首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In 1984, the central test for fattening and slaughter traits in The Netherlands changed from restricted feeding to ad libitum feeding. The main reason for this change was the desire to allow for expression of the genetic potential for feed intake in order to be able to counterbalance possible reductions of appetite as a result of selection for leanness and feed efficiency. Index formula are described, resulting in positive predicted genetic gains of growth rate, appetite and meat percentage, and in negative (favourable) predicted gains of feed conversion and backfat thickness.  相似文献   

2.
Restricted and programmed feeding are two commonly used approaches to manage feed intake by cattle. Restricted feeding, which is most often applied to starting cattle on feed and to finishing cattle, takes various forms but generally includes any method of feed intake management with which intake is restricted relative to actual or anticipated ad libitum intake. Conversely, programmed feeding, which is most frequently used in growing programs, is a method in which net energy equations are used to calculate the quantities of feed required to meet the needs for maintenance and a specific rate of gain. Both restricted and programmed feeding have been shown to improve feed efficiency, perhaps in part because recent research data suggest that body energy gain by cattle increases in a diminishing manner with increasing energy intake. Nonetheless, commercial application of restricted and(or) programmed feeding is limited by concerns related to application in large vs small pens and potential negative effects of restriction and(or) programming on daily gain and carcass quality grade. Research findings suggest consistent improvements in feed efficiency, generally decreased daily gain, and generally lower carcass quality grade when intake is restricted from 5 to 15% relative to pair-fed ad libitum controls in finishing cattle. Application of restricted and(or) programmed feeding during growing periods followed by ad libitum feeding, however, seems to have little effect on subsequent performance and carcass quality grade. Although restricted feeding offers the advantages of simplified feed bunk management, advanced knowledge of feed milling needs, and potential environmental benefits, additional research and field-level fine tuning will be needed before widespread commercial application is likely.  相似文献   

3.
Performance test results of 3250 sire candidates were used to estimate the genetic parameters of growth and feed utilization traits in Japanese Black cattle. Growth traits analyzed were six body measurements at the end of the performance test and daily gain (DG) during the test. Feed utilization traits were intakes and conversions of concentrate, roughage, digestible crude protein and total digestible nutrient (TDN). Genetic (co)variance components were estimated by the restricted maximum likelihood procedure using an expectation maximization algorithm under the two‐trait animal model. Heritabilities for growth traits ranged from 0.40 to 0.70 and for feed utilization traits from 0.21 to 0.74. Genetic correlations of DG were positive with feed intake (0.15–0.77) and negative with feed conversions (?0.63 to ?0.30). These relationships indicate that the selection based on DG improves feed efficiency but it simultaneously increases feed intake. Feed conversions showed genetic correlations ranging from ?0.09 to 0.03 with total available energy consumption, TDN intake. Thus the results suggested that feed conversions were not efficient selection criteria to decrease TDN intake and to improve comprehensive feed utilization ability.  相似文献   

4.
Our objective was to estimate genetic parameters for feed intake, feeding behavior, and ADG in composite ram lambs ((1/2) Columbia, (1/4) Hampshire, (1/4) Suffolk). Data were collected from 1986 to 1997 on 1,239 ram lambs from approximately 11 to 17 wk of age at the U.S. Meat Animal Research Center near Clay Center, NE. Feeding equipment consisted of an elevated pen with an entrance chute that permitted access to the feeder by only one ram lamb at a time, with disappearance of feed measured by an electronic weighing system. Ram lambs were grouped 11 per pen from 1986 to 1989, and nine per pen from 1990 to 1997. Data were edited to exclude invalid feeding events, and approximately 80% of the data remained after edits were applied. Traits analyzed were daily feed intake (DFI), event feed intake (EFI), residual feed intake (RFI), daily feeding time (DFT), event feeding time (EFT), number of daily feeding events (DFE), and ADG. Feed intake traits of DFI and EFI had estimated heritabilities of 0.25 and 0.33, respectively, whereas estimated heritability of RFI was 0.11. Heritability estimates for feeding behavior traits, including DFT, EFT, and DFE, ranged from 0.29 to 0.36. Average daily gain had an estimated heritability of 0.26. Genetic correlations were positive between all pairs of traits, except for RFI and ADG, and that estimate was essentially zero. Phenotypic correlations were generally similar to genetic correlations. Genetic correlations were large (0.80) between DFI and ADG, intermediate between DFI and RFI (0.61) and between DFT and DFE (0.55), and low (0.17 to 0.31) for the other pairs of traits, with the exception of RFI and ADG (-0.03). Genetic correlations between behavioral traits were greater than correlations between behavioral traits and measures of feed intake or ADG; however, selection for ADG and/or feed intake would be expected to cause some changes in feeding behavior.  相似文献   

5.
The objectives of this study were to estimate (co)variance components for growth and feed efficiency measures, and to compare selection strategies to improve economic efficiency of gain. Variance components for pre- and postweaning growth, body weight, and measures of feed efficiency were estimated from data collected on 1,047 Targhee lambs over 7 yr. Approximately 21 d after weaning, lambs were group-fed for 4 wk, with ad libitum access to a diet of 37% whole barley grain and 63% pelleted alfalfa hay. Lambs were then individually fed for 6 wk. Lambs were then returned to group feeding for another 4-wk period. The mean feed conversion ratio (gain/intake) for the individual feeding period was 0.11. Mean postweaning ADG for the total 14-wk feeding period was 0.26 kg. (Co)variance components were estimated from single- and two-trait animal models using REML. The selection strategies compared included direct selection, index selection, and restricted index selection. Estimates of (co)variances derived from single- and two-trait models were similar, except for mid-test body weight. Preweaning growth had a low heritability estimate (0.03 +/- 0.04) compared with postweaning growth measures (0.25 to 0.39), but all measures of growth were highly correlated (r2 > 0.98). Heritability estimates of measures of gain efficiency were variable (total feed intake = 0.39; feed conversion ratio = 0.26; residual feed intake = 0.26). Total feed intake was strongly correlated genetically with feed conversion ratio (0.79) and residual feed intake (0.77). The estimate of genetic correlation between feed conversion ratio and residual feed intake was low (0.23). Comparison of selection strategies showed the superiority of index selection (ADG, total feed, body weight) for economic improvement compared with other strategies. Economic response to direct selection for ADG was at least twice that for direct selection for feed conversion ratio or against total feed intake, and that for restricted indices (selecting against residual feed, while holding body weight and/or gain constant). Selection for ADG may be a practical approach for indirectly improving efficiency of gain in lambs.  相似文献   

6.
A major proportion of the costs of pork production is related to feed. The feed conversion rate (FCR) or residual feed intake (RFI) is thus commonly included in breeding programmes. Feeding behaviour traits do not directly have economic value but, if correlated with production traits, can be used as auxiliary traits. The aim of this study was to estimate the heritability of feeding behaviour traits and their genetic correlations with production traits in the Finnish Yorkshire pig population. The data were available from 3,235 pigs. Feeding behaviour was measured as the number of visits per day (NVD), time spent in feeding per day (TPD), daily feed intake (DFI), time spent feeding per visit (TPV), feed intake per visit (FPV) and feed intake rate (FR). The test station phase was divided into five periods. Estimates of heritabilities of feeding behaviour traits varied from 0.17 to 0.47. Strong genetic correlations were obtained between behaviour traits in all periods. However, only DFI was strongly correlated with the production traits. Interestingly, a moderate positive genetic correlation was obtained between FR and backfat thickness (0.1–0.5) and between FR and average daily gain (0.3–0.4), depending on the period. Based on the results, there is no additional benefit from including feeding‐related traits other than those commonly used (FCR and RFI) in the breeding programme. However, if correlated with animal welfare, the feeding behaviour traits could be valuable in the breeding programme.  相似文献   

7.
To assess the genetic potential for selection of increased feed efficiency in rainbow trout (Oncorhynchus mykiss), we estimated the heritabilities and correlations for BW, daily weight gain (DG), and daily feed intake (DFI). Body weight was recorded 5 times, and DG and DFI 3 times during a feeding trial lasting 22 mo. To test the hypothesis that phenotypic and genetic parameters were influenced by a nutritional environment, fish were fed either a modern normal protein diet (NP, 40 to 45% protein and 30 to 33% lipid) or an alternative high protein diet (HP, 50 to 56% protein, 20 to 24% lipid) in a split-family design. Results showed that there were no large differences in heritabilities between the diets. Average heritability for DFI over both diets and different fish ages was low (average h2 = 0.10), indicating that modest genetic changes in response to selection can be obtained. Average heritabilities for BW and DG over both diets and different fish ages were 0.28 and 0.33, respectively. The NP diet enabled fish to express a wide range of BW, as shown by the increased coefficients of phenotypic variation for BW. Fish fed the HP diet showed increased phenotypic variation for DFI in > 750-g fish. On the NP diet, genetic correlations of DFI with DG and BW were very strong for 750- to 2,000-g fish. In contrast, on the HP diet, the respective correlations were moderate to low, revealing more genetic potential to change growth and feed intake simultaneously in opposite directions. An analysis of the predicted selection responses showed that selection solely for high DG improved feed efficiency as a correlated genetic response. Simultaneous selection for high DG and reduced DFI, in turn, may increase genetic gain in feed efficiency by a factor of 1.2 compared with selection solely for DG. However, variation for growth and feed intake and the relationships between these traits were different in different nutritional environments, leading to divergent genetic responses on the alternative diets.  相似文献   

8.
The objectives of the present study were to estimate genetic parameters for several feeding behavior traits in growing cattle, as well as the genetic associations among and between feeding behavior and both performance and feed efficiency traits. An additional objective was to investigate the use of feeding behavior traits as predictors of genetic merit for feed intake. Feed intake and live-weight data on 6,088 growing cattle were used of which 4,672 had ultrasound data and 1,548 had feeding behavior data. Feeding behavior traits were defined based on individual feed events or meal events (where individual feed events were grouped into meals). Univariate and bivariate animal linear mixed models were used to estimate (co)variance components. Heritability estimates (± SE) for the feeding behavior traits ranged from 0.19 ± 0.08 for meals per day to 0.61 ± 0.10 for feeding time per day. The coefficient of genetic variation per trait varied from 5% for meals per day to 22% for the duration of each feed event. Genetically heavier cattle, those with a higher daily energy intake (MEI), or those that grew faster had a faster feeding rate, as well as a greater energy intake per feed event and per meal. Better daily feed efficiency (i.e., lower residual energy intake) was genetically associated with both a shorter feeding time per day and shorter meal time per day. In a validation population of 321 steers and heifers, the ability of estimated breeding values (EBV) for MEI to predict (adjusted) phenotypic MEI was demonstrated; EBVs for MEI were estimated using multi-trait models with different sets of predictor traits such as liveweight and/or feeding behaviors. The correlation (± SE) between phenotypic MEI and EBV for MEI marginally improved (P < 0.001) from 0.64 ± 0.03 to 0.68 ± 0.03 when feeding behavior phenotypes from the validation population were included in a genetic evaluation that already included phenotypic mid-test metabolic live-weight from the validation population. This is one of the largest studies demonstrating that significant exploitable genetic variation exists in the feeding behavior of young crossbred growing cattle; such feeding behavior traits are also genetically correlated with several performance and feed efficiency metrics. Nonetheless, there was only a marginal benefit to the inclusion of time-related feeding behavior phenotypes in a genetic evaluation for MEI to improve the precision of the EBVs for this trait.  相似文献   

9.
Residual feed intake (RFI) has been explored as an alternative selection criterion to feed conversion ratio to capture the fraction of feed intake not explained by expected production and maintenance requirements. Selection experiments have found that low RFI in the growing pig is genetically correlated with reduced fatness and feed intake. Selection for feed conversion ratio also reduces sow appetite and fatness, which, together with increased prolificacy, has been seen as a hindrance for sow lifetime performance. The aims of our study were to derive equations for sow RFI during lactation (SRFI) and to evaluate the effect of selection for RFI during growth on sow traits during lactation. Data were obtained on 2 divergent lines selected for 7 generations for low and high RFI during growth in purebred Large Whites. The RFI was measured on candidates for selection (1,065 pigs), and sow performance data were available for 480 sows having from 1 to 3 parities (1,071 parities). Traits measured were sow daily feed intake (SDFI); sow BW and body composition before farrowing and at weaning (28.4 ± 1.7d); number of piglets born total, born alive, and surviving at weaning; and litter weight, average piglet BW, and within-litter SD of piglet BW at birth, 21 d of age (when creep feeding was available), and weaning. Sow RFI was defined as the difference between observed SDFI and SDFI predicted for sow maintenance and production. Daily production requirements were quantified by litter size and daily litter BW gain as well as daily changes in sow body reserves. The SRFI represented 24% of the phenotypic variability of SDFI. Heritability estimates for RFI and SRFI were both 0.14. The genetic correlation between RFI and SRFI was 0.29 ± 0.23. Genetic correlations of RFI with sow traits were low to moderate, consistent with responses to selection; selection for low RFI during growth reduced SDFI and increased number of piglets and litter growth, but also increased mobilization of body reserves. No effect on rebreeding performance was found. Metabolic changes previously observed during growth in response to selection might explain part of the better efficiency of the low-RFI sows, decreasing basal metabolism and favoring rapid allocation of resources to lactation. We propose to consider SRFI as an alternative to SDFI to select for efficient sows with reduced input demands during lactation.  相似文献   

10.
生姜对鸡生长性能及血液生化指标的影响   总被引:2,自引:0,他引:2  
蒋慧  许宗运  应璐  吴静 《中国家禽》2003,25(22):16-17
用1日龄健康地方鸡300只按完全随机设计分成3个处理组,每组100只,分别饲喂添加新鲜生姜粉1%(处理2)、喹乙醇80mg/kg(处理3)、不添加生姜和喹乙醇,(处理1,对照组)的日 粮,观察至60日龄。添加生姜组的日增重、饲料增重比和成活率明显优于对照组(P<0.05)。血清 胆固醇含量较对照组和喹乙醇组均低,血清总蛋白含量较对照组和喹乙醇组略高。  相似文献   

11.
Social genetic relationships among average daily gain (ADG, g) and feeding pattern as daily feed intake (DFI, g), daily feeder occupation time (DOT, min), and daily feeding rate (DFR, g/min) were examined using records of 547 Duroc boars. Single‐trait animal models were fitted differently for traits, including or excluding social genetic effects, random or fixed pen effects, with covariates of pen sizes and initial age or weight. Genetic parameters for feeding pattern were estimated by restricted maximum likelihood. Six sets of parameters for ADG based on literature estimates were used due to difficulty in untangling confounded effects. Positive and negative signs of direct‐social genetic covariances were interpreted as heritable cooperation and competition, respectively. Dominant and subordinate pigs were classified as pigs with higher direct and social genetic values, respectively. Correlations of estimated breeding values between ADG and DFI, DOT, and DFR were 0.46, 0.04 and 0.29 for dominant pigs. Given heritable cooperation, subordinate pigs tended to increase feed intake (r = 0.36) and eating rate (r = 0.25). Given heritable competition, subordinate pigs fail to compensate for the competition with decreased feed intake (r = ?0.53). The slow eating rate (r = ?0.31) was considered as a consequence of eating during less busy hour of feeding.  相似文献   

12.
Growth, feed intake, and temperament indicator data, collected over 5 yr on a total of 1,141 to 1,183 mixed-breed steers, were used to estimate genetic and phenotypic parameters. All steers had a portion of Hereford, Angus, or both as well as varying percentages of Simmental, Charolais, Limousin, Gelbvieh, Red Angus, and MARC III composite. Because the steers were slaughtered on various dates each year and the animals thus varied in days on feed, BW and feed data were adjusted to a 140-d feeding period basis. Adjustment of measures of feed efficiency [G:F or residual feed intake (RFI), intake adjusted for metabolic body size, and BW gain] for body fatness recorded at slaughter had little effect on the results of analyses. Average daily gain was less heritable (0.26) than was midtest BW (MBW; 0.35). Measures of feed intake had greater estimates of heritability, with 140-d DMI at 0.40 and RFI at 0.52; the heritability estimate for G:F was 0.27. Flight speed (FS), as an indicator of temperament, had an estimated heritability of 0.34 and a repeatability of 0.63. As expected, a strong genetic (0.86) correlation was estimated between ADG and MBW; genetic correlations were less strong between DMI and ADG or MBW (0.56 and 0.71). Residual feed intake and DMI had a genetic correlation of 0.66. Indexes for phenotypic RFI and genotypically restricted RFI (no correlation with BW gain) were compared with simple economic indexes incorporating feed intake and growth to elucidate expected selection responses under different criteria. In general, few breed differences were detected across the various measurements. Heterosis contributed to greater DMI, RFI, and MBW, but it did not significantly affect ADG, G:F, or FS. Balancing output (growth) with input costs (feed) is needed in practicing selection, and FS would not be recommended as an indicator trait for selection to change feed efficiency. An index including BW gain and RFI produced the best economic outcome.  相似文献   

13.
Two experiments were conducted to study the effects of feeding systems on feeding behavior, aggression, social ranks and average daily gain (ADG) of pigs. In Exp. 1, feed was delivered during the day from 1100 to 1400 and at night from 2300 to 0200. One pen containing 10 barrows and 10 gilts was used. Correlation coefficients were calculated between pairs of traits. In Exp. 2, four feeding systems were tested using similar group composition as in Exp. 1. Two feeding systems were ad libitum, offering either dry or wet feed; the other two used time-restricted feeding from 0900 to 1100 and from 1600 to 1800, but with water supplied either ad libitum or time-restricted. Analyses of variance were used to test feeding system effects; correlation coefficients were calculated for pairs of traits. Results of Exp. 1 indicated that pigs displayed predominantly daytime activities. Frequency of aggressive acts were correlated significantly with feeding frequency (r = .48), time to first feeding (r = -.50) and ADG (r = .56). In Exp. 2, pigs on time-restricted feeding with ad libitum water had significantly depressed ADG and reduced feed intake. A possible association between time-restricted feeding and water intake is postulated. Feeding behavior, aggression and social rank were associated with ADG in time-restricted systems but not in ad libitum systems. There was a tendency in time-restricted-fed pigs for the more aggressive pigs to perform more feeding activities, to rank higher in the social order, and to gain faster.  相似文献   

14.
早期数量限饲对肉仔鸡生长性能和胴体特性的影响   总被引:1,自引:0,他引:1  
石宝明  单安山  镡龙 《中国家禽》2006,28(13):16-18
试验研究了早期数量限饲对肉仔鸡生长性能和胴体品质的影响。200只8日龄艾维茵肉仔鸡被随机分成4组,每组五个重复,每重复10只鸡。对照组基础饲粮根据NRC营养水平配制,试验组肉仔鸡从8日龄开始喂料量分别为对照组的90%、80%和70%,限饲1周后各组恢复自由采食。试验结果表明:在第2周,限饲各组肉仔鸡的体重和日增重分别显著低于对照组(P<0.05);在第3周,限饲90%组完成补偿生长,体重与对照组差异不显著(P>0.05);在第4周,限饲80%和70%组完成补偿生长,体重与对照组差异不显著(P>0.05);5、6、7周及2~7周各组在体重、日增重、日采食量和饲料转化率等方面都无显著差异(P>0.05)。早期数量限饲对肉仔鸡胴体特性没有显著影响(P>0.05)。  相似文献   

15.
Two experiments were conducted to investigate a feeding regimen in which a programmed amount of feed was offered daily to control growth rate of steers. In Exp. 1, steers (n = 107, 309 +/- 3 kg) were used to determine effects of offering ad libitum access to feed (AL) vs a programmed intake feeding regimen (PI) and the number of days steers were fed (168 vs 203) on performance and carcass characteristics. Steers in the programmed intake feeding regimen were fed to achieve a predicted gain of 1.13 kg/d for the first 78 kg of gain, 1.36 kg/d for the next 124 kg of gain, and were given ad libitum access to feed for the final 54 or 103 kg of gain before slaughter (for steers fed for 168 d or 203 d, respectively). Feed efficiency was greater (P < 0.02) for steers in the PI than for those in the AL feeding regimen (0.193 vs 0.183 kg gain/kg feed, respectively). From d 169 to 203, steers in the PI feeding regimen had greater (P < 0.06) ADG (1.60 vs 1.38 kg/d) and similar (P = 0.38) feed efficiency than steers in the AL regimen. In Exp. 2, steers (n = 96; 308 +/- 3 kg BW) were offered feed ad libitum throughout the experiment (AL) or were programmed to gain at a high (PI-H) or low (PI-L) growth rate. For the first 78 kg of gain, intake was restricted to achieve predicted gains of 1.13 kg/d (PI-L) or 1.25 kg/d (PI-H). For the next 124 kg of gain, intake was restricted to achieve predicted gains of 1.36 kg/d (PI-L) or 1.47 kg/d (PI-H). Feed was offered ad libitum for the final 58 kg of gain. Overall ADG was similar (P > 0.37) among feeding regimens despite lower DMI for the steers in the PI-L and PI-H feeding regimens than for those in the AL regimen. Feeding regimen did not affect (P < 0.22) carcass characteristics. Programmed intake feeding regimens sustained growth rate and feed efficiency for an extended period of time without detrimental effects on carcass characteristics.  相似文献   

16.
旨在探究快速型黄羽肉鸡饲料利用效率性状的遗传参数,评估不同方法所得估计育种值的准确性。本研究以自主培育的快速型黄羽肉鸡E系1 923个个体(其中公鸡1 199只,母鸡724只)为研究素材,采用"京芯一号"鸡55K SNP芯片进行基因分型。分别利用传统最佳线性无偏预测(BLUP)、基因组最佳线性无偏预测(GBLUP)和一步法(SSGBLUP)3种方法,基于加性效应模型进行遗传参数估计,通过10倍交叉验证比较3种方法所得估计育种值的准确性。研究性状包括4个生长性状和4个饲料利用效率性状:42日龄体重(BW42D)、56日龄体重(BW56D)、日均增重(ADG)、日均采食量(ADFI)和饲料转化率(FCR)、剩余采食量(RFI)、剩余增长体重(RG)、剩余采食和增长体重(RIG)。结果显示,4个饲料利用效率性状均为低遗传力(0.08~0.20),其他生长性状为中等偏低遗传力(0.11~0.35);4个饲料利用效率性状间均为高度遗传相关,RFI、RIG与ADFI间为中度遗传相关,RFI与ADG间无显著相关性,RIG与ADG间为低度遗传相关。本研究在获得SSGBLUP方法的最佳基因型和系谱矩阵权重比基础上,比较8个性状的估计育种值准确性,SSGBLUP方法获得的准确性分别比传统BLUP和GBLUP方法提高3.85%~14.43%和5.21%~17.89%。综上,以RIG为选择指标能够在降低日均采食量的同时保持日均增重,比RFI更适合快速型黄羽肉鸡的选育目标;采用最佳权重比进行SSGBLUP分析,对目标性状估计育种值的预测性能最优,建议作为快速型黄羽肉鸡基因组选择方法。  相似文献   

17.
A review is presented of the genetic and physiological aspects of growth, body composition and feed efficiency in mice. The genetic parameters considered are: nature and extent of within and between-line genetic variation for body weight and growth rate; direct and correlated responses to selection for body weight, weight gain, feed intake and feed efficiency; direct genetic effects of the offspring (gO); maternal genetic effects (gM); heterosis in the offspring (hO); maternal heterosis (hM), and recombination effects in the offspring (rO). The physiological parameters considered are energy requirements for maintenance and growth. The role of thermoregulatory thermogenesis in relation to the partitioning of metabolizable energy between maintenance and growth requirements of large and small mice is emphasized. The relationship of feed efficiency with other traits is reviewed at length.  相似文献   

18.
Pelt character traits (size, quality, colour clarity, darkness) are important economic traits in blue fox breeding. Better feed efficiency (FE) is another economically important and new breeding goal for fur animals. The purpose of this study was to determine the correlations between pelt character traits, FE and size traits and to estimate genetic parameters for pelt character traits. Pelt size (pSIcm) had a high positive genetic correlation with animal grading size (gSI), final body weight (BWFin), body length and daily gain (DG), and a moderate correlation with body condition score (BCS). Animal body length and BCS (describing fatness) were considered as genetically different traits. Genetic correlations between pelt quality and size traits were estimated without precision and did not differ from zero, but colour clarity (pCL) had a low antagonistic genetic correlation with FE. Pelt size and DG had a favourable genetic correlation with FE but a fairly high unfavourable genetic correlation with dry matter feed intake. The current emphasis on selection for larger animal and pelt size improves FE indirectly, but selection for larger pelt size favours fast‐growing and fat individuals and simultaneously increases feed intake. The detected genetic connections between FE, size, feed intake and pCL should be taken into account in the Finnish blue fox breeding programme.  相似文献   

19.
The effects of four group sizes (2, 4, 8, and 12 pigs per pen) and two single-space feeder types (conventional and electronic feed intake recording equipment [FIRE]) on feed intake, growth performance, and feeding patterns were determined in 208 crossbred finishing pigs (equal numbers of barrows and gilts) between 84.4 (SD = 0.81) to 112.8 (SD = 1.08) kg BW over a 4-wk period. Pigs were given ad libitum access to a corn-soybean meal-based diet (15.9% CP; 0.79% lysine; 3,328 kcal ME/kg). The floor space allowance was 0.9 m2/pig for all treatments. Growth rates were not different for the two feeder types; however, feed intake was lower and gain:feed ratio higher for pigs on the FIRE feeders (P < 0.01). Feed intake, growth rate, and gain:feed ratio were not different (P > 0.05) among the group sizes. Number of feeder visits per day decreased and feed intake per visit, feeder occupation time per visit, feed consumption rate, and percentage of time the feeder was occupied increased with group size (P < 0.05). Feed intake per visit had the strongest correlation with daily feed intake (r = 0.54; P < 0.01) and was negatively correlated with gain:feed ratio (r = -0.38; P < 0.01). However, the correlations between growth performance and other feeding pattern traits were relatively weak (r < or = 0.30). As group size increased, diurnal variation in number of feeder visits and feed consumed per hour decreased. There was no difference in time spent sitting and standing between the two feeder types. The proportion of time spent eating was generally lower for the larger groups on both feeders. The proportion of time spent lying was similar across group sizes for pigs on the conventional feeders but was greater for pigs in the larger groups on the FIRE feeders. This study suggests that finishing pigs can maintain feed intake and growth rate by changing feeding behavior as group size increases from 2 to 12.  相似文献   

20.
Electronic sow feeding (ESF) systems are used to control feed delivery to individual sows that are group-housed. Feeding levels for gestating sows are typically restricted to prevent excessive body weight gain. Any alteration of intake from the allocated feeding curve or unusual feeding behavior could indicate potential health issues. The objective of this study was to use data recorded by ESF to establish and characterize novel feed intake and feeding behavior traits and to estimate their heritabilities. Raw data were available from two farms with in-house manufactured (Farm A) or commercial (Farm B) ESF. The traits derived included feed intake, time spent eating, and rate of feed consumption, averaged across or within specific time periods of gestation. Additional phenotypes included average daily number of feeding events (AFE), along with the cumulative numbers of days where sows spent longer than 30 min in the ESF (ABOVE30), missed their daily intake (MISSF), or consumed below 1 kg of feed (BELOW1). The appetite of sows was represented by averages of score (APPETITE), a binary value for allocation eaten or not (DA_bin), or the standard deviation of the difference between feed intake and allocation (SDA-I). Gilts took longer to eat than sows (15.5 ± 0.13 vs. 14.1 ± 0.11 min/d) despite a lower feed allocation (2.13 ± 0.00 vs. 2.36 ± 0.01 kg/d). The lowest heritability estimates (below 0.10) occurred for feed intake traits, due to the restriction in feed allocation, although heritabilities were slightly higher for Farm B, with restriction in the eating time. The low heritability for AFE (0.05 ± 0.02) may have reflected the lack of recording of nonfeeding visits, but repeatability was moderate (0.26 ± 0.03, Farm A). Time-related traits were moderately to highly heritable and repeatable, demonstrating genetic variation between individuals in their feeding behaviors. Heritabilities for BELOW1 (Farm A: 0.16 ± 0.04 and Farm B: 0.15 ± 0.09) and SDA-I (Farm A: 0.17 ± 0.04 and Farm B: 0.10 ± 0.08) were similar across farms. In contrast, MISSF was moderately heritable in Farm A (0.19 ± 0.04) but lowly heritable in Farm B (0.05 ± 0.07). Heritabilities for DA_bin were dissimilar between farms (Farm A: 0.02 ± 0.02 and Farm B: 0.23 ± 0.10) despite similar incidence. Individual phenotypes constructed from ESF data could be useful for genetic evaluation purposes, but equivalent capabilities to generate phenotypes were not available for both ESF systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号