首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An experiment was conducted to compare the nutritive value of a range of ensiled forage legumes. Silages were prepared from late second‐cut lotus (Lotus corniculatus), first‐cut sainfoin (Onobrychis viciifolia) and both early and late second‐cut red clover (Trifolium pratense) and lucerne (Medicago sativa). Each experimental silage was offered to six Suffolk‐cross wether lambs, aged 10 months, housed in metabolism crates. Voluntary intakes of dry matter ranged from 71 to 81 g kg?1 liveweight0·75 d?1. Voluntary intakes were similar on the lotus, sainfoin and late‐cut red clover silages, but the voluntary intake on the lotus silage was significantly higher than that on the lucerne silages and early‐cut red clover silage. Digestibility of organic matter in the dry matter was highest for the lotus silage (0·650), and lowest for the sainfoin silage (0·527). Although most of the N in the sainfoin silage appeared to be in an indigestible form, N digestibility was approximately 0·70 for the other legume silages. The highest loss of N in urine, 0·75 of N intake, was recorded for lambs offered the lucerne silage. Differences in N intake, N loss in faeces and N loss in urine led to statistically significant differences in the amount of N retained, with the highest and lowest N balances recorded for the lotus (16 g N d?1) and sainfoin (?2 g N d?1) silages respectively. The results confirm that these high protein forages have high intake potential. While low N digestibility appears to limit the nutritional value of sainfoin, further research could formulate feeding strategies that improve the efficiency with which the protein from red clover, lucerne and lotus is utilized.  相似文献   

2.
Sainfoin (Onobrychis viciifolia) is a temperate legume that contains condensed tannins (CT), i.e., polyphenols that are able to bind proteins and thus reduce protein degradation in the rumen. Few studies have investigated the relation between plant phenology, CT characteristics and nutritive value of sainfoin. In this study we investigated differences among three sainfoin varieties (Esparcette, Ambra and Villahoz) that were of different geographical origin, and which were cultivated at the same site over the course of two growth cycles and compared with a tannin‐free legume, lucerne (Aubigny). Plants were harvested on nine dates in the first and four dates in the second growth cycle. Phenological stages were analysed for leaf‐to‐whole‐plant ratio, nitrogen (N), organic matter digestibility (OMd) by the pepsin‐cellulase method, cell‐wall concentration, N solubility (solN) plus CT concentration, biological activity and structures. Leaf‐to‐whole‐plant, cell‐wall concentration, N of sainfoin and lucerne were closely related to the phenological stage. Although sainfoin developed earlier than lucerne, its pepsin‐cellulase digestibility was higher than or close to lucerne. Esparcette had the lowest OMd, N and solN and the highest CT concentration. CT concentration, proportion of prodelphinidins (PD) and mean degree of polymerization (mDP) increased with the phenological stage (or plant maturity), and these parameters were associated with lower biological activity of CT. Sainfoin varieties differed in their relationships between phenological stages, nutritional parameters and CT characteristics. The results demonstrated that sainfoin can be a valuable alternative forage legume to lucerne.  相似文献   

3.
The combined benefits of a high crude protein concentration, and possible protein protection and growth‐promoting properties, make forage legumes potentially attractive as a natural means of increasing liveweight gain and time to slaughter of lambs in lamb finishing systems. An experiment was conducted to compare the production performance and meat quality of grazing lambs finished on red clover (Trifolium pratense), lucerne (Medicago sativa) or perennial ryegrass (Lolium perenne) swards. Replicate (n = 2) swards of red clover, lucerne and perennial ryegrass were rotationally grazed by ten ram lambs and ten ewe lambs from weaning until selection for slaughter at UK fat class 3L. Lambs grazing the red clover sward had a significantly higher liveweight gain and required significantly fewer days to slaughter than lambs grazing the lucerne sward (305 g d?1 vs. 243 g d?1; 38 d vs. 50 d), which in turn had a higher liveweight gain and required fewer days to slaughter than lambs grazing the perennial ryegrass sward (184 g d?1; 66 d). Lambs grazing the red clover and lucerne swards had significantly higher herbage intakes than those grazing the perennial ryegrass sward (2·06, 1·72 and 1·16 kg DM d?1 respectively), but in vivo digestibility of herbage was similar. Lambs grazing the red clover and lucerne swards also had significantly higher serum urea concentrations than those grazing ryegrass (12·5, 11·1 and 6·2 mmol L?1 respectively). Killing‐out percentage was significantly higher for lambs grazing the red clover sward than for lambs grazing the perennial ryegrass sward (48% vs. 46%). There were no significant effects of finishing system on meat flavour, but meat from lambs finished on the lucerne sward was oxidatively less stable than that from lambs finished on the perennial ryegrass sward. Grazing the forage legume swards significantly increased the proportion of linoleic and linolenic acid in muscle tissue, and therefore the proportion of unsaturated to saturated fatty acids (0·19, 0·16 and 0·12 for the red clover, lucerne and perennial ryegrass swards respectively). However, the n?6/n?3 ratio was significantly lower for the muscle of lambs grazing the perennial ryegrass sward compared with those grazing the forage legume swards (1·13, 1·08 and 0·98 for the red clover, lucerne and perennial ryegrass swards respectively). The results indicate that by grazing lambs on forage legume swards it is possible to increase individual lamb performance without compromising meat quality.  相似文献   

4.
Beef cattle are major contributors of enteric methane (CH4) emissions in Canada. Feeding forages containing condensed tannins (CT) has been suggested as a means of reducing enteric CH4 emissions and improving production efficiency. Sainfoin (Onobrychis viciifolia) is one of the CT‐containing legumes, which has also been recognized to have several additional beneficial properties. This study compared sainfoin silage (SS) and lucerne (Medicago sativa) silage (LS) with respect to animal performance, enteric CH4 production, abundance of selected rumen microbes and selected serum parameters in yearling steers during a Canadian winter. Sainfoin silage in our study contained approximately 12 g CT kg?1 dry matter (DM), a level which did not adversely affect silage palatability as steers fed SS experienced higher DM intake. However, animals fed LS and SS had similar body weight gain over the course of the trial. Feeding SS resulted in lower blood urea nitrogen concentrations and relative abundance of methanogenic archaea in rumen fluid. Yet, microbial population shifts fell short of exerting significant influence on enteric CH4 emissions. This study suggests that under western Canadian growing and animal‐rearing conditions, sainfoin is not yet competitive with lucerne forage with respect to enteric CH4 emissions or animal productivity warranting further research and development.  相似文献   

5.
Sainfoin (Onobrychis viciifolia) is a forage legume of renewed interest in western Canada, with equally weighted advantages and disadvantages. In agronomic attributes, sainfoin is, at best, equal in yield, crude protein content and persistence to alfalfa (Medicago sativa). Sainfoin is equally or more palatable than alfalfa to ruminants, with comparable levels of animal productivity per unit forage consumed. The advantages it has compared to alfalfa include the following: (a) mitigation of frothy bloat; (b) reduced ammonia emissions (more faecal nitrogen (N) and less urinary N); (c) equal or better N retention by ruminants; and (d) anthelmintic protection from intestinal parasites. These advantages may be attributed to the presence of condensed tannins (CT), in legumes such as sainfoin. Emphasis on agronomic characteristics in breeding programmes appears to have led to the inadvertent reduction in the efficacy of CT characteristics. Persistence of sainfoin appears to be dependent on minimal pressure from competing plants, harvest or grazing, and good growth conditions from mid‐summer into fall, allowing for adequate root reserves for survival. It is possible that judicious use of glyphosate in late season might lessen competition in that critical period as sainfoin is more glyphosate‐tolerant than alfalfa. Otherwise, sainfoin may be best considered a short‐lived forage and best adapted for early season harvest or grazing to eliminate the risk of bloat.  相似文献   

6.
A laboratory-scale experiment was conducted with lucerne (Medicago sativa) to determine the effects of acid treatment on proteolysis during ensiling and during subsequent in vitro ruminal protein incubations. Lucerne [300 g dry matter (DM) kg?1 forage] was either untreated (control) or treated with sulphuric, formic or trichloroacetic acid (a protein precipitant that stops enzyme activity) at levels sufficient to adjust immediately forage pH to 4·0, then conserved as either silage or hay. Time-course data indicated that non-protein nitrogen (N) formation was 70–90% complete after 1 d of fermentation in the silo. Non-protein N concentrations (g kg?1 total N) were 177 at ensiling and increased to 567 (control), 426 (sulphuric), 398 (formic) and 263 (trichloroacetic) after 60 d of ensiling. Because non-protein N in silage treated with formic and sulphuric acids was nearly three times greater than that in silage treated with trichloroacetic acid, it is clear that the typical acid treatments only slow proteolysis and do not destroy protease activity during ensiling. The ruminal protein degradation rate of conserved forages was slower than that of fresh-cut forage that was preserved with dry ice immediately after cutting. The degradation rate of all acid-treated forages was similar, indicating a consistent effect on ruminal degradation regardless of method of preservation. There was a clear effect of acid treatment on reducing the rate and extent of ruminal degradation of protein in lucerne hay.  相似文献   

7.
Perennial forage legumes, particularly lucerne (Medicago sativa L.), play a significant role in crop/livestock mixed farming systems in the semiarid region of the Loess Plateau of China as stock feed and a source of nitrogen for subsequent crops. However, there is evidence that lucerne reduces soil water deep in the soil profile, thereby reducing subsequent crop productivity. From 2004 to 2010, this study evaluated the forage productivity and water use of two locally adapted perennial legume species, milk vetch (Astragalus adsurgens Pall.) and bush clover (Lespedeza davurica S.), compared with lucerne. The 7‐year total and average annual forage yield of milk vetch were 56 and 8 t ha?1 and bush clover was 42 and 6 t ha?1, respectively, significantly lower than lucerne at 91 and 13 t ha?1. However, despite lower water‐use efficiencies (16 and 12 kg ha?1 mm?1 for milk vetch and bush clover, respectively, compared to 22 kg ha?1 mm?1 for lucerne), the total 7‐year water use in milk vetch and bush clover was 3500 mm and 3490 mm, respectively, which was 135–140 mm less than lucerne. After 7 years, lucerne had extracted water from the upper 5 m soil, whereas bush clover used water mainly from the upper 2 m of the soil profile and milk vetch still had some water available below 3 m. We conclude that while the locally adapted forage legumes were not as productive as lucerne as a source of fodder in mixed cropping/livestock system in this region, they use less water, which may be advantageous in drier regions.  相似文献   

8.
Sainfoin (Onobrychis viciifolia Scop.) is one of the most drought-tolerant perennial legumes that can thrive in dry, alkaline soils. A 3-year study in the Central Anatolian Region of Turkey compared the persistence, productivity and nutritive value of sainfoin planted with nurse crops, namely Hungarian vetch (Vicia pannonica Crantz.) or triticale (× Triticosecale Wittm, ex A. Camus), at three seeding rates. Sainfoin and nurse crop emergence were significantly affected by the companion nurse crop, sowing rate and establishment year. The number of sainfoin plants at emergence was lower during a drier “bad” year (110 plant/m2) than in a “good” precipitation year (236 plant/m2). Triticale had a more negative impact on sainfoin growth than vetch. Planting nurse crops at high seeding rates (90 kg/ha) reduced the number of sainfoin seedlings as compared to the control, while the low seeding rate had little impact on sainfoin emergence. Planting sainfoin with triticale resulted in much greater yield exceeding 10 t/ha, but reduced the forage nutritive value compared to sainfoin monocultures and sainfoin–vetch mixtures. The seeding rate of the nurse crops during a dry year did not affect DM yield in the year of establishment nor in the following year. The findings of this study indicate that planting sainfoin with a nurse crop can substantially increase the DM yield in the year of establishment without yield penalties in the subsequent years, despite fewer established plants, as compared to sainfoin monocultures.  相似文献   

9.
Eleven laboratory‐scale trials were undertaken in different years where ryegrass (Lolium perenne L.) or lucerne (Medicago sativa L.) were ensiled with different concentrations of tannin extracts (quebracho, Schinopsis balansae Engl., mimosa, Acacia mearnsii DE WILD.), and the effects on protein degradation were assessed. The dry‐matter (DM) content in grass silages ranged between 186 and 469 g/kg and in lucerne silages between 187 and 503 g/kg. Tannin extract, either quebracho or mimosa, was applied at 0–30 g/kg forage DM. Commercial additives such as Lactobacillus plantarum, formic acid or hexamine + NaNO2 were applied in two of the grass trials and in six of the lucerne trials. Eight of the trials incorporated a maximum ensiling duration of 90 or 180 days in addition to replicates which were opened and evaluated at earlier stages. All trials included silages which were assessed after at least 49 days of anaerobic storage. The crude protein (CP) fraction A (non‐protein nitrogen, NPN) as proportion of total CP, served as the main indicator for proteolysis. In ryegrass, in general, the level of proteolysis was lower than in lucerne. A correlation of DM content in silages and degree of proteolysis was only evident for ryegrass. In both forages, the degradation of true protein slowed considerably after 24 days of ensiling. True protein was conserved most with the highest level of tannin extract addition. However, in lucerne, the combination of formate with lactobacilli was equally effective up to 330 g DM/kg, and deamination was further inhibited by formic acid compared to tannin extracts.  相似文献   

10.
Laboratory experiments with lucerne (Medicago sativa) have shown that maceration at cutting improves silage fermentation. Samples taken during wilting and after various ensiling periods were analysed for lactic acid bacteria (LAB) numbers and indices of silage fermentation. In Experiment 1, in which maceration was tested in unwilted and wilted lucerne, there was an additive effect of maceration and wilting on LAB numbers at ensiling, thus LAB numbers were approximately 108 colony-forming units (cfu) g?1 fresh crop for wilted, macerated forage compared with 103 cfu g?1 fresh crop for unwilted, unmacerated forage at ensiling. Initially, maceration reduced pH (P < 0·001) and increased lactic acid (unwilted comparison only; P < 0·001) and insoluble N (wilted comparison only; P < 0·001) concentrations. After 70 d ensiling, beneficial effects of maceration were associated only with the wilted silage. In Experiment 2, macerated lucerne was compared with unmacerated material, which was either ensiled after a wilting period of similar length or after wilting had proceeded to the same DM concentration as in the macerated forage. During wilting, LAB numbers were significantly higher in macerated than unmacerated forage (P < 0·05). This was also the case during the first 16 h of ensiling (P < 0·01). A decline in pH was observed earlier in macerated silage. Two days after ensiling, lactic acid concentration was higher in macerated silage (P < 0·05), but insoluble N concentration was not different. In a third experiment, unconditioned forage was compared with forages ensiled after regular conditioning or maceration. Although drying rate over 30 h was not influenced by degree of conditioning, LAB numbers during wilting increased with the degree of conditioning. In silages made from these treatments after 6 h wilting, there were no major effects on fermentation characteristics. In a fourth experiment, digestibility and voluntary intake of precision-chopped silage were measured in sheep and found not to be increased by maceration. It was concluded that maceration per se resulted in marginal improvements in fermentation; however, when maceration also increased DM concentration, fermentation was markedly improved. In these precision-chopped silages, maceration had no effect on intake or digestibility.  相似文献   

11.
Sainfoin (Onobrychis viciifolia) is a tanniniferous, leguminous plant that has potentially beneficial effects on protein utilization in ruminants. As ensiling causes protein breakdown and elevated levels of buffer soluble N (BSN), we studied the distribution of N before and after ensiling sainfoin. Three varieties of sainfoin were either direct‐cut and frozen directly or wilted and frozen before later ensiling in mini‐silos with and without acidification with Promyr (PM; an acidifying commercial mixture of propionic and formic acid) and with or without polyethylene glycol (PEG). Extractable tannins (ET) and protein‐bound tannins (PBT) were measured with an HCl/butanol method in an attempt to correlate tannin levels to N fractions. The sainfoin silages showed good ensiling characteristics and had relatively high concentrations of undegraded protein. The effect of wilting on BSN levels (g/kg N) was dependent on sainfoin variety (P < 0·001). PEG increased and PM decreased the level of BSN in the silages (P < 0·001). PM treatment also produced less non‐protein N and ammonia‐N (P < 0·05) as compared with no additive. Addition of PEG to the silage increased the BSN‐proportion 1·8‐ and 2·6‐fold for both DM stages. A strong tannin‐protein binding effect is, therefore, confirmed in sainfoin. However, correlations between tannin levels (ET and PBT) and BSN were poor in the (non‐PEG) silages, indicating either that the HCl/butanol method is unsuitable for measuring tannin in silages or that qualitative attributes of tannins are more relevant than quantitative. The HCl/butanol method seems therefore not to be useful to predict degradation of protein in sainfoin silages.  相似文献   

12.
First and second harvests of lucerne (Medicago sativa L.), perennial ryegrass (Lolium perenne L.) and a lucerne–perennial ryegrass mixture [80 or 144 g kg?1 dry matter (DM) of ryegrass] at the first and second harvests were cut and conditioned, wilted to 500 or 700 g DM kg?1 then baled and stretch‐wrapped for silage on the same dates. Lucerne bales were denser (411 kg m?3) than bales of perennial ryegrass (331 kg m?3) (P < 0·05). After an 8‐month storage period, silage made from high DM‐content forage had a higher concentration of neutral‐detergent fibre (NDF) and was less digestible than that made from low DM‐content forage. Daily DM intakes by beef steers, when the silages of the second harvest were fed ad libitum, were 31·2, 31·2 and 22·3 g kg?1 live weight for lucerne, lucerne–perennial ryegrass mixture and perennial ryegrass silages, respectively (P < 0·01), when the herbage had been wilted to 500 g kg?1. In vivo digestibility of NDF in the lucerne–perennial ryegrass mixture silage (0·587) was significantly lower than that of perennial ryegrass silage (0·763) but higher than lucerne silage (0·518). Higher intakes of baled lucerne silage tended to offset its lower digestibility values. Lucerne–perennial ryegrass mixture silage had a higher DM and NDF digestibility than lucerne silage, indicating perhaps the presence of associative effects.  相似文献   

13.
Proso millet belongs to the oldest cereals that human is using. Eight varieties of proso millet were cultivated in Ceske Budejovice from1998 to 2000 and Cerveny Dvur from 1999 to 2000. The crude protein content was determined according to Kjehladl method and amino acid content was determined chromatographically after acid and oxidative acid hydrolysis. Although the protein content of proso (11.6% of dry matter) was similar to wheat, the grain of proso was significant richer in essential amino acids (leucine, isoleucine, methionine) then wheat. Hence, the protein quality of proso (Essential Amino Acid Index) was higher (51%) compared to wheat. The proso grain contained about 3.3 g kg−1 of the limiting amino acid-lysine. Significant differences in protein and its quality were found among the evaluated proso varieties. The varieties Toldanskoe and Lipetskoe were the most different from the others in protein and amino acid content and Amino Acid Score of individual acids. They had the lowest content and quality of protein. The seed coat of these varieties was red. The amino acid and protein content was significantly influenced by weather during the year. Dry conditions caused an increase of protein but its quality was decreased.  相似文献   

14.
Three experiments were carried out to study the effects of feeding lucerne silage (wilted to give different dry-matter (DM) contents) and ventilated hay to dairy cows on milk production, milk quality, milk-renneting properties, clostridial spore content and the quality of cheese prepared from the milk. The lucerne, cut at vegetative or early-bud stages of maturity, was harvested from alternate windrows and conserved as silage or artificially dried hay. The lucerne was wilted until it reached different DM contents of 550, 360 and 432 g kg–1 in the three experiments, harvested, chopped with a self-loading forage wagon and ensiled in low and narrow clamps made up of transferable prefabricated walls. The organic acid content, pH, yeast and mould counts of the lucerne silage suggested that there was no aerobic deterioration. In each experiment, fifty Italian Friesian lactating cows were divided into two groups and fed two maize silage-based rations for 6 weeks, which only differed in the lucerne forage [silage (S) vs. ventilated hay (H)], in a cross-over experimental design. The lucerne in the rations represented 35%, 23% and 24% of the DM of the rations for the three experiments. The microbiological profiles of the ration were influenced more by the maize silage than by the lucerne silage. Individual daily DM intakes were similar for the two treatments in Experiments 1 and 3 (on average 18·7 kg in Experiment 1 and 20·3 kg in Experiment 3) and slightly lower for S cows in comparison to H cows in Experiment 2 (18·0 vs. 19·0 kg). Milk yields of S and H cows were 21·0 and 20·8, 20·0 and 20·6 (P < 0·01), and 28·4 and 27·9 kg d–1 in Experiments 1, 2 and 3 respectively. Milk composition was similar for all the experiments for the two treatments, except that the protein content was lower and the fat content was higher in the silage treatment than in the hay. The renneting properties and microbiology of the milk were not influenced by the introduction of lucerne silage into the rations, although the season in which it was consumed had a greater effect on the microbiological content, in terms of standard bacterial counts, proteolytic, coli and lactic acid bacteria, and clostridia spores. The clostridial spore counts were always very low (< 400 per litre), thus fulfilling the requirements for top-quality milk for Grana cheese production. In the third experiment, the quality of Grana Padano cheese produced was examined, and no differences between treatments were observed after 12 months of maturation. These results show that lucerne silage can be included in the ration of dairy cows instead of ventilated lucerne hay, which is considered to be the top-quality hay available for the production of milk destined for Grana cheese, without any negative effects on milk and cheese quality.  相似文献   

15.
Results are reported on the nutritional quality of prickly pear seeds,Opuntia ficus-indica. The seeds contained 16.6% protein, 17.2% fat, 49.6% fiber and 3.0% ash. The meal showed a high amount of iron (9.45 mg %). The contents of Mg, P, K, Zn and Cu were nutritionally significant contributing approximately 10–20% of the Recommended Dietary Allowances (RDA) of these elements per 100 g of dry weight. The amount of Ca represented less than 10% of the RDA for that element. Aspartic acid, glutamic acid, arginine and glycine were the most abundant amino acids making nearly half of the total amino acids content. The seeds were rich in sulfur amino acids (methionine + cystine). Lysine was the first limiting amino acid resulting in a chemical score of 62 for the protein. The in-vitro protein digestibility and the calculated protein efficiency ratio were 77% and 1.82 compared to 90% and 2.50, respectively, for ANRC casein.  相似文献   

16.
Fifteen accessions of sainfoin (Onobrychis viciifolia Scop.) were characterized for morphological and phenological traits at Reckenholz in the Swiss lowlands (Experiment 1). The effects of accession, harvest time and site on dry‐matter yield, condensed tannin (CT) concentration and forage value (Experiment 2) were determined at three sites in Switzerland varying in altitude from 440 to 559 m. Three to four harvests were taken in the first year after establishment (second year of stand) with harvests 1 and 2 chemically analysed. From the characterization in Experiment 1, a clear grouping of single flowering (Communis) and multiple flowering (Bifera) accessions emerged. Additionally, within the Communis accessions, distinct groupings were identified (historical landraces and newly collected ecotypes) based on morphological characteristics. Experiment 2 showed that Communis and Bifera accessions had a similar chemical composition in the first harvest. In the second harvest, Communis accessions were higher in crude protein and CT and lower in neutral and acid detergent fibre concentrations than Bifera accessions. Total dry‐matter yields were higher for Bifera accessions. Among the Communis accessions, ecotypes had consistently higher CT concentrations than landraces. In vitro organic matter digestibility did not significantly differ among accessions. There were clear effects of harvest time and site for most variables, with clear harvest time × sainfoin group interaction but no site × sainfoin group interactions. The results clearly demonstrate that historical landraces and newly collected ecotypes expand the range of available genetic variation for sainfoin breeding.  相似文献   

17.
Sainfoin (Onobrychis viciifolia Scop.) is a perennial legume recently reappraised for some positive characteristics leading to highly satisfactory animal performance. Sainfoin’s characteristics may be partly explained by the presence of moderate levels of condensed tannins (CTs) able to protect dietary protein from microbial degradation in the rumen. Decreased CH4 emissions have been reported for ruminants consuming CT‐containing forage. The aim of this study was to evaluate the effects of CT content on the in vitro fermentation characteristics and kinetics and methane production of four samples of O. viciifolia cut at different phenological stages. Sainfoin hays and one sample of alfalfa hay were incubated at 39°C in anaerobiosis using the in vitro gas production technique. The chemical composition, tannin content and fermentation characteristics and kinetics of sainfoin samples were significantly affected by phenological stage. After 48 h, the CH4 production in sainfoin hays showed a tendency to increase with the advancement of phenological stage [from 38·6 to 49·8 mL g−1 of degraded organic matter (OM)]. The best period to cut sainfoin for hay making is between early and late flowering, when the forage combines high OM digestibility, low CH4 production and more efficient microbial fermentation.  相似文献   

18.
In the moist mid‐latitudes of eastern Australia, soil water dynamics, herbage production and water use efficiency (WUE) were monitored during 2006–2008, for five perennial pastures: digit grass (Digitaria eriantha), Rhodes grass (Chloris gayana), forest bluegrass (Bothriochloa bladhii), native grass (Bothriochloa macra and Rytidosperma bipartita dominant), lucerne (Medicago sativa); and two forage crops: oat (Avena fatua) and sorghum (Sorghum bicolor). Ground cover formed more quickly in Rhodes grass and lucerne (>70% ground cover in 120 and 175 days after sowing [DAS] respectively) than in forest bluegrass and digit grass (245 and 365 DAS respectively). Values of maximum extractable water (MEW) for Rhodes grass and lucerne were similar (180–242 mm), while values for digit grass and forest bluegrass (129–175 mm) were equal to or greater than those for native grass, and two annual forage crops (77–144 mm). Lucerne expressed the maximum root depth (1.46 m), while values for the tropical grasses (0.96–1.39 m) were greater than native grasses and forage crops (0.87–0.96 m). Native grasses (6.5–12 t DM/ha) had the lowest herbage production, which resulted in values of WUE that were significantly less than most other treatments (16–21 vs. 23–43 kg DM ha?1 mm?1). Digit grass (33–34 kg DM ha?1 mm?1) had higher WUE compared with the other tropical grasses (20–27 kg DM ha?1 mm?1). The data collected here suggest that a forage system comprising digit grass, lucerne and forage oat would provide high production and WUE in this environment.  相似文献   

19.
Effects of formic acid, formaldehyde and two levels of tannic acid on changes in the distribution of nitrogen (N) and plant enzymatic activity during ensilage of lucerne (Medicago sativa) were studied. Lucerne [300 g dry matter (DM) kg?1 forage] silages were prepared untreated (control) and with formic acid (4 g kg?1 DM), formaldehyde (1 g kg?1 DM) and two levels of tannic acid (20 and 50 g kg?1 DM) as additives. Inhibition of proteolysis by formic acid was more effective than the other additives during the first 7 d of ensiling. Tannic acid was as effective at inhibiting production of non‐protein‐N, ammonia‐N and free amino acid‐N as formic acid and formaldehyde. However, increased concentrations of non‐protein‐N and free amino acid‐N in silage from day 1 to 35 of ensiling were less with the higher level of tannic acid than that in the control and other additive‐treated silages. Carboxypeptidase lost its activity slowly with increasing time of ensiling. At day 2, it still had 0·79 of the original activity in the control silage. After 21 d of ensiling, high levels of carboxypeptidase activity, proportionately 0·41, 0·49, 0·10, 0·35 and 0·30 of the original activity, remained in the control silage, and silages made with formic acid, formaldehyde, and low and high levels of tannic acid respectively. There were higher levels of activity of acid proteinase in formic acid‐treated silage than in the control silage until day 2 of ensilage indicating that the reduction of proteolysis by formic acid was probably due to acidifying the forage below the pH optima of plant protease. Aminopeptidase activity in all silages declined rapidly after ensiling.  相似文献   

20.
As part of a cooperative study assessing amino acid bioavailability and/or protein quality, the provisional method of Boyneet al. (Brit J Nutr 21: 181–206) was used to assay 17 protein sources for methionine and tryptophan availability withS. zymogenes. Pronase was used as the predigesting enzyme. Product composition was found to affect reproducibility. The microbial assay results correlated positively with results from rat growth studies on the same foods (p=0.05), and were generally accurate in identifying products of lower protein quality. Defatting four high-fat products increased microbial values in the methionine assay, but only the chicken franks and the sausage values in the tryptophan assay. Heating non-fat milk increased methionine values slightly. Low values for rolled oats were further reduced by finer grinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号