首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
Reduced tillage provides ecological and economic benefits to arable land on the Loess Plateau of China, where soil erosion has long been a serious problem and soil water availability is largely restricted. However, high abundances of weeds in reduced tillage systems cause significant yield losses. In this study, we explored the effects of no-tillage and stubble retention on the number and density of weeds and weed seeds in a 12-year maize-winter wheat-common vetch rotation on the Loess Plateau. Four treatments including conventional tillage, no-tillage, conventional tillage+stubble retention and no-tillage+stubble retention were designed and applied. We found that no-tillage increased the number of weed species and weed density in most of the crops, while stubble retention decreased weed density in maize and tended to suppress weeds in both no-tillage treatments(no-tillage and no-tillage+stubble retention). No-tillage led to an increase in the number of weed species in the weed seedbank and tended to increase seed density during the spring growth of winter wheat, but it decreased seed density during post-vetch fallow. Stubble retention tended to reduce seed density during the spring growth of winter wheat and post-vetch fallow. We concluded that no-tillage can promote weeds in the experimental crop rotation, while stubble retention suppresses weeds in untilled fields. The combined effects of stubble retention and no-tillage on weed suppression varied among the three crops. Based on these results, we recommend stubble retention in untilled legume-crop rotations on the Loess Plateau to improve the control of weeds.  相似文献   

2.
In the conservation agricultural systems practised in Australia, cultivation is not commonly utilised for the purpose of weed control. However, occasional use of tillage (strategic tillage) is implemented every few years for soil amelioration, to address constraints such as acidity, water repellence or soil compaction. Depending on the tillage method, the soil amelioration process buries or disturbs the topsoil. The act of amelioration also changes the soil physical and chemical properties and affects crop growth. While these strategic tillage practices are not usually applied for weed control, they are likely to have an impact on weed seedbank burial, which will in turn affect seed dormancy and seedbank depletion. Strategic tillage impacts on seed burial and soil characteristics will also affect weed emergence, plant survival, competitive ability of weeds against the crop and efficiency of soil applied pre-emergent herbicides. If growers understand the impacts of soil amelioration on weed demography, they can more effectively plan management strategies to apply following the strategic tillage practice. Weed seed burial resulting from a full soil inversion is understood, but for many soil tillage implements, more data is needed on the extent of soil mixing, burial of topsoil and the weed seedbank, physical control of existing weeds and stimulation of emergence following the tillage event. Within the agronomic system, there is no research on optimal timing for a tillage event within the year. There are multiple studies to indicate that strategic tillage can reduce weed density, but in most studies, the weed density increases in subsequent years. This indicates that more research is required on the interaction of amelioration and weed ecology, and optimal weed management strategies following a strategic tillage event to maintain weeds at low densities. However, this review also highlights that, where the impacts of soil amelioration are understood, existing data on weed ecology can be applied to potentially determine impacts of amelioration on weed growth.  相似文献   

3.
The basic mechanism of soil inversion tillage for control of annual weeds is based on the vertical translocation of weed seeds from the soil surface to deeper soil layers. Buried weed seeds either remain dormant in the soil seedbank and are exposed to biological and chemical decay mechanisms, or they germinate but the seedlings cannot reach the soil surface (fatal germination). However, depending on the seed biology of the respective target species, frequent inversion tillage can lead to a build-up of the soil seedbank. For soil seedbank depletion based on available knowledge of the biology of Alopecurus myosuroides seeds, soil inversion tillage is suggested to be reduced to every third or fourth year with reduced or even no-tillage (direct seeding) in between (rotational inversion tillage systems). Including spring crops in the crop rotation could further help dampening the population growth and hence the seed return into the seedbank. This study investigated the effect of rotational inversion tillage in combination with reduced tillage or direct seeding on the soil seedbank and population development of A. myosuroides. In a long-term field trial, set up in 2012, these tillage strategies were compared with continuous inversion tillage in a 3-year crop rotation with two consecutive years of winter wheat (Triticum aestivum) followed by spring barley (Hordeum vulgare). The results showed a significant decline in the soil seedbank following the spring crop, irrespective of the tillage system. The continuous inversion tillage system and inversion tillage before spring cropping with reduced tillage (shallow tillage with a disc harrow) before winter wheat both led to accumulation of seeds in the soil seedbank. In contrast, inversion tillage before spring cropping with direct seeding of winter wheat depleted the soil seedbank significantly after only one crop rotation. Although only covering one intensively studied field site, these findings highlight the need for diversified cropping systems and indicate potential avenues for reducing soil tillage while controlling economically important weeds.  相似文献   

4.
Weed seedbanks are the primary source of weeds in cultivated soils. Some knowledge of the weed seedbank may therefore be appropriate for integrated weed management programs. It would also be very useful in planning herbicide programs and reducing the total herbicide use. However, a number of problems are inherent in the estimation of the seedbank size for arable weeds that usually have annual life cycles. In a long-term research project we have investigated the dynamics of weed seedbanks in corn fields for the past 8 years. Specific studies have included (i) developing cheap and efficient methods for estimating the weed seedbank; (ii) developing guidelines for efficient soil sampling (including the number and size of samples); (iii) influence of cultivation methods on weed seed distribution; (iv) mapping the spatial variability of the seedbank; (v) estimating the rate of seedbank decline for certain weed species; and (vi) assessing the potential of using the weed seed content in the soil to predict future weed problems. This paper reviews and summarizes the results of our research on the above aspects. The strong correlation between seedlings emerged in the greenhouse and seeds extracted in the laboratory for the most abundant weed species has demonstrated the potential for using the weed seed content of the soil to predict future weed infestations. The next step is to establish correlations with field emergence under commercial conditions using the sampling guidelines developed in our studies. Subsequently, we aim to offer the weed seedbank estimation as a commercial service to farmers for planning the most appropriate weed management options.  相似文献   

5.
Understanding how weed communities assemble as a function of biotic and abiotic filters and transform through time has important implications for the sustainable management of agronomic systems. In a three‐year study, we evaluated weed community responses to lucerne (Medicago sativa, perennial) vs. continuous spring wheat (Triticum aestivum, annual, CSW) and weed management practices where weeds in the CSW system were managed with three contrasting approaches (herbicide, tillage or sheep grazing). Our results indicated no differences in weed diversity between the perennial and annual crops or across the different management practices in CSW. However, there were differences in weed community composition. Lucerne, with the exception of the establishing year, impeded the growth and reproduction of several annual weeds, including Amaranthus retroflexus, Thlaspi arvense, Lamium amplexicaule and Chenopodium album, but favoured perennial broad‐leaved weeds such as Taraxacum officinale and Cirsium arvense. The replacement of herbicide treatments in pre‐plant and post‐harvest in CSW with soil tillage or sheep grazing selected for different weed communities beyond the second year of establishment. The weed species driving the differences in CSW systems were Androsace occidentalis, more common in CSW managed chemically; Asperugo procumbens, more common in CSW managed with tillage; and T. officinale and Lactuca serriola, more common in CSW managed with sheep grazing. Understanding how cropping systems modify weed communities is a necessary step to shift from reactive weed control programmes to predictive management strategies.  相似文献   

6.
Size and composition of the weed seedbank was assessed after 12 years of application of four tillage systems in two crop rotations. Mouldboard and chisel ploughing at 45 cm, minimum tillage at 15 cm and no tillage were compared in continuous winter wheat and a pigeon bean/winter wheat 2-year rotation. Weed control was based upon post-emergence herbicide application. Weed seedling emergence from soil samples taken at 0–15, 15–30 and 30–45 cm depths was assessed in a non-heated glasshouse for 12 months. The tillage system influenced weed seedbank size and composition to a much greater extent than crop rotation. Total weed seedling density was higher in no tillage, minimum tillage and chisel ploughing plots in the 0–15, 15–30 and 30–45 cm layers respectively. Density in the whole (0–45 cm) layer did not differ significantly among tillage systems. With no tillage, more than 60% of the total seedlings emerged from the surface layer, compared with an average 43% in the other tillage systems. Crop rotation did not influence either weed seedbank size or seedling distribution among soil layers, and only had a small influence on major species abundance. The weed seedbank was dominated (>66%) by Conyza canadensis (L.) Cronq. and Amaranthus retroflexus (L.), which thrived in chisel ploughing and no tillage respectively. Results suggested that crop rotation and substitution of mouldboard ploughing by non-inversion tillage (especially by minimum tillage) would not result in increased weed problems, whereas use of no tillage might increase weed infestations because of higher seedling recruitment from the topsoil.  相似文献   

7.
A long-term study of weed flora shifts in different tillage systems   总被引:1,自引:0,他引:1  
Knowledge of the long-term effects of tillage on weed flora will provide useful information to improve weed management in agroecosystems. Field studies were conducted from 1991 to 1997 to evaluate the effects of tillage systems on weed density and species composition before control methods in rotations including wheat ( Triticum aestivum L.), soyabean [ Glycine max (L.) Merr.] and maize ( Zea mays L.). In wheat, annual broad-leaved species showed higher populations in conventional tillage in 4 out of 6 years, and grassy annuals and perennial species showed an erratic response with tillage systems. In summer crops, broad-leaved populations were higher under conventional tillage than non-tillage for the last 5 years in the wheat/soyabean rotation and for the last 4 years in the maize/soyabean rotation. The weed spectrum changed rapidly in non-tillage plots. With time, in the absence of tillage, grassy annual populations increased in the maize/soyabean rotation, and wind-dispersed weed populations increased in the wheat/soyabean rotation. Perennial weeds showed an inconsistent behaviour in relation to tillage systems in the maize/soyabean rotation.  相似文献   

8.
A mathematical model has been developed for the prediction of the population dynamics of Oryza sativa L. var. sylvatica . The input variables included in the model were the seedbank composition; the number of panicles per plant and seeds per panicle; the rate of shattering; the seed longevity and the number of weed seeds contained in the sown grain; the type of soil tillage (ploughing, minimum and No tillage); the weed control efficacy; and the predation. The output variables were the number of seedlings that emerged from different depths and the seedbank evolution. The model relies on probability matrices that predict the vertical movement of the seeds after different soil tillage practices. Sensitivity analysis showed that the weed control efficacy and number of grains per panicle were the parameters that had the highest influence on the development of the weed population. The model evaluation was carried out by comparing the predicted with the observed seedling emergence at different seedbank values and under different soil tillage conditions. The model performance showed a tendency to overestimate seedling densities. The agreement between the estimated and experimental data was closely related to the accuracy of the input values of the seed distribution along the soil profile.  相似文献   

9.
Sustainable cropping systems based on low inputs have received much attention, even if they may lead to the establishment of a competitive weed flora. This study, conducted from 2011 to 2014 in a Mediterranean environment, evaluated the changes in weed community composition in two cropping systems [conventional (CONV ) and organic (ORG )] with different soil tillage [inversion tillage (IT ) and non‐inversion tillage (NoIT )] in a wheat–tomato–chickpea rotation that began in 2000. The treatments were replicated three times according to a randomised complete block design. The organic system was managed according to EU regulations. Inversion tillage consisted of mouldboard ploughing to a depth of 30 cm, while NoIT consisted of subsoiling to a depth of 20 cm. Weed control was based on herbicide application in CONV and mechanical weeding in ORG . The organic non‐inversion system showed the highest weed biomass (134, 128 and 195 g dry matter (DM ) m?2 in wheat, tomato and chickpea, respectively) and weed density (66, 77 and 76 plants m?2 in wheat, tomato and chickpea, respectively), as well as community richness. However, ORG always increased weed diversity, even if annual dicotyledon species were abundant in ORG ‐IT and perennial dicotyledon species in ORG ‐NoIT . The conventional system enhanced the relative frequency of both annual (CONV ‐IT ) and perennial (CONV ‐NoIT ) grasses. There was a negative correlation between density of perennial weeds and crop yield (r 2 = 0.24, <  0.001). Therefore, in the Mediterranean environment, combining organic practices with non‐inversion tillage could lead to the establishment of perennial weeds that are difficult to control, thus requiring specific weed management practices.  相似文献   

10.
Imperata cylindrica (L.) Raeuschel is a dominant and infamous grass weed in the savannah of West Africa. Research to reduce the weed to non-damaging levels is a priority activity at many agricultural institutions. The successful development and implementation of long-term I. cylindrica management strategies depend on the ability to predict changes in weed composition after I. cylindrica has been controlled effectively. The weed flora and soil seedbank were assessed from 329 fields dominated by this species in the fringes of the humid forest (HFF), coastal/derived savannah (CDS) and in the southern Guinea savannah (SGS) in 1996 and 1997. The objectives of the study were to correlate species composition of the weed flora with that of the soil seedbank and to determine the effect of management factors and soil properties on the composition of the weed flora. Species richness in the weed flora and in the weed seedbank was higher in the SGS than in the CDS and HFF. Mean weed density per field was generally higher in the HFF (156 ± 25.0 weeds m–2) than in the CDS (108 ± 8.1 weeds m–2) and in the SGS (92 ± 6.3 weeds m–2). Weed composition varied with agroecological zone as well as with management factors and soil properties. Sørenson's index of similarity was low (mean=0.20) in all zones, indicating poor similarity between the weed flora above-ground and the soil seedbank.  相似文献   

11.
The effects of three different weed management strategies on the required input of hand weeding in an arable organic farming system, the weed seedbank in the soil and the emerging weed seedling emergence were studied from 1996 to 2003. Strategies were based on population dynamic models and aimed for (1) control of weeds as carried out in standard organic farming practice, (2) control of all residual weeds that grow above the crop and (3) prevention of all weed seed return to the soil. Under all strategies, the size of the seedbank increased during the conversion from conventional to organic farming systems. The increase under strategy 3 was significantly smaller than the increase under the other strategies. From 1999 onwards, the weed densities in plots treated with strategy 3 became significantly lower than the weed densities in plots treated with the other strategies. The time needed for hand‐weeding required to prevent weed seed return, in addition to the time needed in standard organic farming practices, reduced during the course of the study. A management strategy aimed at the prevention of seed return (strategy 3) can reduce the size of the increase of the seedbank, which is usually observed after transition from conventional to organic farming. This study provides unique real‐world data that are essential for evaluating population dynamic models. The results may contribute to the development of weed management systems based on ‘no seed’ threshold strategies and to a further decrease in the dependence on herbicides.  相似文献   

12.
Tillage for the "complete inversion" of soil, that is, overturning soil slices 180° was proposed, a "spot plow" was developed and tested to accomplish the task, and a simulation model was evaluated to demonstrate the efficacy of the plow on weed control. A 360 mm wide spot plow was designed to operate at a speed of 1.9 m s−1 for the spot plowing with the least possible lateral displacement of the soil slice by utilizing the inertia of the soil slice and securely rotating it. In field experiments, complete spot inversion required an operating speed of at least 1.6 m s−1; at lower speeds, a portion of the soil block was left half-inverted and further lowering led to considerable lateral displacement. The displacement in the forward and lateral directions was minimal, implying that spot plowing is suitable for potential application to and verification of the weed population dynamics model in the field. A simple linear matrix model of the population dynamics of annual weeds was proposed, whereby four layers of soil were set to describe tillage and other ecological events. The effect of tillage on weed control was evaluated by the equilibrium reproduction rate allowed to sustain a stable population of weeds. The simulation model showed that alternately changing the depth of spot plowing had a significant effect on controlling weeds of low-survival-rate seeds, even when some incomplete inversion of the soil slice was taken into account.  相似文献   

13.
不同保护性耕作下冬小麦田杂草滋生情况调查研究   总被引:7,自引:0,他引:7  
采用随机调查的方法,对不同保护性耕作处理下冬小麦田间杂草的种类和数量进行调查研究,发现不同的耕作处理对杂草种类和数量的消长有很大的影响.传统耕作、免耕、秸秆深松覆盖、高留茬深松覆盖四种处理,以免耕条件下杂草的种类和数量最多,秸秆深松覆盖、高留茬深松覆盖是控制冬小麦田间杂革滋生的一种有效措施.不同保护性耕作处理使冬小麦田间杂草种类与各杂草相对丰度均发生变化,各处理间Shannon多样性指教(H')和Mamclef物种丰富度指数(D)均存在差异,其原因可能是由于不同保护性耕作处理造成各处理间生态环境、土壤养分和土壤水分的不同,各种杂草的生长因而受其不同影响所致.  相似文献   

14.
The study examined the effect of tillage (intensive vs. zero tillage) on potential gene flow during the life cycle of oilseed rape volunteers between July 2002 and August 2003. After growing oilseed rape, 4–29% of the seeds lost during harvest entered the soil seedbank when stubble tillage was performed immediately after the seed input. The seedbank was small (0–3%) when stubble tillage was delayed. Zero tillage resulted in seedbanks from 1 to 17% of the initial seed input. The seeds were distributed mainly in the upper soil layers after zero tillage or primary tillage with a rigid tine cultivator, whereas ploughing shifted most of the seeds into deeper layers. The highest number of volunteers (1 plant m−2) emerged and flowered in the following crop of winter wheat either when a large soil seedbank existed and/or the seedbank was located mainly in the upper soil layer. Outcrossing with other rape crops was unlikely as volunteers flowered 1 month later than rape crops sown at the normal timing. These volunteers produced a maximum of 8 viable seeds m−2. Ploughing preserved seeds in deep soil layers transferring the risk of gene flow to the future, whereas non-inversion tillage can cause gene flow from high numbers of flowering volunteers within the first year following oilseed rape cultivation.  相似文献   

15.

BACKGROUND

The efficacy of pre‐emergence herbicides within fields is spatially variable as a consequence of soil heterogeneity. We quantified the effect of soil organic matter on the efficacy of two pre‐emergence herbicides, flufenacet and pendimethalin, against Alopecurus myosuroides and investigated the implications of variation in organic matter for weed management using a crop–weed competition model.

RESULTS

Soil organic matter played a critical role in determining the level of control achieved. The high organic matter soil had more surviving weeds with higher biomass than the low organic matter soil. In the absence of competition, surviving plants recovered to produce the same amount of seed as if no herbicide had been applied. The competition model predicted that weeds surviving pre‐emergence herbicides could compensate for sublethal effects even when competing with the crop. The ED50 (median effective dose) was higher for weed seed production than seedling mortality or biomass. This difference was greatest on high organic matter soil.

CONCLUSION

These results show that the application rate of herbicides should be adjusted to account for within‐field variation in soil organic matter. The results from the modelling emphasised the importance of crop competition in limiting the capacity of weeds surviving pre‐emergence herbicides to compensate and replenish the seedbank. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

16.
Digitaria sanguinalis is a troublesome annual weed that causes important yield losses in different crops. Despite this, there is scarce information about different aspects of its biology under field conditions. New knowledge about the establishment process of this species will be of paramount importance in order to maximise the effectiveness of weed management. The aims of this paper were to evaluate the effect of stubble found on the surface on seed dormancy levels through the season, the effects of stubble and soyabean crop canopy on seedling emergence and to determine the field emergence pattern as a consequence of seed dormancy level at dispersal time. Seeds on the soil surface, which showed a high dormancy level at the beginning of autumn, were released from dormancy by low winter temperatures and germinated during spring as temperatures rose, showing a transient surface seedbank. Seeds covered by stubbles had delayed the emergence in the field due to lower alternating temperatures perceived by the surface seedbank. On the other hand, the presence of a soyabean crop and stubble together reduced the number of seedlings. Seeds with a high dormancy level at dispersal time showed a delayed emergence in the next season when compared with seeds with a lower dormancy level. However, the final number of seedlings was similar. Both stubble on surface and crop canopy are useful factors to lessen and delay the seedling emergence allowing the design of weed management strategies in order to diminish the population levels of this species.  相似文献   

17.
Summary. Post harvest soil samples taken during the autumn of 1985 and 1986 were split and estimates made of the weed seedbank using two methods: (1) a physical separation of seed from the soil mineral fraction by a sieving/flotation procedure and (2) by placing soil in shallow containers in a greenhouse where seeds could germinate and be periodically counted over a period of eight months. Seedbank estimates derived from each procedure were analysed to determine the suitability of each technique for detecting treatment differences from an experiment evaluating tillage/herbicide effects on weed populations. Both techniques were suitable for determination of seedbank changes due to different tillage treatments and herbicide inputs. The two techniques also proved effective for detection of individual species in the seedbank and the two techniques provided comparable estimates of the relative density of individual weed species in the seedbank. Weed seedbank estimates obtained by the physical extraction procedure from the autumn 1985 soil samples were correlated with weed seedling counts made in the spring of 1986. In most cases, weed seedlings represented less than 10% of the number of seeds estimated by physical extraction the preceding autumn. Individual species seed estimates and subsequent weed counts were poorly correlated which indicated that the seed count estimates alone were poor predictors of weed flora.  相似文献   

18.
Mechanical weed control in low competitive, organic vegetable production systems is challenging, particularly in fields with large populations of Galinsoga spp. (Asteraceae). Various false seedbed techniques are used prior to crop planting or sowing to prevent weed emergence, albeit with variable success. This study investigated the impact of machinery type (flamer, hoe and harrow), number of passes (2 and 4), tillage depth (1–4 cm) and intensity (double and single hoeing, and hoeing with or without additional harrowing) on weed emergence and seedbank density in 0–5 cm topsoil of organic vegetable fields. False seedbed machinery that did not or minimally disturb the soil was most appropriate for preventive control of Galinsoga quadriradiata (Hairy galinsoga) and total weed seeds, with reductions in seedling emergence up to 99% and 73%, respectively, for flaming, and 74% and 67%, respectively, for 1 cm deep hoeing, 1 month after false seedbed creation. Compared with 1 cm deep hoeing, 1 cm deep harrowing was 16% less effective in the control of emerged seedlings, while flaming was highly effective in preventing weed seedling emergence, even after a low number of passes. Tillage intensity was less important than tillage depth for the reduction in weed emergence and seedbank density. Overall, tillage was more effective for seedbank reduction than flaming.  相似文献   

19.
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70–95% of weeds and volunteer crops in the fall‐to‐spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble‐tillage operations and non‐selective chemical weed control in the fall‐to‐spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry  相似文献   

20.
The objective of this study was to obtain detailed information on the long‐term weed suppression potential of four winter soil cover types included in an arable crop system managed at various input levels. We used weed seedbank size and composition to assess weed suppression potential. A field experiment was established in 1993 as a split‐split‐plot design with four replications, including two tillage systems [a conventional system (CS) including ploughing in the cover crops and a low‐input system (LIS) including no tillage with surface mulching of the cover crops] in the main plots, three mineral nitrogen fertilization rates for the main crop in the sub‐plots and four soil cover types (main crop residue, rye, crimson clover and subterranean clover) in the sub‐sub‐plots. Seedbank sampling took place in winter 2000/01. The weed seedbank was analysed with the seedling emergence method. Data were analysed using anova and multivariate techniques. Results indicated that the seedbank density in the LIS was about five times higher than in the conventional input system. In the CS, use of a rye cover crop resulted in a lower seedbank density with respect to the crop residue treatment (?25%), whereas in the LIS the subterranean clover cover crop decreased weed seedbank density as compared with the other cover crops and the crop residue treatment (?22% on average). Differences in species composition were mainly related to tillage system. Implications for cover crop management and the development of sustainable cropping systems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号