experiment was comprised of three treatments which included treatment I: peanut monocropping; treatment II: maize/peanut intercropping (the major and the minor compartments with low N, 50 mg kg?1); treatment III: maize/peanut intercropping (the major compartment with low N, 50 mg kg?1 and the minor compartment with high, N 200 mg kg?1). The minor compartment of treatment III was fertilized with 200 mg kg?1 N for reducing or eliminating the competition of N coming from intercropping maize. Intercropping with maize corrected Fe chlorosis of peanut by significantly increasing plant Fe concentration and uptake. Compared with the monocropping treatment, iron uptake increased from intercropping treatment II and III by 22 and 24% per plant, 30 and 29% shoots, 38 and 60% nodules. Iron uptake by the root nodules was especially enhanced in the intercropping system. In contrast, intercropping with maize had little effect on NO3 ?1-N concentrations in the soil rhizosphere of peanut or on N concentrations and uptake by peanut compared with plants in monoculture. The results indicate that the improvement in Fe nutrition was an important factor promoting N2 fixation by peanut in the intercropping system at the flowering stage of peanut growth, and that competition for N by intercropped maize had little effect on N2 fixation by peanut under the experimental conditions. 相似文献
7.
This study was conducted to investigate the effect of time on chemical forms of P in 10 calcareous soils of western Iran. Phosphorus was added to soils at the rate of 200 mg kg?1 as KH2PO4. The samples were incubated for 1, 7, 15, 30, 60, 90 and 120 days at 25°C and constant moisture. After incubation, P was fractionated by the sequential extraction procedure: soluble and exchangeable P (NaHCO3-P) Al + Fe-P (NaOH-P), Ca-P (HCl-P) and residual P (Res-P). The distribution of added P into different fractions consisted of two phases involving initial rapid retention followed by a slow continuous retention. In general, the majority of the P applied entered mostly in the HCl-P and Res-P fractions. After 120 days incubation, the HCl-P fraction remained the most dominant in all soils. A combination of silt and sand content of the soils together explained between 88.5 and 83.3% of the variance inNaHCO3-P and HCl-P transformation rates, respectively, 76.6 and 72.8% of which is explained by silt alone. CaCl2-P and electrical conductivity (EC) together accounted for 66.3% of the variation in the rate constant of NaOH-P. The release rate of Res-P was not significantly related to soil properties. 相似文献
8.
石灰性土壤添加污泥后土壤的肥力特征及磷素淋失临界值 总被引:2,自引:0,他引:2
开展2 a种植冬小麦-夏玉米的盆栽试验,研究污泥添加对石灰性土壤养分的影响,构建石灰性土壤中污泥添加量(0、3.75、7.50、37.5、75.0 t/hm^2)与有效磷之间的关系,确定磷素淋失的临界值。结果表明:污泥添加降低了石灰性土壤的pH值,但土壤有机质、全氮、碱解氮、全磷、有效磷、速效钾和土壤综合肥力指数随污泥添加量的增加呈增加趋势。试验期间,同年轮作季的污泥添加量相同时,玉米季土壤养分含量小于小麦季,且各养分随污泥施用年限的增加而增加,并与污泥的累积施用量之间存在显著(P<0.05)或极显著(P<0.01)的正相关关系。当污泥添加量大于等于37.5 t/hm^2时,土壤养分含量与未添加污泥处理相比差异显著(P<0.05)。污泥施用后该土壤磷素淋失临界值为有效磷质量分数28.57 mg/kg,其对应的污泥施用量分别为61.39 t/hm^2。研究可为在石灰性土壤中污泥的合理施用提供依据。 相似文献
9.
A study was carried out on contribution of iron phosphate to phosphorus nutrition of rice plant under waterlogged and moist conditions,respectively,by use of synthetic Fe^32 PO4.nH2O,tagging directly the iron phophate in calcareous paddy soils.Results showed that under waterlogged condition,similar to iron phosphate in acidic paddy soils.that in clacareous paddy soils was an important source of phosphorus to rice plant ,and the amount of phosphorus originated from it generally constituted 30-65% of the total phosphorus absorbed by rice plant. 相似文献
10.
Leaching column experiments were conducted to determine the degree of mobility of heavy metals (HMs) and nutrients after the addition of municipal solid sewage sludge (MSS) in a sandy‐loam soil. Treatments were (1) soil application of low metal content MSS, (2) soil application of metal‐enriched municipal solid sewage sludge (EMSS), and (3) control. The MSS application represented a dose of 200 Mg dry weight (dw) ha–1. Soil columns were incubated at room temperature for 15 d and were irrigated daily with distilled water to make a total of 557 mm. Leachates were collected and analyzed for HMs and nutrients. The Ni and Pb added to soil via MSS and EMSS were found to be leached through the 20 cm columns of calcareous sandy soil although Ni and Pb concentrations in the percolate were small relative to the total amounts of metals applied. Losses of K+ from the EMSS, MSS, and control were 92.5, 82.0, and 52.5 kg ha–1, respectively. Losses of Mg2+ were in the range from 104.4 (control treatment) to 295.2 kg ha–1 (EMSS), while the loss of Ca2+ was in the range from 265.0 (control treatment) to 568.2 kg ha–1 (EMSS). The results showed that the amounts of P leached from EMSS (3.02 kg ha–1) and MSS (2.97 kg–1 ha–1) were significantly larger than those from the control treatment (1.54 kg ha–1). The geochemical code Visual MINTEQ was used to calculate saturation indices. Leaching of P in different treatments was controlled by rate‐limited dissolution of hydroxyapatite, β‐tri‐Ca phosphate, and octa‐Ca phosphate. The results indicate that application of MSS to a sandy soil, at the loading rate used in this study, may pose a risk in terms of groundwater contamination with Ni, Pb, and the studied nutrients. 相似文献
11.
The development of iron deficiency symptoms (growth depression and yellowing of the youngest leaves) and the distribution of iron between roots and leaves were investigated in different vine cultivars (Silvaner, Riparia 1G and SO4) grown in calcareous soils. As a control treatment all cultivars were also grown in an acidic soil. Only the cultivars Silvaner and Riparia 1G showed yellowing of the youngest leaves under calcareous soil conditions at the end of the cultivation period. All cultivars including SO4 showed severe shoot growth depression, by 50 % and higher, before yellowing started or without leaf yellowing in the cultivar SO4. Depression of shoot growth occurred independently from that of root growth. In a further treatment the effect of Fe‐EDDHA spraying onto the shoot growth of the cultivar Silvaner after cultivation in calcareous soil was investigated. Prior to Fe application plants were non‐chlorotic, but showed pronounced shoot growth depression. Spraying led to a significant increase in shoot length, though leaf growth was not increased. Accordingly, depression of shoot growth of non‐chlorotic plants under calcareous soil conditions and with ample supply of nutrients and water has been evidenced to be at least partly an iron deficiency symptom. We suggest that plant growth only partially recovered because of dramatic apoplastic leaf Fe inactivation and/ or a high apoplastic pH which may directly impair growth. Since growth was impaired before the youngest leaves showed chlorosis we assume that meristematic growth is more sensitively affected by Fe deficiency than is chlorophyll synthesis and chloroplast development. In spite of high Fe concentrations in roots and leaves of the vines grown in calcareous soils plants suffered from Fe deficiency. The finding of high Fe concentrations also in young, but growth retarded green leaves is a further indication that iron deficiency chlorosis in calcareous soils is caused by primary leaf Fe inactivation. However, in future, only a rigorous study of the dynamic changes of iron and chlorophyll concentration, leaf growth and apoplastic pH at the cellular level during leaf development and yellowing will provide causal insights between leaf iron inactivation, growth depression, and leaf chlorosis.<?show $6#> 相似文献
12.
13.
砷(As)的毒性极强,为了治理含As土壤,该研究通过室内土柱模拟试验,研究铁改性生物炭对土壤中As迁移能力和形态的影响。结果表明:添加1%~8%生物炭和铁改性生物炭后,能显著降低土柱灌水后渗滤液中As的含量,增加土壤表层(0~20 cm) As的含量,降低土壤深层(>20~50 cm) As的含量,促进土壤中有效态As向稳定态As转化,生物炭的添加量越大,土壤中R-As的含量就越高。对比铁改性生物炭和生物炭发现,生物炭负载Fe3+后,其吸附和固持能力更强,更能促进有效态As向R-As转化,进而降低As污染的风险。因此,在治理含As土壤时,可在表层土壤施加2%的铁改性生物炭,达到吸附和固化As的目的,进而提高土壤的安全性。 相似文献
14.
Majid Baghenejad Fatemeh Javaheri Ali Akbar Moosavi 《Archives of Agronomy and Soil Science》2016,62(10):1462-1473
Recently, application of sewage sludge or effluents resulted in raising the concentrations of some heavy metals in some agricultural soils of Iran. Experiments were conducted to evaluate the competitive adsorption of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) on six calcareous soils. Adsorption characteristics were evaluated by equilibration of 1 g of each soil sample with 20 ml of 0, 10, 20, 30, 40, 50, 100, or 200 mg L?1 of their nitrate solutions and 0.01 M NaNO3 as background electrolyte. Furthermore, solid/liquid distribution coefficients (Kd) of studied metals, as an index of soil capacity to resist a change of the soil solution concentration, were calculated. Results indicated that amounts of adsorbed Pb, Cu, Zn, and Cd increased with increase in their concentrations in the contact solutions, but this trend was more pronounced for Pb and Cu than the others. For all studied soils and metals, Langmuir equation described the adsorption behavior fairly well. Furthermore, Langmuir and Freundlich equation parameters were positively correlated to cation exchange capacity (CEC) and smectite contents; whereas, they were negatively correlated to sand content. Considering Kd values, the selectivity sequence of the metal adsorption was Pb > Cu > Zn > Cd. Therefore, the risk of leaching and also plant uptake of Zn and Cd will be higher as compared to those of the other elements. 相似文献
15.
pH与石灰性水稻土铁氧化还原过程的关系 总被引:2,自引:1,他引:2
光照和pH是调控土壤铁氧化物厌氧生物氧化还原的关键环境因素。本文采用恒温厌氧培养试验研究了黑暗、光照条件下土壤pH的变化及pH对铁氧化还原的影响,探索了pH与Fe(II)和水溶性无机碳的关系。结果表明,光照可改变土壤厌氧培养过程中pH的变化趋势,避光培养时土壤pH呈降低趋势,光照时呈先降低后增加趋势。pH介于4~9之间均可发生铁的还原反应,pH=7时还原量最大,128.5μmol g-1,pH调至4和9均可抑制避光条件下的铁还原。光照条件下pH 6~8时可发生Fe(II)的再氧化,控制初始pH为7时可使其再氧化量增加77.13%,达49.17μmol g-1。厌氧培养过程中Fe(II)与水溶性无机碳在避光时存在显著线性正相关关系,pH与Fe(II)和水溶性无机碳之间均存在显著线性负相关关系。 相似文献
16.
Nonexchangeable K+ constitutes a slowly available reserve that may significantly influence K+ fertility of soils. Laboratory and greenhouse experiments were conducted to characterize the K+ supply and nonexchangeable K+–release kinetics in 10 calcareous soils using 0.01 M CaCl2 and 0.01 M oxalic acid extractions. Total K+ uptake by wheat (Triticum aestivum L.) grown in the greenhouse was used to measure plant‐available K+. The release of K+ was characterized by an initial fast rate followed by a slower rate. The nonlinear relationship in the early stages of the K+ release may be attributed to the edge sites, and release of K+ from interlayer exchange sites may be responsible for the second part of the K+ release. Kinetics of K+ release was described best with power function, which showed the best fit of the four models tested. Parameters of kinetics models in 0.01 M CaCl2 were significantly related to K+ uptake by wheat. Potassium release was also correlated to initial NH4OAc‐extratable K+ and to HNO3‐extractable K+. 相似文献
17.
《Communications in Soil Science and Plant Analysis》2012,43(9):893-904
Abstract Labile pools of Cu and Zn were measured on two calcareous soils from Saudi Arabia, using successive extraction with DTPA, and successive cropping followed by extraction with DTPA after cropping. The examined soils differed in their ability to supply Cu and Zn. The first DTPA extraction removed a major proportion of the labile pool, particularly in the sandy soil. The two soils showed a general decrease in extractable Cu and Zn with progressive extractions, with DTPA extractable Cu declining more rapidly than Zn. DTPA extractable Cu and Zn determined after cropping were highly correlated with DTPA extractable Cu and Zn values obtained after successive extractions. The results gave evidence on both the contribution of element dissolution from insoluble forms with progressive extraction or cropping, and the usefulness of the DTPA extractant for monitoring the availability of Cu and Zn in these calcareous soils. 相似文献
18.
A comparative study was carried out on the effectiveness of several commercial Fe‐compounds applied through the soil as well as via leaf spray, with a view to control the Fe‐chlorosis in Verna lemon trees directly grafted on sour orange rootstock, with a Salustiano orange tree as intermediate. The results obtained during 1985 confirm the conclusions of previous experiments: The most effective treatments were the leaf spray with Fe‐polyflavonoids, though it is interesting that Fe‐chelates applied to soil were also highly effective, as Fe leaf levels were higher than 100 ppm one month after treatments. 相似文献
19.
To assess the role of salicylic acid (SA) supplied with 5 approaches in alleviating chlorosis induced by iron (Fe) deficiency in peanut plants growing on calcareous soil, SA was supplied as soil incorporation, making slow-release particles, seed soaking, irrigation and foliar application. SA application, particularly, SA supplied by slow release particles, dramatically increased growth parameters, yield and quality of peanut, and increased Fe concentration in peanut grain. Meanwhile, SA application increased the H+-ATPase activity, reduced pH of soil, increased Fe3+-Chelate Reductase (FCR) activity in roots, and increased Fe concentration in roots. Furthermore, SA increased active Fe content and increased chlorophyll content. In addition, SA improved enzymes activities containing superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and protected Fe deficiency induced oxidative stress. Therefore, SA has a good effect on alleviating chlorosis induced by Fe deficiency on calcareous soil. However, in the 5 SA supplied approaches, foliar application and making slow release particles were more effective. 相似文献
20.
Nicolaus von Wirén 《Soil Science and Plant Nutrition》2013,59(7):955-964
Iron is an essential microelement for plants and can be a limiting or toxic element according to the environmental growth conditions. Plants have therefore developed a large range of physiological mechanisms to cope with Fe deficiency or Fe overload. The application of molecular biological methods have shed light on the genes, gene products and regulatory mechanisms involved in Fe stress responses, however, the acquisition of physiological data now begins to lagg behind the progress gained by molecular approaches. This review highlights and summarizes the recent progress in plant iron research achieved from the molecular level to the field scale, communicated at the “XIIth International Symposium on Iron Nutrition and Interactions in Plams” held in 2004 in Tokyo. 相似文献