首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tracheal, bronchial, and renal flow were studied in 8 healthy ponies at rest and during exercise performed on a treadmill at a speed setting of 20.8 km/h and 7% grade (incline) for 30 minutes. Blood flow was determined with 15-microns-diameter radionuclide-labeled microspheres that were injected into the left ventricle when the ponies were at rest, and at 5, 15, and 26 minutes of exertion. Heart rate and mean aortic pressure increased from resting values (40 +/- 2 beats/min and 124 +/- 3 mm of Hg, respectively) to 152 +/- 8 beats/min and 133 +/- 4 mm of Hg at 5 minutes of exercise, to 169 +/- 6 beats/min and 143 +/- 5 mm of Hg at 15 minutes of exercise, and to 186 +/- 8 beats/min, and 150 +/- 5 mm of Hg at 26 minutes of exercise. Tracheal blood flow at rest and during exercise remained significantly (P less than 0.05) less than bronchial blood flow. Tracheal blood flow increased only slightly with exercise. Vasodilation caused bronchial blood flow to increase throughout exercise. Pulmonary arterial blood temperature of ponies also increased significantly (P less than 0.05) with exercise and a significant (P less than 0.005) correlation was found between bronchial blood flow and pulmonary arterial blood temperature during exertion. At 5 minutes of exercise, renal blood flow was unchanged from the resting value; however, renal vasoconstriction was observed at 15 and 26 minutes of exercise. We concluded that bronchial circulation of ponies increased with exercise in close association with a rise in pulmonary arterial blood temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pressures in the right side of the heart and esophagus (pleural) have not been determined in the exercising equine subjects. In the present study, 8 healthy ponies were examined to determine the changes in these variables caused by 2 degrees of exercise done on a treadmill (heart rate:183 +/- 5 beats/min [trot] and 220 +/- 6 beats/min [canter]). Measurements were also made during both degrees of exertion 10 minutes and 120 minutes after furosemide (1.0 mg/kg) administration. It was observed that both gaits resulted in significant increases in pulmonary artery, right ventricular, and right atrial pressures. The pulmonary artery systolic, mean, and diastolic pressures during strenuous exertion were 306%, 252%, and 242% of the respective resting values. At canter, when respiratory frequency (138 +/- 4 breaths/min) is synchronized with stride frequency, the delta esophageal pressure approached 30.4 +/- 2.86 cm of water. During exercise 10 minutes after furosemide administration, the increment in right atrial pressure was markedly attenuated. During strenuous exertion 120 minutes after furosemide administration, the right atrial and pulmonary arterial pressures increased, but to a significantly lower level than did the prefurosemide values. However, the mean pulmonary artery pressure was still 240% of the resting value. It is concluded that marked pulmonary hypertension is a consistent feature of moderate, as well as strenuous, exertion in the pony. Although furosemide administration attenuated the pulmonary hypertension somewhat, the significance remains unclear.  相似文献   

3.
Exercise-induced variations in their ventilatory mechanics were studied in 8 healthy ponies 4.2±1.4 years old and weighing 282±11 kg. Airflow (V), tidal volume (VT), esophageal pressure, mask pressure and electrocardiogram were simultaneously recorded before, during and after a treadmill (incline 8.3°) exercise which consisted of 2 min walking (1.5 m.sec-1), 3 min slow trotting (3.0 m.sec-1) and 3 min fast trotting (3.5 m.sec-1). The results of three consecutive daily measurements were averaged for each pony.Heart rate, minute volume (Ve), respiratory frequency (f) and peak inspiratory and expiratory V, mean inspiratory and expiratory V, and peak to peak changes in traspulmonary pressure (maxdPtp) increased linearly and significantly with increasing velocity (v) (R2=0.99). Tidal volume and the inspiratory time to total breathing time ratio showed a curvilinar relation with v (R2=0.99). Minute volume, maxdPtp, total pulmonary resistance (RL) and VT increased from rest to fast trot 6.7, 5.7, 1.5 and 1.6 times respectively. When the ponies stopped all these values decreased significantly. After 5 min recovery, the Ve was approximately doubled, VT and max dPtp unchanged and RL 30% smaller than their respective resting values. The exercise-induced increase in Ve was achieved by an increase in f at both low and high intensity of work.  相似文献   

4.
Large increases in systemic and pulmonary arterial pressures of exercising healthy ponies have been observed. Because exercise causes a considerable increase in PCV of ponies, we examined the effect of splenectomy on exercise-induced changes in systemic and pulmonary pressures. These pressures (taken with catheter-tip micromanometers) and indicator dilution cardiac output were determined on 9 healthy ponies that had undergone splenectomy 4 to 9 weeks before the study. Data obtained at rest and during submaximal (10.5 to 11.0 mph) and maximal (14 to 15 mph) exercise from these ponies were compared with similar data from clinically normal ponies. Following splenectomy, PCV increased by only 4 vol% during maximal exercise, but cardiac output of splenectomized ponies reached values similar to those of clinically normal ponies. Despite this similarity in cardiac output, the systemic and pulmonary arterial pressures of exercising splenectomized ponies increased to significantly lower levels than those in clinically normal ponies (P less than 0.01); total pulmonary vascular resistance and total peripheral resistance decreased to values significantly less than those in clinically normal ponies (P less than 0.01). Thus, it appears that increases in blood viscosity induced by increases in PCV may contribute substantially to the pulmonary and systemic hypertension of exercise in clinically normal ponies.  相似文献   

5.
Four hours prior to exercise on a high-speed treadmill, 4 dosages of furosemide (0.25, 0.50, 1.0, and 2.0 mg/kg of body weight) and a control treatment (10 ml of 0.9% NaCl) were administered IV to 6 horses. Carotid arterial pressure (CAP), pulmonary arterial pressure (PAP), and heart rate were not different in resting horses before and 4 hours after furosemide administration. Furosemide at dosage of 2 mg/kg reduced resting right atrial pressure (RAP) 4 hours after furosemide injection. During exercise, increases in treadmill speed were associated with increases in RAP, CAP, PAP, and heart rate. Furosemide (0.25 to 2 mg/kg), administered 4 hours before exercise, reduced RAP and PAP during exercise in dose-dependent manner, but did not influence heart rate. Mean CAP was reduced by the 2-mg/kg furosemide dosage during exercise at 9 and 11 m/s, but not at 13 m/s. During recovery, only RAP was decreased by furosemide administration. Plasma lactate concentration was not significantly influenced by furosemide administration. Furosemide did not influence PCV or hemoglobin concentration at rest prior to exercise, but did increase both variables in dose-dependent manner during exercise and recovery. However, the magnitude of the changes in PCV and hemoglobin concentration were small in comparison with changes in RAP and PAP, and indicate that furosemide has other properties in addition to its diuretic activities. Furosemide may mediate some of its cardiopulmonary effects by vasodilatory activities that directly lower pulmonary arterial pressure, but also increase venous capacitance, thereby reducing venous return to the atria and cardiac filling.  相似文献   

6.
Single doses of sodium ampicillin (10 mg/kg) and kanamycin sulfate (5 mg/kg) were administered intramuscularly (i.m.) separately, and then together, to five pony mares. The plasma antibiotic concentration-time curves were constructed. The pharmacokinetic parameters of the antibiotics given separately were not altered by concurrent administration. Four of the five pony mares were then given the i.m. kanamycin/ampicillin combination 4 h after acute synovitis and fever had been induced by injection of lipopolysaccharide into the left intercarpal joint. The plasma concentration-time curves and the synovial concentration-time curves of inflamed and normal joints were constructed. The Cmax of ampicillin in the lipopolysaccharide experiment was significantly higher than in the other experiments. The antibiotics entered the synovial fluid of the inflamed joints more quickly and attained higher concentrations than in the uninflamed joints. The ampicillin concentration exceeded 5 micrograms/ml in inflamed synovial fluid for some 2.5 h after injection, and kanamycin sulfate concentration exceeded 2 micrograms/ml for 7 h.  相似文献   

7.
OBJECTIVE: To evaluate the potential of excess dietary iron to cause hepatic lesions similar to those described in horses with suspected iron toxicosis or hemochromatosis. DESIGN: Prospective study. ANIMALS: 6 adult male ponies. PROCEDURE: 4 ponies received 50 mg of iron/kg (22.7 mg/lb) of body weight each day by oral administration of ferrous sulfate, which contained 20% elemental iron; 2 ponies received only the carrier (applesauce). Complete blood counts, serum biochemical analyses, and hepatic tissue biopsies were performed, and serum iron concentrations were measured. Blood and tissue samples were obtained at days 0 and 2, and at the end of weeks 1, 3, 6, and 8 after administration of iron was initiated. Treatment was discontinued after 8 weeks, and hepatic iron concentrations were measured at 28 weeks. RESULTS: Hepatic iron concentrations, serum iron concentrations, percentage saturation of transferrin, and serum ferritin concentrations were increased, compared with baseline and control concentrations, by week 8. Adverse clinical signs or histologic lesions in the liver were not detected in any ponies. At 28 weeks, hepatic iron concentrations had decreased. CONCLUSIONS AND CLINICAL RELEVANCE: Histologic lesions were not seen in the hepatic biopsy specimens obtained from the ponies treated with ferrous sulfate. It was concluded that it would be unlikely for iron toxicosis to develop in adult ponies or horses during a period of < 8 weeks when food or water contained increased amounts of iron. It is suspected that previous reports of hepatopathies in animals with hemosiderin accumulation may represent a primary hepatopathy with secondary hemosiderin accumulation, especially if the only source of iron is via oral consumption.  相似文献   

8.
9.
The exercise-induced changes in the equine breathing pattern were studied by analyzing tidal breathing flow-volume loops recorded in ten ponies both at rest and during a standardized exercise. Airflow, tidal volume, esophageal pressure and mask pressure were simultaneously recorded before, during and after a treadmill exercise. From the collected data, respiratory frequency and total pulmonary resistance were calculated, tidal breathing flow-volume loops were retraced using a computerized method and loop indices were measured for each period of the experimental protocol. For each pony, results of three consecutive daily measurements were averaged. The exercise loop indices were compared with the corresponding resting values using a one-way analysis of variance. The significantly changed indices were correlated with respiratory frequency and total pulmonary resistance. Several types of respiratory patterns were observed at rest as well as during exercise, although each pony was relatively constant in its own pattern of breathing. Most resting inspiratory and expiratory airflow curves were found to be biphasic. When ponies started running, the airflow developed an increasingly rectangular pattern. During strenuous exercise, both inspiratory and expiratory airflow curves showed a substantial increase of the volume acceleration and tended to a plateau. The loop indices relating the expiratory to the inspiratory airflow were significantly increased compared with their rest values. Correlations of these indices with respiratory frequency and total pulmonary resistance were weak.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Experiments were carried out on 8 healthy ponies to examine the effects of prolonged submaximal exercise on regional distribution of brain blood flow. Brain blood flow was ascertained by use of 15-microns-diameter radionuclide-labeled microspheres injected into the left ventricle. The reference blood was withdrawn from the thoracic aorta at a constant rate of 21.0 ml/min. Hemodynamic data were obtained with the ponies at rest (control), and at 5, 15, and 26 minutes of exercise performed at a speed setting of 13 mph on a treadmill with a fixed incline of 7%. Exercise lasted for 30 minutes and was carried out at an ambient temperature of 20 C. Heart rate, mean arterial pressure, and core temperature increased significantly with exercise. With the ponies at rest, a marked heterogeneity of perfusion was observed within the brain; the cerebral, as well as cerebellar gray matter, had greater blood flow than in the respective white matter, and a gradually decreasing gradient of blood flow existed from thalamus-hypothalamus to medulla. This pattern of perfusion heterogeneity was preserved during exercise. Regional brain blood flow at 5 and 15 minutes of exercise remained similar to resting values. However, at 26 minutes of exercise, vasoconstriction resulted in a significant reduction in blood flow to all cerebral and brain-stem regions. In the cerebellum, the gray matter blood flow and vascular resistance remained near control values even at 26 minutes of exercise. Vasoconstriction in various regions of the cerebrum and brainstem at 26 minutes of exertion may have occurred in response to exercise-induced hypocapnia, arterial hypertension, and/or sympathetic neural activation.  相似文献   

11.
T Art  P Lekeux 《The Veterinary record》1988,123(11):295-299
A preliminary study attempted to assess the influence of atmospheric conditions on the breathing pattern of ponies. The respiratory airflow, tidal volume, breathing frequency, minute volume, total pulmonary resistance and heart rate of five ponies (257 +/- 9 kg and three to five years old) were measured by a standardised procedure. Data were collected at rest, during a nine minute period of treadmill exercise and during a five minute recovery period. The ambient temperature (degrees C) and relative humidity (%) were recorded at the time of each investigation and the respiratory parameters were divided into two groups according to whether the sum of these measurements was less than 85, ie, the conditions were cold and dry or greater than 85, ie, the conditions were relatively hot and humid. Data for each pony in both conditions were compared. The ambient temperature and relative humidity did not significantly modify the breathing pattern of the ponies either at rest or during exercise. On the other hand the frequency of breathing was significantly higher and the tidal volume and total pulmonary resistance were significantly lower during recovery in hot and humid conditions than in cold and dry conditions, while the minute volume remained unchanged. It was concluded that, during recovery, environmental conditions may modify the breathing pattern of horses. This suggests that in hot and humid weather conditions the respiratory rate may be an unreliable measure of the fitness of a horse and, consequently, that a more complete pulmonary investigation should be undertaken for an assessment of fitness.  相似文献   

12.
Healthy dogs were treated once a day for 16 days with a liquid, oral dosage form of digoxin (0.022 mg/kg). From day 9 to 16 they were also injected intramuscularly with furosemide (4.4 mg/kg). Serum digoxin was measured by a radioimmunoassay technique. Eight hours after the eighth dose of digoxin had been administered, serum digoxin concentration was in the accepted therapeutic range. After 8 days of concomitant administration of digoxin and furosemide, serum digoxin concentration was found to be in the accepted moderate-to-severe toxic range. Clinical signs of digitalis toxicosis were consistently observed during the combined digoxin-plus-furosemide treatment period. There was no significant ( P >0.05) change in the serum concentrations of potassium, sodium, or in osmolality during digoxin treatment alone. Serum creatinine concentrations remained within the accepted normal range for dogs. Serum sodium concentration was significantly ( P <0.05) lower during combined digoxin-plus-furosemide treatment when compared to digoxin treatment only.
Results indicate that an interaction between digoxin and furosemide occurred which led to significantly ( P <0.05) higher concentrations of serum digoxin during combined digoxin and furosemide treatment.  相似文献   

13.
Distribution of blood flow among various respiratory muscles was examined in 8 healthy ponies during submaximal exercise lasting 30 minutes, using radionuclide labeled 15-microns diameter microspheres injected into the left ventricle. From the resting values (40 +/- 2 beats/min; 37.3 +/- 0.2 C), heart rate and pulmonary arterial blood temperature increased significantly at 5 (152 +/- 8 beats/min; 38.6 +/- 0.2 C), 15 (169 +/- 6 beats/min; 39.8 +/- 0.2 C), and 26 (186 +/- 8 beats/min; 40.8 +/- 0.2 C) minutes of exertion, and the ponies sweated profusely. Mean aortic pressure also increased progressively as exercise duration increased. Blood flow increased significantly with exercise in all respiratory muscles. Among inspiratory muscles, perfusion was greatest in the diaphragm and ventral serratus, compared with external intercostal, dorsal serratus, and scalenus muscles. Among expiratory muscles, blood flow in the internal abdominal oblique muscle was greatest, followed by that in internal intercostal and transverse thoracic muscles, in which the flow values remained similar. The remaining 3 abdominal muscles had similar blood flow, but these values were less than that in the internal intercostal, transverse thoracic, and internal abdominal oblique muscles. Blood flow values for all inspiratory and expiratory muscles remained similar for the 5 and 15 minutes of exertion. However, at 26 minutes, blood flow had increased further in the diaphragm, external intercostal, internal intercostal, transverse thoracic, and the external abdominal oblique muscle as vascular resistance decreased. On the basis of our findings, all respiratory muscles were activated during submaximal exercise and their perfusion had marked heterogeneity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To determine whether temperature of rehydration fluid influences voluntary rehydration by horses, six 2-3-year-old horses were dehydrated (4-5% body weight loss) by a combination of furosemide administration and 30 km of treadmill exercise. For the initial 5 min following exercise, horses were offered a 0.9% NaCl solution at 10, 20, or 30 degrees C. Subsequently, after washing and cooling out, voluntary intake of water at 10, 20, or 30 degrees C from 20 to 60 min after exercise was measured. Fluid intake (FI) during the first 5 min of recovery was 9.8+/-2.5,12.3+/-2.1 and 9.7+/-2.0L (p>0.05) for saline at 10, 20, and 30 degrees C, respectively. Although not a significant finding, horses offered 0.9% NaCl at 20 degrees C tended to take fewer (p=0.07), longer drinks than when saline at either 10 or 30 degrees C was offered. Between 20 and 60 min of recovery, intake of water at 20 degrees C (7.7+/-0.8L) and 30 degrees C (6.6+/-1.2L) was greater (p<0.05) than that at 10 degrees C (4.9+/-0.5L). Thus, total FI was 14.7+/-2.5,19.9+/-2.5, and 16.3+/-2.4L for rehydration fluids at 10, 20, and 30 degrees C, respectively (p<0.05, value for 20 degrees C water greater than that for 10 degrees C water). Although the amount of metabolic heat transferred to the initial saline drink was correlated with the decrease in core temperature during the initial 5 min of recovery, heat transfer to ingested fluid was most likely responsible for the dissipation of, at most, 5% of the heat generated during endurance exercise. In conclusion, following exercise these dehydrated-normothermic horses voluntary drank the greatest amount of fluid at near ambient (20 degrees C) temperature. Although not determined in this study, greater satiation of thirst by oropharyngeal cooling may have contributed to lesser intake of colder (10 degrees C) fluid.  相似文献   

15.
16.
OBJECTIVE: To determine whether pasture, and specifically the addition of fructan carbohydrate to the diet, induces exaggerated changes in serum insulin concentration in laminitispredisposed (LP) ponies, compared with ponies with no history of the condition, and also to determine insulin responses to the dexamethasone suppression test. DESIGN: Prospective study. ANIMALS: 10 LP and 11 control adult nonobese mixed-breed ponies. PROCEDURES: Insulin-modified IV glucose tolerance tests were performed (5 ponies/group). In diet studies, ponies were kept on pasture and then changed to a hay diet (10 ponies/group). Second, ponies were maintained on a basal hay diet (4 weeks) before being fed a hay diet supplemented with inulin (3 g/kg/d [1.4 g/lb/d]). Serum insulin and plasma glucose concentrations were analyzed before and after dietary changes. Serum cortisol and insulin concentrations were also measured in a standard dexamethasone suppression test. RESULTS: The LP ponies were insulin resistant (median insulin sensitivity of 0.27 x 10(4) L min(-1) mU(-1) in LP ponies, compared with 0.64 x 10(4) L min(-1) mU(-1) in control ponies). Median insulin concentration in LP ponies was significantly greater than that in control ponies at pasture, decreased in response to feeding hay, and was markedly increased (5.5-fold) following the feeding of inulin with hay. The LP ponies had a greater increase in serum insulin concentration at 19 hours after dexamethasone administration (median, 222.9 mU/L), compared with control ponies (45.6 mU/L). CONCLUSIONS AND CLINICAL RELEVANCE: Nonobese ponies predisposed to develop laminitis had compensated insulin resistance, and this phenotype was revealed by feeding plant fructan carbohydrate or by dexamethasone administration.  相似文献   

17.
Blood flow to the brain, heart, kidneys, diaphragm, and skeletal muscles was studied at rest and during graded treadmill exercise, using radionuclide-labeled microspheres (15 microns diameter), in 11 healthy adult ponies. Hemodynamic changes brought about by exercise included marked increases in cardiac output, mean aortic pressure, left ventricular end-diastolic pressure, and right ventricular systolic and end-diastolic pressures. Blood flow to the brain stem and cerebral hemispheres was unchanged during both moderate exercise (heart rate = 154 +/- 3 beats/min) and severe exercise (heart rate = 225 +/- 7 beats/min). Despite marked hypocapnia during severe exercise, cerebellar blood flow increased by 32% above control value (94 +/- 7 ml/min/100 g). Myocardial blood flow increased transmurally with both levels of exercise. The endo:epi (inner:outer) perfusion ratio for the left ventricle and the interventricular septum decreased during exercise. It was, however, not different from unity. During severe exercise, renal blood flow decreased to 19% of its control value. Blood flow to the diaphragm exceeded that to the skeletal muscles during both intensities of exercise. Blood flow to the exercising muscles of the brachium and thigh increased by 31- to 38-fold during moderate exercise and by 70- to 76-fold during severe exercise. It is concluded that the cardiovascular response to strenuous exercise in the pony included an increase in blood flow to the cerebellum, myocardium, diaphragm, and exercising skeletal muscles, while blood flow was diverted away from the kidneys. It would appear that the pony's cardiovascular response to severe exercise is similar to that of persons.  相似文献   

18.
19.
OBJECTIVES: To determine whether i.v. administration of furosemide (250 mg) to horses before maximal exercise affected maximal oxygen consumption (VO2max), breathing mechanics, or gas exchange during exercise. ANIMALS: 7 healthy, well-conditioned Thoroughbred horses. PROCEDURES: 5 horses initially performed an incremental treadmill exercise test to determine VO2max 4 hours after i.v. administration of furosemide (250 mg i.v.) or placebo (saline [0.9% NaCl] solution). Time to fatigue and distance run were recorded. All 7 horses were then used to determine the effects of furosemide on gas exchange and breathing mechanics at 40, 60, 80, and 100% of VO2max. Horses were weighed immediately before exercise. RESULTS: Furosemide treatment significantly increased mass-specific VO2max (5.3%), but absolute VO2max was not significantly altered. In the 2 parts of the study, body weights were 2.9 and 2.5% higher when horses were given placebo than when they were given furosemide. Time and distance run at speeds > or = 11.0 m/s were significantly greater following furosemide administration. Furosemide treatment had no effect on breathing mechanics or gas exchange. CONCLUSIONS AND CLINICAL RELEVANCE: Previous studies have suggested that prerace administration of furosemide may have a positive effect on performance. Results of this study indicate that this may be attributable, in part, to an increase in mass-specific VO2max but not to improvements in breathing mechanics or gas exchange. Most of the increase in mass-specific VO2max appeared to be attributable to weight loss associated with diuresis induced by furosemide.  相似文献   

20.
A significant increase in systolic and diastolic peripheral blood pressure was recorded after 8 minutes submaximal exercise in untrained ponies. Blood pressure was recorded by a modified auscultatory method from the coccygeal artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号