首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Energy retention was compared in Holstein steers fed either alfalfa or orchardgrass silages for 164 d at either 65 or 90 g DM/kg.75 BW daily in a 2 x 2 factorial. Energy retention was estimated by slaughter-balance using an initial kill of eight steers at 216 kg and a final kill of eight steers per treatment at 326 kg. The ADG was not affected (P greater than .05) by silage, but steers fed alfalfa gained less (P less than .001) gut fill (they lost gut fill) and gained more (P less than .001) of the following than steers fed orchardgrass: empty body, 23%; fat, 50%; fat-free matter, 18%; protein, 16%; water, 17%; ash, 43%; gross energy, 31%; and carbon, 38%. With retained energy at 1.15 Mcal/d, retained energy was equally distributed between fat and protein. Increments of daily retained energy greater than 1.15 Mcal were deposited as 76% to fat and 24% to protein; this distribution was not affected by silage. The energy requirement for maintenance, with BW adjusted to equal gut fill, was not different (P greater than .05) at 130 kcal ME/kg.75 BW for steers fed alfalfa vs 125 for steers fed orchardgrass. Although not significant (P greater than .05), retained energy/ME intake above maintenance was 13% greater for steers fed alfalfa (.261) than for steers fed orchardgrass (.230), which supports the difference observed by calorimetry. The difference in dietary protein (25.6 vs 20.5%) did not contribute to the difference in energy retention because the differences in fat and protein retention could be explained totally by differences in daily energy deposition. The higher NDF of orchardgrass, or other fiber components, seems to be the most probable cause of its somewhat lower partial energetic efficiency relative to alfalfa.  相似文献   

2.
Twenty-four beef steers (predominantly Angus x Hereford, 14 to 18 mo of age, 403 +/- 3 kg of BW), were housed and fed in individual pens for about 122 d. Twelve steers came from a herd that had been selected for growth (high growth; HG) and the other 12 from a herd with no selection program (low growth; LG). Another 6 steers (3 from each group) were slaughtered at the beginning to obtain the initial composition. All steers were fed the same corn-based diet (3.06 Mcal of ME/kg of DM, 13.6% CP) on an ad libitum basis. Two weeks before slaughter, total urine was collected for 5 d for estimation of 3-methylhistidine excretion and myofibrillar protein breakdown rates. Compared with LG steers, HG steers had less initial BW but greater final BW, DMI (7.52 vs. 6.37 kg/d), ADG (1.33 vs. 0.853 kg/d), G:F (0.176 vs. 0.133 kg/kg), ME intake (0.233 vs. 0.201 Mcal x kg of BW(0.75) x d(-1)), and retained energy (RE; 0.0711 vs. 0.0558 Mcal x kg of BW(0.75) x d(-1)); gained more fat (676 vs. 475 g/d); and tended to gain more whole body protein (100 vs. 72 g/d), with no difference in residual feed intake (RFI). Estimated net energetic efficiency of gain (k(g)) and ME for maintenance (ME(m)) did not differ between the 2 groups, averaging 0.62 and 0.114, respectively. The HG steers had greater HCW (350 vs. 329 kg), backfat (16.1 vs. 11.6 mm), and yield grades (3.53 vs. 2.80), with a similar dressing percent, KPH fat, LM area, and marbling score. Skeletal muscle protein gain (70.2 vs. 57.6 g/d) and fractional protein accretion rate (0.242 vs. 0.197%/d) tended to be greater in HG than in LG steers. Steers were classified into low (-0.367 kg/d) and high (0.380 kg/d) RFI classes. Compared with the high RFI steers, low RFI steers consumed less DM (6.61 vs. 7.52 kg/d) and ME (0.206 vs. 0.234 Mcal x kg of BW(0.75) x d(-1)) and tended to gain less fat (494 vs. 719 g/d), but were similar for initial and final BW, ADG, G:F, protein gain, HCW, dressing percent, backfat, KPH fat, LM area, marbling score, and yield grade, as well as for all observations related to myofibrillar protein metabolism. Residual feed intake may be positively [corrected] correlated with ME for maintenance. The maintenance energy requirement increased by 0.0166 Mcal x kg(-0.75) x d(-1) for each percentage increase in fractional protein degradation rate, confirming the importance of this process in the energy economy of the animal.  相似文献   

3.
In Exp. 1, 4 ruminally and duodenally cannulated beef steers (444.0 +/- 9.8 kg) were used in a 4 x 4 Latin square with a 2 x 2 factorial treatment arrangement to evaluate the effects of forage type (alfalfa or corn stover) and concentrated separator byproduct (CSB) supplementation (0 or 10% of dietary DM) on intake, site of digestion, and microbial efficiency. In Exp. 2, 5 wethers (44 +/- 1.5 kg) were used in a 5 x 5 Latin square to evaluate the effects of CSB on intake, digestion, and N balance. Treatments were 0, 10, and 20% CSB (DM basis) mixed with forage; 10% CSB offered separately from the forage; and a urea control, in which urea was added to the forage at equal N compared with the 10% CSB treatment. In Exp. 1, intakes of OM and N (g/kg of BW) were greater (P < 0.01) for steers fed alfalfa compared with corn stover. Steers fed 10% CSB had greater (P < 0.08) OM and N intakes (g/kg of BW) compared with 0% CSB-fed steers. Total duodenal, microbial, and nonmicrobial flows of OM and N were greater (P < 0.01) for steers fed alfalfa compared with corn stover. Steers fed 10% CSB had increased (P = 0.02) duodenal microbial flow (N and OM) compared with 0% CSB-fed steers. Forage x CSB interactions (P < 0.01) existed for total tract N digestibility; alfalfa with or without CSB was similar (67.4 vs. 69.5), whereas corn stover with CSB was greater than corn stover without CSB (31.9 vs. -23.9%). True ruminal OM digestion was greater (P < 0.09) in steers fed alfalfa vs. corn stover (73.0 vs. 63.1%) and in steers fed 10 vs. 0% CSB (70.3 vs. 65.8%). Microbial efficiency was unaffected (P > 0.25) by forage type or CSB supplementation. In Exp. 2, forage and total intake increased (linear; P < 0.01) as CSB increased and were greater (P < 0.04) in 10% CSB mixed with forage compared with 10% CSB fed separately. Feeding 10% CSB separately resulted in similar DM and OM apparent total tract digestibility compared with 10% CSB fed mixed. Increasing CSB led to an increase (linear; P < 0.02) in DM, OM, apparent N digestion, and water intake. Nitrogen balance (g and percentage of N intake) increased (linear; P < 0.08) with CSB addition. Feeding 10% CSB separately resulted in greater (P < 0.01) N balance compared with 10% CSB fed mixed. Using urea resulted in similar (P = 0.30) N balance compared with 10% CSB fed mixed. Inclusion of CSB improves intake, digestion, and increases microbial N production in ruminants fed forage-based diets.  相似文献   

4.
The effects of source and level of dietary NDF on intake, ruminal digestion in situ, ruminal fermentation, and total tract digestion were evaluated in Hereford steers using a replicated 5 x 5 Latin square design. Diets contained 62 to 64% TDN and included 1) 80% control concentrate (contained pelleted ground grains) and 20% timothy hay (traditional diet), 2) 80% control concentrate and 20% alfalfa cubes, 3) 90% control concentrate and 10% cubes, 4) a completely pelleted diet using corn cobs as the primary NDF source, and 5) 80% textured (rolled instead of ground grains) concentrate and 20% hay. Dry matter intake differed (P less than .05) between the traditional and cube diets due to limited acceptance of alfalfa cubes. Increased (P less than .05) ruminal osmolality, total VFA, and NH3 N and lower (P less than .01) ruminal pH in steers fed corn cob and cube diets relative to steers fed the traditional diet were due to preferential consumption of concentrate over supplemental roughage and the resultant rapid fermentation of concentrates. Potentially degradable DM in the traditional diet exceeded (P less than .06) all other diets, resulting in the increased (P less than .10) extent of DM disappearance despite a slower (P less than .05) rate of DM disappearance. Rate of NDF disappearance and all in situ starch disappearance parameters were similar between the traditional, corn cob, and cube diets. All ruminal digestion parameters involving NDF disappearance were similar between hay diets and between cube diets, whereas rate and extent of starch disappearance differed (P less than .05) between hay diets. Although formulation of diets with different sources of dietary NDF did not affect total tract digestion of nutrients, nutrient availability and ruminal fermentation were altered due to dietary differences in sources of dietary NDF and preferential selection of feedstuffs by steers.  相似文献   

5.
Energy density in growing diets may affect carcass quality of cattle; however, few reports have described the impact of energy source. The objectives of this research were to determine effects of source [dried distillers grains with solubles (DDGS) vs. corn] and amount (limit-fed to gain 0.9 vs. 1.4 kg of BW/d) of energy during the growing phase on feedlot performance and marbling. Angus-cross steers (144 head) were blocked by BW (average initial BW = 252 ± 36 kg), allotted within each block to 8 pens (6 steers/pen, 24 pens total), and randomly assigned to 1 of 4 feeding systems in a 2 × 2 factorial arrangement of treatments: 1) 65% DDGS fed to gain 0.9 kg of BW/d, 2) 65% DDGS fed to gain 1.4 kg of BW/d, 3) 65% corn fed to gain 0.9 kg of BW/d, and 4) 65% corn fed to gain 1.4 kg of BW/d. Fecal grab samples were collected on d 52 of the growing phase to determine digestibility of DM, ADF, NDF, ether extract (EE), and CP. After the 98-d growing phase, all steers were fed the same finishing diet. Steers were slaughtered by pen when average BW within the pen was 544, 522, and 499 kg for the large, medium, and small BW blocks, respectively. Average daily gain and DMI differed (P<0.01) by design during the growing phase. Compared with the corn-based diets, digestibilities of DM, NDF, and EE were decreased (P<0.02) when DDGS-based diets were fed during the growing phase, whereas the digestibility of N was increased (P<0.01). The ADG was greatest (P=0.02) during the finishing phase for steers fed to gain 0.9 kg of BW/d initially, but source of energy during the growing phase did not affect (P=0.24) finishing phase ADG. Steers fed to gain 0.9 kg of BW/d during the growing phase also had less backfat (P=0.08), decreased USDA yield grades (P=0.03), and greater LM area (P<0.01) than steers fed to gain 1.4 kg of BW/d. There was an interaction between energy source and amount for marbling scores (P=0.02). Steers fed corn-based diets to gain 0.9 kg of BW/d during the growing phase had the most marbling, whereas those fed to gain 0.9 kg of BW/d on DDGS had the least marbling; the remaining feeding systems were intermediate. Overall ADG and DMI were affected (P < 0.06) by both source and amount of energy fed during the growing phase. Feeding the DDGS-based diet to achieve greater ADG during the growing phase increased marbling, whereas feeding the corn-based diet to increase ADG during the growing phase decreased marbling.  相似文献   

6.
Formaldehyde- and formic acid-treated alfalfa or orchardgrass silage were fed at 65 and 90 g DM/kg BW.75.d) to growing Holstein steers (209 +/- SE = 35 kg) fitted with permanent ruminal and duodenal cannulas in a 4 x 4 latin square. Alfalfa had higher (P less than .01) concentrations of cell solubles, total N and rumen-soluble N than did orchardgrass. Digestible energy (Mcal/d), total N and soluble N intake (g/d) were higher (P less than .05) for steers fed alfalfa than for those fed orchardgrass. Total duodenal OM, DM, NDF, N and non-NH3-N flows were greater (P less than .001) for steers fed alfalfa than for those fed orchardgrass and were greater (P less than .001) at high vs low intake. Duodenal bacterial N flow (g/d) was greater (P less than .001) for steers fed alfalfa than for those fed orchardgrass, and bacterial N synthesis (g/kg DM truly digested in the rumen) was 58 and 32, respectively (P less than .001). Ruminal concentrations of NH3-N (P less than .001) and VFA (P less than .05) were greater for steers fed alfalfa than for those fed orchardgrass. Total tract DM, energy and N digestibilities were higher (P less than .05) for steers fed alfalfa vs orchardgrass, whereas total tract NDF digestibility was lower (P less than .01). Tissue N retention tended to be greater (P less than .1) for steers fed alfalfa than for those fed orchardgrass. Regression analysis indicated that duodenal non-NH3-N flow was related to intake of metabolizable energy and soluble N (R2 = .939). Improved performance and higher efficiency of use of ME for tissue gain by steers fed alfalfa rather than orchardgrass is related to lower ruminal acetate:propionate, higher microbial efficiency and greater duodenal DM and N flows.  相似文献   

7.
Alfalfa and orchardgrass herbages of similar digestibility were harvested at early and late maturity from primary growth and conserved as direct-cut silage using formic acid and formaldehyde simultaneously. Major compositional differences between the silages were lower NDF (principally hemicellulose) and a greater N content in alfalfa than in orchardgrass. An initial group of eight steers was slaughtered with a mean BW of 222 kg, and each of the four silages was fed to comparable groups of eight Holstein steers. Ad libitum DMI per unit of metabolic BW for alfalfa silages was 128% of that for orchardgrass silages. The ADG of steers fed alfalfa silages was 132% of that of steers fed orchardgrass silages. Despite greater ad libitum intake, total gut fill, as a percentage of BW, on alfalfa silages was 77% of that on orchardgrass silages. Daily empty BW gain of steers fed alfalfa silages was 158% of that of steers fed orchardgrass silages. Daily energy retention of steers fed alfalfa silages was 180% of that of steers fed orchardgrass silages. Steers fed alfalfa silages retained 140% more protein than steers fed orchardgrass silages did, but steers fed alfalfa silages retained only 71% as much protein energy relative to their total energy retention compared with steers fed orchardgrass silages. Differences in composition of daily energy retained were almost totally a result of differences in the total daily energy retention. Late alfalfa silage produced a greater daily gain than orchardgrass silage cut 2 wk earlier because greater intake compensated for lower digestibility.  相似文献   

8.
Four trials were conducted to determine the effects of adding various levels and types of fat to dry-rolled corn (DRC) finishing diets containing 0 or 7.5% forage. In Trial 1, 88 yearling steers (mean BW = 352 +/- 38 kg) and 176 heifers (mean BW 316 +/- 15 kg) were blocked by sex and weight into four replications. Treatments were 0, 2, 4, or 6% (DM basis) bleachable fancy tallow (BT) fed with 0 or 7.5% (DM basis) forage. Addition of BT to the 7.5% forage diet had no effect on ADG or gain/feed (G/F). However, adding BT to the all-concentrate diet decreased ADG (linear, P < .01) and G/F (linear, P = .08). In Trial 2, 184 yearling steers (mean BW = 347 +/- 21 kg) and 144 heifers (mean BW 322 +/- 8 kg) were blocked by sex and weight into six replications. Fat treatments were 0% fat, 4% BT, or 4% animal-vegetable oil blend (A-V); each fat treatment was fed with 0 or 7.5% forage. Across forage levels, the addition of fat increased (P < .01) ADG and G/F for cattle fed DRC. In Trial 3, 18 crossbred wether lambs (mean BW = 44.4 +/- 2.5 kg) were fed DRC and 7.5% forage and allotted randomly to the same fat treatments fed in Trial 2. Apparent total tract fat digestibility increased (P < .01) with the addition of BT or A-V. In Trial 4, 40 crossbred wethers (mean BW = 25 +/- 4.1 kg) and 16 ewes (mean BW = 23 +/- 2.7 kg) were individually fed 7.5% forage diets containing 0, 1, 2, or 4% BT. Addition of BT increased (linear, P = .10) G/F. In summary, fat addition to DRC finishing diets fed to yearling cattle did not consistently affect gain/feed, feed intake, and ADG.  相似文献   

9.
A study was undertaken to compare Tifton 85 (T85) and Coastal (CBG) bermudagrasses for effects of cultivar and age at harvest on yields of DM and digestible DM, in vitro digestion, nutrient content, cell wall composition, in situ digestion kinetics, and feed intake and digestion by growing beef steers. In Exp. 1, T85 and CBG forages staged for growth in May or July of 1993 were harvested at 3, 4, 5, 6, 7, and 8 wk from subplots. Tifton 85 bermudagrass had 7.1% greater DM yield, 18.2% higher (P < .05) digestible DM yield, and 7.1% greater IVDMD than CBG, and, after 5 wk of forage growth, IVDMD of both T85 and CBG decreased with increased age at harvest (P < .05). In Exp. 2, T85 and CBG forages staged for growth in July 1997 were harvested at 2, 3, 4, 5, 6, and 7 wk from subplots. Even though T85 had higher concentrations of NDF and ADF than CBG, T85 had 34.1% higher DM yield, 47.9% higher digestible DM, 55.0% higher digestible NDF, 91.7% higher digestible ADF, greater IVDMD, in vitro NDF and ADF disappearances, and higher in situ DM and NDF digestion (P < .05). Coastal bermudagrass had higher concentrations of lignin and lower concentrations of total neutral sugars, arabinose, glucose, and xylose than T85 (P < .05). In vitro digestibilities of DM, NDF, and ADF were lower and concentrations of ADF and lignin were greater for 7- vs 6-wk harvests of both T85 and CBG (P < .05). In Exp. 3, T85 and CBG forages staged for growth in July 1997 were harvested as hay at 3, 5, and 7 wk from .8-ha pastures and fed to 36 individually penned growing beef steers (initial BW = 244 kg) to quantify ad libitum intake without supplementation. Tifton 85 bermudagrass had lower concentrations of lignin and ether-linked ferulic acid and greater concentrations of NDF, ADF, hemicellulose, and cellulose than CBG (P < .05). Steers fed T85 had higher (P < .05) digestion of DM, OM, NDF, ADF, hemicellulose, and cellulose than steers fed CBG. Digestion of NDF, ADF, hemicellulose, and cellulose decreased (P < .05) with increased age at harvest for both cultivars. In conclusion, T85 produced more DM and had more digestible nutrients in vitro, in situ, and in vivo than CBG, and 3 and 5 wk of growth would be recommended ages to harvest either cultivar.  相似文献   

10.
Three experiments were conducted to determine the effects of cattle age and dietary forage level on the utilization of corn fed whole or ground to feedlot cattle. In Exp. 1, 16 steers were used to investigate the effects of cattle age and corn processing on diet digestibility. Two cattle age categories were evaluated (weanling [254 +/- 20 kg BW] and yearling [477 +/- 29 kg BW]; eight steers per group), and corn was fed either ground or whole to each cattle age category. Cattle age and corn processing did not affect (P > 0.10) diet digestibility of DM, OM, starch, CP, NDF or ADF, and no interactions (P > 0.10) between these two factors were detected. In Exp. 2, the effects of forage level and corn processing on feedlot performance and carcass characteristics were evaluated. One hundred eighty steers (310 +/- 40 kg BW) were allotted to 24 pens, and were fed one of the following diets: high-forage (18.2% corn silage) cracked corn (HFCC); high-forage shifting corn (whole corn for the first half of the trial, then cracked corn until harvest; HFSC); high-forage whole corn (HFWC); low-forage (5.2% corn silage) cracked corn (LFCC); low-forage shifting corn (LFSC); and low-forage whole corn (LFWC). For the high-forage diets, steers fed cracked corn had 7% greater DMI than those fed whole corn, whereas for the low-forage diets, grain processing did not affect DMI (interaction; P = 0.02). No interactions (P > 0.10) between forage level and corn processing were found for ADG and G:F. Total trial ADG and G:F, and percentage of carcasses grading USDA Choice, and carcass yield grade were not affected (P > 0.10) by corn processing. Cattle with fewer days on feed grew faster and more efficiently when cracked corn was fed, whereas cattle with longer days on feed had greater ADG and G:F when corn was fed whole (interaction; P < 0.10). In Exp. 3, the effects of forage level and corn processing on diet digestibility were evaluated. The high-forage cracked corn, high-forage whole corn, low-forage cracked corn, and low-forage whole corn diets used in Exp. 2 were fed to 16 steers (350 +/- 27 kg BW) in a digestion trial. No interactions (P > 0.10) between forage level and corn processing were detected for starch digestibility. Forage level and corn processing (grinding) did not affect (P > 0.10) diet DM, OM, starch, CP, and NDF digestibility. Processing corn did not provide additional benefits to feedlot cattle performance under these experimental conditions.  相似文献   

11.
Brahman x British crossbred steers were used in growth and digestion trials to evaluate the response of source (corn, sugar cane molasses, or soybean hulls) and feeding rate (0, 1.4, or 2.8 kg DM per steer daily in the growth trials; 0, 15, or 30% of the ration DM in the digestion trial) of energy supplementation in cattle fed ammoniated (4% of forage DM) stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) hay. Cattle on all treatments were fed 0.5 kg cottonseed meal daily. In the growth trials, steers grazed dormant bahiagrass (Paspalum notatum) pasture. Increasing the levels of supplementation decreased hay intake but increased total dietary intake for all diets (P < 0.07). Daily gain and feed efficiency of steers were improved (P < 0.03) with supplementation. Steers supplemented with corn or soybean hulls at 2.8 kg DM/d had a higher ADG (0.92 kg) and gain/feed (0.103) than steers supplemented with molasses (0.78 kg, 0.08, respectively) at the same level. Seven crossbred steers (200 kg) were used in a five-period digestion trial to evaluate apparent OM, NDF, ADF, and hemicellulose digestibility. Apparent OM digestibility of all diets increased linearly (P = 0.02) as the level of supplementation increased. Apparent NDF and ADF digestibility decreased (P < 0.03) as the level of supplementation with corn or molasses increased, whereas increasing the level of soybean hulls in the diet increased (P < 0.06) apparent NDF and ADF digestibility. Four ruminally fistulated crossbred steers (472 kg) were used in a 4 x 4 latin square design to investigate ruminal characteristics with energy supplementation at 30% of ration DM. Ruminal pH in steers supplemented with soybean hulls or corn declined after feeding. Ruminal pH decreased more rapidly with corn supplementation and remained below 6.2 for a longer period of time than with the other diets. Ruminal pH did not change within 24 h after feeding for steers fed the control or molasses diets. No change in total VFA concentration was observed in steers fed molasses or corn. Total ruminal VFA concentration in steers supplemented with soybean hulls increased initially after feeding and then declined within 24 h after feeding. Soybean hulls produced fewer negative associative effects than corn when fed with ammoniated stargrass hay at 2.8 kg DM/d. The reduced gain/feed of steers supplemented with molasses compared to soybean hulls or corn indicates that molasses was not utilized as efficiently as the other energy sources.  相似文献   

12.
Our objective was to measure the utilization of energy (E) and N by Holstein steers when fed alfalfa and orchardgrass silages offered at 65 and 90 g DM/kg live weight (LW).75 daily. Twelve steers adapted to the Beltsville respiration chambers were assigned to three Latin squares with 42-d periods. Steers in one square had permanent catheters in the portal and two mesenteric veins. Energy and N balance were measured during a 7-d collection of feces and urine that included a 3-d measurement of respiratory exchange. Energy and N variables were not different between catheterized and uncatheterized steers. Apparent digestibilities of DM, OM, CP, neutral detergent solubles and permanganate lignin were higher (P less than .01) and digestibilities of NDF and ADF, hemicellulose and cellulose were lower (P less than .01) for steers consuming alfalfa compared to orchardgrass silage. When fed alfalfa, steers' daily gross energy intake, DE, urine energy, ME, heat production and tissue energy retention were greater (P less than .01) and fecal energy losses were less (P less than .01) than when they were fed orchardgrass. Partial efficiency of ME use for tissue energy (TE) was greater (P less than .01) for steers when fed alfalfa (46.1%) than when fed orchardgrass (35.6%). Apparent ME (kcal/LW.75) required for maintenance of TE was similar for steers when fed alfalfa (133.9) and orchardgrass (131.2) silages. Nitrogen retention (g/d) was 48% greater (P less than .01) for steers when fed alfalfa (30.6) than when fed orchardgrass (20.7). This study demonstrates that steers used ME from alfalfa more efficiently for TE deposition than ME from orchardgrass.  相似文献   

13.
Although Brahman crosses constitute a large portion of US beef cattle, little information is available on their response to diverse feed resources compared with Bos taurus steers. Thus, the objectives were to evaluate genotype and diet effects on steer performance during the growing period and subsequent response to a high grain diet during the finishing period. Fifty-one steers [0 (15), 1/4 (20), 1/2 (7), and 3/4 Brahman (9), with the remaining proportion being MARC III] were allotted to 8 pens. Beginning on December 2, steers were individually fed chopped bromegrass hay (n = 26; DM = 85%, CP = 9.5%, ME = 2.19 Mcal/kg) or a corn silage-based diet (n = 25; DM = 51%, CP = 11.9%, ME = 2.75 Mcal/kg) for 119 d. All steers were then fed a high corn diet (DM = 79%, CP = 11.7%, ME = 3.08 Mcal/kg) to a target BW of 560 kg (176 d). Data were analyzed by ANOVA, with genotype, growing diet, and the 2-way interaction included. The interaction was not significant (P > 0.25). The MARC III and 1/2 Brahman steers weighed more (P < 0.01) than 1/4 or 3/4 Brahman steers initially and at the end of the growing period. Weight of bromegrass-fed (325 kg) steers was less than that of corn silage-fed (384 kg) steers at the end of the growing period. Steer ADG and intake of DM, CP, and ME were less (P = 0.087 to 0.001) for 1/4 and 3/4 Brahman than for 0 or 1/2 Brahman steers during growing, finishing, and total, but efficiency of gain did not differ (P > 0.10). Carcass weight, marbling score, quality grade (P < 0.05), and kidney fat (P = 0.06) differed among genotypes. Daily DMI (6.91 vs. 7.06 kg) was similar, but CP (0.66 vs. 0.84 kg) and ME (15.2 vs. 19.4 Mcal) intake of bromegrass fed was less (P = 0.001) than those of corn silage-fed steers. Values for DMI/gain (22.3 vs. 7.43 kg/kg), CP intake/gain (2.13 vs. 0.88 kg/kg), and ME intake/gain (48.8 vs. 20.4 Mcal/kg) were greater (P < 0.001) in bromegrass-fed than corn silage-fed steers. Over the total study, ADG was lower (0.96 vs. 1.01 kg), and DMI (7.82 vs. 7.19 kg), DMI/gain (8.21 vs. 7.10 kg/kg), and ME intake/gain (22.6 vs. 20.9 Mcal/kg) were greater (P < 0.05) in bromegrass-fed than in corn silage-fed steers. Carcass weight, dressing percent, adjusted backfat, and yield grade (P < 0.05) were greater for corn silage-fed than for bromegrass-fed steers. Feed intake and performance, but not efficiency, differed among these genotypes. Compensatory performance during finishing was insufficient to overcome reduced performance during the growing period.  相似文献   

14.
We evaluated the effect of forage quality on response of cattle to supplementation with cooked molasses blocks. In Exp. 1, 175 heifers had ad libitum access to prairie hay (5.2% CP, DM basis). Treatments were a 2 x 3 factorial: supplementation with 0 or 1.96 kg/d of alfalfa DM, and supplementation with no cooked molasses block or with a low-protein or a high-protein cooked molasses block (14.4 and 27.5% CP, respectively, DM basis). There were no significant interactions between alfalfa and cooked molasses block for intake or gain. Forage intake and ADG were increased (P < 0.05) by alfalfa supplementation. Heifers fed high-protein cooked molasses blocks gained more (P < 0.05) weight than those fed low-protein cooked molasses blocks or no cooked molasses block. Heifers fed high-protein cooked molasses blocks ate more (P < 0.05) forage than those fed low-protein cooked molasses blocks, with heifers fed no cooked molasses block being intermediate. In Exp. 2, responses to cooked molasses blocks containing 33% CP (DM basis) were measured in 18 steers fed: 1) brome (8.4% CP), 2) alfalfa (19.2% CP), or 3) brome supplemented with 1.93 kg/d of alfalfa DM. Forages were available ad libitum. Forage DM intake was not affected by cooked molasses block and was greater (P < 0.05) for alfalfa than the alfalfa/brome mix, which in turn was greater (P < 0.05) than brome. Digestibility of DM was greater (P < 0.05) for alfalfa than brome or the alfalfa/brome mix and was not affected by cooked molasses block supplementation. Supplementation with cooked molasses blocks had only small effects on intake and digestion of medium- to high-quality forages, but it improved gains and feed efficiencies of heifers fed prairie hay ad libitum, with or without supplemental alfalfa.  相似文献   

15.
Two experiments were conducted to evaluate the effects of alfalfa hay (AH) and wet corn gluten feed (WCGF) combinations on ADG and gain efficiency of cattle limit-fed growing diets. In Exp. 1, crossbred beef steers (n = 220; initial BW = 262 kg) were limit-fed diets consisting of steam-flaked corn and 40% WCGF (DM basis) with 0, 10, or 20% ground AH (0AH, 10AH, and 20AH, respectively). A fourth diet containing 20% ground AH and steam-flaked corn served as a control. All diets were fed once daily at 1.8% of BW (DM basis). Growing period ADG, gain efficiency, and dietary NE calculated from performance data decreased linearly (P < 0.01) with addition of AH to diets containing WCGF. Rate of DMI increased linearly (P < 0.05) with AH addition to diets containing WCGF. Following the growing period, steers were finished on a common diet offered ad libitum. Gain efficiencies during the finishing period were higher (P < 0.05) for steers fed the 20AH diet than for steers fed the control diet. In Exp. 2, crossbred beef heifers (n = 339; initial BW = 277 kg) were limit-fed diets containing steam-flaked corn with 10, 20, or 30% ground AH and 0, 40, or 68% WCGF in a 3 x 3 factorial arrangement, fed once daily at 1.6% of BW (DM basis). An AH x WCGF interaction occurred (P < 0.05) for growing period ADG and gain efficiency. Increasing AH or WCGF decreased cattle ADG, gain efficiency, and dietary NE with the exception of heifers fed 30AH/40WCGF, which had ADG that did not differ (P > 0.10) from that of heifers fed 20AH/0WCGF or 30AH/0WCGF, and which had greater gain efficiencies (P < 0.05) than heifers fed 30AH/0WCGF. Rate of DMI increased linearly (P < 0.01) with increasing AH and decreased linearly (P < 0.01) with increasing WCGF. Heifers were finished on diets containing 33% WCGF with 0 or 0.5% added urea (DM basis) offered ad libitum. Increasing WCGF in growing diets tended (linear, P < 0.10) to increase finishing ADG and gain efficiency, whereas increasing AH decreased (linear, P < 0.05) kidney, pelvic, and heart fat, and the percentage of carcasses grading USDA Prime. Urea tended to increase ADG (P < 0.10), but decreased (P < 0.04) the percentage of carcasses grading USDA Choice. Results suggest that the value of WCGF relative to steam-flaked corn in limit-fed growing diets might be improved in diets containing 30% AH relative to diets containing 10 or 20% AH.  相似文献   

16.
Three digestion experiments and one growth experiment were conducted to determine site, extent and ruminal rate of forage digestion and rate and efficiency of gain by cattle offered alfalfa haylage supplemented with corn or dry corn gluten feed (CGF). In Exp. 1, eight steers were fed alfalfa haylage-based diets with substitution of corn for 0, 20, 40 or 60% of haylage in a 4 X 4 latin square. Increasing dietary corn substitution increased (P less than .05) OM, NDF and ADF digestion by steers but decreased (P less than .05) rate of in situ alfalfa DM digestion. In Exp. 2, five heifers were fed alfalfa haylage-based diets with increasing dietary levels of CGF in a 5 X 5 latin square. Increasing dietary CGF increased (P less than .05) OM, NDF and ADF digestion by heifers. In Exp. 3 and 4, cattle were fed alfalfa haylage-based diets containing either 20 or 60% corn or CGF. In Exp. 3, supplementation increased (P less than .05) OM and NDF digestion but level X supplement source interaction (P less than .05) occurred, with added CGF increasing OM and NDF digestion more than added corn. In Exp. 4, supplementation improved (P less than .05) DM intake, daily gain and feed efficiency. Dry matter intake and daily gain were greater (P less than .05) for 60% supplementation than for 20% supplementation. Overall, whereas increasing the level of dietary supplement increased (P less than .05) OM, NDF and ADF digestion, only corn addition decreased (P less than .05) rate of in situ alfalfa DM digestion. Daily gains and feed efficiencies were similar in cattle fed either corn or CGF with alfalfa haylage.  相似文献   

17.
Two experiments were conducted to evaluate the effects of feeding different levels of wet corn gluten feed (WCGF) and dietary roughage on performance, carcass characteristics, and feeding behavior of feedlot cattle fed diets based on steam-flaked corn (SFC). In Exp. 1, crossbred steers (n = 200; BW = 314 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based diet containing 9% roughage (CON) and 3 SFC-based diets containing 40% WCGF, with either 9, 4.5, or 0% roughage. A linear (P = 0.04) increase in final BW and DMI (P < 0.01) was observed in diets containing WCGF as dietary roughage increased. Steers fed WCGF and higher levels of roughage had greater (P = 0.01) ADG than steers fed lower levels of roughage. Steers fed the CON diet had lower (P = 0.04) daily DMI and greater (P = 0.03) G:F than those fed WCGF. Most carcass characteristics of steers fed CON did not differ (P > 0.10) from those of steers fed WCGF. Based on feed disappearance and visual scan data, consumption rate did not differ (P > 0.10) among treatments; however, feeding intensity (animals present at the bunk after feeding) was greater for steers fed CON (P < 0.01) than for steers fed WCGF. In Exp. 2, yearling crossbred steers (n = 1,983; BW = 339 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based control diet that contained 9% roughage (CON) and 3 SFC-based diets containing either 20% WCGF and 9% roughage or 40% WCGF with 9 or 4.5% roughage. Steers fed the CON diet tended to have lower final BW (P = 0.14), ADG (P = 0.01), and DMI (P < 0.01) than steers fed diets containing WCGF. Steers fed the 20% WCGF diet had greater (P = 0.08) G:F than steers fed the 40% WCGF diets. With 40% WCGF, increasing roughage from 4.5 to 9% decreased (P < 0.01) G:F and increased (P = 0.06) DMI. Gain efficiency was improved (P < 0.01) for steers fed CON vs. those fed diets containing WCGF, whereas HCW (P = 0.02) and dressing percentage (P < 0.01) were greater for steers fed WCGF. Percentage of cattle grading USDA Choice was greater (P = 0.02) for cattle fed WCGF. Results suggest that replacing SFC with up to 40% WCGF increased ADG and decreased G:F when 4.5 to 9.0% roughage was supplied. More CON steers were present at the feed bunk during the first hour after feeding than WCGF steers, suggesting that including WCGF at 40% of the diet affected feeding behavior.  相似文献   

18.
Three experiments were conducted to compare soybean meal/sorghum grain (SBM/SG), alfalfa hay or dehydrated alfalfa pellets (DEHY) as supplemental protein sources for beef cattle grazing dormant range forage. In Exp. 1 (35-d digestion study), 16 ruminally cannulated steers were stratified by weight (average BW 259 kg) and assigned randomly within stratification to: 1) control, no supplement; 2) SBM/SG (25% CP) fed at .48% BW; 3) alfalfa hay (17% CP) fed at .70% BW; or 4) DEHY (17.4% CP) fed at .67% BW. Steers receiving protein supplements displayed at least a twofold increase in forage intake (P less than .10). In addition, steers supplemented with DEHY consumed approximately 15% more forage (P less than .10) than SBM/SG- or alfalfa hay-supplemented steers. Digestible DM intake (kg/d), however, was similar between alfalfa hay- and DEHY-supplemented steers and 20% greater (P less than .10) than for SBM/SG-supplemented steers. In Exp. 2, 82 mature, nonlactating Hereford x Angus cows (average BW 489 kg) were assigned randomly to SBM/SG, alfalfa hay or DEHY supplement treatments, which were replicated in three pastures. Cows supplemented with DEHY gained more weight (P less than .05) during the first 84 d of supplementation and displayed the least amount of weight loss at calving (d 127; P less than .05) and just prior to breeding (P less than .10). In contrast, calving interval (361 d) and pregnancy rate (94%) were unaffected (P greater than .10) by dam's previous supplemental treatment. In Exp. 3, one block (pasture) of cows from Exp. 2 was selected at random and grazing behavior was monitored during week-long periods in January and February. A treatment X time interaction (P less than .05) occurred for total time spent grazing; treatments did not differ in January, but cows supplemented with alfalfa hay spent less time grazing in the February grazing period. In conclusion, DEHY and alfalfa hay appear to be at least as effective as SBM/SG as a supplemental protein source for pregnant grazing cows when supplements are fed on an equal CP and ME basis.  相似文献   

19.
Two experiments were conducted to determine the effects of supplement type on the rate of gain by heifers grazing bermudagrass and on the intake, apparent total-tract OM digestibility, ruminal fermentation, digesta kinetics, in situ DM digestibility, and forage protein degradation by steers fed prairie hay. In Exp. 1, 45 heifers (284+/-24 kg) grazed a bermudagrass pasture for 91 d in the late summer to determine the effects of no supplement (CON), or one of four individually fed monensin-containing (150 mg/[heifer x d]) supplements (MINCS; 0.1 kg of mineral mix with 0.2 kg [DM] of cottonseed hulls as a carrier/[heifer x d]), a pelleted protein supplement (PROT; 1 kg of DM, 242 g of degradable intake protein [DIP]/[heifer x d]), or high-fiber (HF) and high-grain (HG) (2 kg of DM, 243 and 257 g of DIP, respectively/[heifer x d]) pelleted energy supplements. In Exp. 2, four ruminally cannulated steers (311+/-22 kg) with ad libitum access to low-quality (4% DIP, 73% NDF, 40% ADF) prairie hay were individually fed monensin-containing (200 mg/[steer x d]) treatments consisting of 1) mineral mix + corn (MINCR; 0.1 kg of mineral and 0.4 kg of cracked corn [DM] as a carrier, 19 g of DIP/[steer x d]), 2) PROT (1.4 kg of DM, 335 g of DIP/[steer x d]), 3) HF, or 4) HG (2.9 kg of DM, 340 and 360 g of DIP, respectively/[steer x d]) in a 4 x 4 Latin square with 14-d adaptation and 6-d sampling periods. In Exp. 1, the HF-, HG-, and PROT-supplemented heifers had greater (P < 0.01) rates of gain than CON heifers, and the HF- and HG-supplemented heifers tended (P < 0.11) to gain more weight than those fed PROT. In Exp. 2, steers fed PROT consumed more (P < 0.05) hay OM than HF and HG, or MINCR. Total OM intake was greater (P < 0.01) by supplemented steers than MINCR-fed cattle. Hay OM digestibility was not affected (P = 0.19) by treatment, but total diet OM digestibility was greater (P < 0.01) for HF- and HG- than for MINCR- or PROT-fed steers. The rate of in situ DM digestibility was greater (P < 0.01) for HF, HG, and PROT than for MINCR. Results from these studies indicate that feeding milo- vs fiber-based energy supplements formulated to provide adequate DIP did not result in different forage intake, OM digestibility, or in situ DM digestibility, whereas both increased ADG in heifers consuming low-quality forages compared with unsupplemented or mineral- or protein-supplemented cattle. An adequate DIP:TDN balance decreased the negative associative effects often observed when large quantities of high-starch supplements are fed with low-quality hay.  相似文献   

20.
Three experiments were conducted to determine the effects of whole cottonseed or cottonseed products on performance and carcass characteristics of beef cattle. In Exp. 1, 120 beef steers (initial BW = 381 +/- 31.7 kg) were fed steam-flaked corn-based finishing diets with 10% (DM basis) basal roughage, and whole cottonseed or individual cottonseed components (cottonseed hulls, meal, and oil). Over the entire feeding period, ADG did not differ (P = 0.95), but DMI increased (P = 0.07) and G:F decreased (P = 0.06) for steers fed the cottonseed diets compared with the control diet. Dressing percent (P = 0.02) and marbling scores (P = 0.02) of carcasses from steers fed the cottonseed diets were less than for steers fed the control diet. In Exp. 2, 150 beef steers (initial BW = 364 +/- 9.9 kg) were used to determine the effects of whole cottonseed or pelleted cottonseed (PCS) on performance and carcass characteristics. Cattle were fed steam-flaked corn-based finishing diets in which whole cottonseed or PCS replaced all of the dietary roughage, supplemental fat, and supplemental natural protein of the control diet. Over the entire feeding period, steers fed the cottonseed diets had lower (P = 0.04) DMI and greater (P < 0.01) G:F than steers fed the control diet. Carcass characteristics did not differ (P = 0.16 to 0.96) among dietary treatments. In Exp. 3, 150 beef heifers (initial BW = 331 +/- 17.1 kg) were used to determine the effects of PCS or delinted, whole cottonseed (DLCS) on performance and carcass characteristics. Heifers were fed rolled corn-based finishing diets in which cottonseed replaced the dietary roughage, supplemental fat, and all or part of the supplemental natural protein of the control diet. Over the entire feeding period, ADG, DMI, and G:F of heifers fed the control diet did not differ (P = 0.19 to 0.80) from those of the cottonseed diets; however, heifers fed the diets containing PCS had greater ADG (P = 0.03) and G:F (P = 0.09) than heifers fed diets containing DLCS. Carcass characteristics of heifers fed the control diet did not differ (P > or = 0.28) from those fed the cottonseed diets. Heifers fed the diets containing PCS had greater (P < or = 0.03) HCW, dressing percent, and LM area than those fed DLCS. Based on our results, whole cottonseed, or products derived from processing whole cottonseed, can replace feedstuffs commonly used in beef cattle finishing diets with no adverse effects on animal performance or carcass characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号