首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A pot experiment was conducted to compare the yields from five commercially cultivated varieties (Bas-198, Bas-370, Bas-Pak, Bas-385, and IR-6) of rice (Oryza sativa L.) and to establish the relative significance of soil N and fertilizer N (15N-labelled ammonium sulphate) in affecting crop performance. Another aim was to study the interaction of fertilizer N and soil N as influenced by different rice varieties. Among the five varieties tested, Bas-Pak gave the maximum dry matter and N yield. The N-use efficiency (percentage of applied N taken up by the plants) of different varieties ranged between 33.7 and 43.7%, Bas-Pak being the most efficient. Significant losses of fertilizer N occurred from the soil-plant system. The maximum N loss (52.1% of applied N) was observed with IR-6 and the minimum loss (39.2%) with Bas-Pak. A substantial increase in the uptake of soil N following the application of fertilizer and an interaction between the two N sources were observed with all varieties except Bas-385. The interaction was attributed to greater root proliferation following the application of fertilizer. It was concluded that a varietey with greater potential to use soil N is likely to give a better yield and that, of the two N sources, the availability of soil N was more important in determining the yield performance of different varieties of rice.  相似文献   

2.
We compared the effects of adding different forms of nitrogenous fertilizers on the production of CH4 in soil and on CH4 emission from rice plants, Urea and diammonium phosphate gave the highest rates of CH4 production from the soil and emission through rice plants, followed by (NH4)2SO4. NaNO3 was the least effective. The effects of micronutrients like Mo, Ni, or B were more prominent than those of Fe, Mn, Zn, V, or Co. It is concluded that CH4 emission from rice paddies is influenced by both macro- and micronutrients, through effects on both microbial methanogenesis in soil and elimination through rice plants as a consequence of the effects on plant growth.  相似文献   

3.
Summary Using 15N, the fate of N applied to wetland rice either as Azolla or urea was studied in a field at the International Rice Research Institute (IRRI). In bigger plots nearby, yield response and N uptake were also determined with unlabelled N sources. Azolla microphylla was labelled by repeated application of labelled ammonium sulfate. Labelled and unlabelled N were used alternately in applications of Azolla or urea 0 and 42 days after transplanting, in order to determine the effect of the time of application on the availability of Azolla N. The quantities of Azolla N incorporated were 23% more than those of urea N (30 kg N ha–1) in the isotope plots or 7% less in the yield response plots. Grain yield and total N uptake by the rice plants in the yield-response plots were higher in the urea-treated plots than in the Azolla-treated plots, but the physiological effect of Azolla N (grain yield response/increase in N uptake) was higher than that of rea. The labelled N balance was studied after the first and second crops of rice. Losses of labelled N after the first crop were higher from urea (30%–32%) than from Azolla (0%–11 %). Losses in N applied as a side dressing 42 days after transplanting were less than those of N applied basally. No further losses of 15N occurred after the first crop. The recovery of Azolla 15N in the first crop of rice was 39% from the basal application and 63% from the side dressing. The recovery of urea 15N was 27% from the basal application and 48% from the side dressing. Recoveries of residual N from both Azolla and urea during the second rice crop were similar. Laboratory incubation of the Azolla used and the changes in labelled exchangeable N in the soil showed that at least 65% of Azolla N (4.7% N content) was mineralized within 10 days.  相似文献   

4.
Azam  F.  Ashraf  M.  Lodhi  Asma  Sajjad  M. I. 《Biology and Fertility of Soils》1990,10(2):134-138
Summary A pot experiment was conducted to study the N availability to wheat and the loss of 15N-labelled fertilizer N as affected by the rate of rice-straw applied. The availability of soil N was also studied. The straw was incorporated in the soil 2 or 4 weeks before a sowing of wheat and allowed to decompose at a moisture content of 60% or 200% of the water-holding capacity. The wheat plants were harvested at maturity and the roots, straw, and grains were analysed for total N and 15N. The soil was analysed for total N and 15N after the harvest to determine the recovery of fertilizer N in the soil-plant system and assess its loss. The dry matter and N yields of wheat were significantly retarded in the soil amended with rice straw. The availability of soil N to wheat was significantly reduced due to the straw application, particularly at high moisture levels during pre-incubation, and was assumed to cause a reduction in the dry matter and N yields of wheat. A significant correlation (r=0.89) was observed between the uptake of soil N and the dry matter yield of wheat with different treatments. In unamended soil 31.44% of the fertilizer N was taken up by the wheat plants while 41.08% of fertilizer N was lost. The plant recovery of fertilizer N from the amended soil averaged 30.78% and the losses averaged 45.55%  相似文献   

5.
Summary We tested the response of the wetland rice cultivar Prakash to inoculation with ten vescular-arbucular mycorrhizal (VAM) fungi (three selected from the first screening and seven isolated from local paddy fields) in a pot experiment under flooded conditions in order to select the most efficient mycorrhizal fungi to inoculate the rice nursery. A sandy clay loam soil was used as the substrate, fertilized with the recommended N and K levels (100 kg N ha–1 as ammonium sulphate and 50 kg K ha–1 as muriate of potash) and half the recommended level of P (25 kg ha–1 as super phosphate). The inoculation was made into dry nursery beds and the beds were flooded when the seedlings were about 25 cm high, in 15 days. Twenty-eight-day old seedlings were transferred to pots filled with well puddled soil flooded with 5 cm of standing water. Based on the increase in grain yield and total biomass, Glomus intraradices and Acaulospora sp. were considered efficient and suitable for inoculation into rice nurseries.  相似文献   

6.
Summary A field trial was set up to examine the effect of green manuring, blue-green algae, and neem-cake-coated urea on a rice crop. Summer green manuring using Sesbania aculeata increased the crop yield. Inoculation of blue-green algae increased the rice grain yield when 60 kg N ha-1 was applied as prilled urea, but the increase in grain yield was greater when 60 kg N ha-1 was applied as neem-cake-coated urea. The results of the present study show that applications of green manure, neem-cake-coated urea, and blue-green algae are complementary and that the three treatments can be used together in the rice ecosystem. The green manure and the fertilizer treatments had no effect on the algal flora of the soil.  相似文献   

7.
We studied the effects of 15N-labelled ammonium nitrate and urea on the yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L., cv. Mexi-Pak-65) in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 33.6–51.5 and 30.5–40.9% of the N from ammonium nitrate and urea, respectively. Splitting the fertilizer N application had a significant effect on the uptake of fertilizer N by the wheat. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the two N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied according to the fertilizer N split; six split applications gave the highest added N interaction compared to a single application or two split applications for both fertilizers. Ammonium nitrate gave 90.5, 33.5, and 48.5% more added N interaction than urea with one, two, and six split N applications. A values were not significantly correlated with the added N interaction (r=0.557). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N replaced unlabelled soil N.  相似文献   

8.
Summary The effect of salts on the balance of fertilizer N applied as 15N-labelled ammonium sulphate and its interaction with native soil N was studied in a pot experiment using rice (Oryza sativa L.) as a test crop. The rice crop used 26%–40% of the applied N, the level of applied N and salts showing no significant bearing on the uptake of fertilizer N. Losses of fertilizer N ranged between 54% and 68% and only 5%–8% of the N was immobilized in soil organic matter. Neither the salts nor the rate of N application had any significant effect on fertilizer N immobilization. The effective use of fertilizer N (fertilizer N in grain/fertilizer N in whole plant) was, however, better in the non-saline soil. The uptake of unlabelled N (N mineralized from soil organic matter and that originating from biological N2 fixation in thes rhizosphere) was inhibited in the presence of the salts. However, in fertilized soil, the uptake of unlabelled N was significantly enhanced, leading to increased A values [(1-% Ndff/% Ndff)x N fertilizer applied, where Ndff is N derived from fertilizer], an index of interaction with the added N. This added N interaction increased with increasing levels of added N. Since the extra unlabelled N taken up by fertilized plants was greater than the fertilizer N immobilized, and the root biomass increased with increasing levels of added N, a greater part of the added N interaction was considered to be real, any contribution by an apparent N interaction (pool substitution or isotopic displacement) to the total calculated N interaction being fairly small. Under saline conditions, for the same level of fertilizer N addition, the added N interaction was lower, and this was attributed to a lower level of microbial activity, including mineralization of native soil N, rootdriven immobilization of applied N, and N2 fixation.  相似文献   

9.
The aim of the present investigation was to study the effect of white clover (var. Milka and Donna), red clover (var. Fanny) and ryegrass (var. Tove) undersown in winter wheat on a succeeding oat crop. Under the climatic conditions prevailing in Sweden, growing a catch crop after winter cereals is of particular interest because the latter are usually followed by a spring sown crop, leaving the ground bare during autumn and winter. Field trials were carried out during three growing seasons in an integrated farming system and for one year in an organic farming system. Competition from the dense wheat crop in the integrated farming system had a negative effect on the undersown species, and at harvest of the wheat they showed quite poor growth in all three years, with nitrogen contents under 5 kg ha?1. No significant yield increase was measured without added nitrogen when the averages for all three years were calculated. On average, the grain yields were improved by 750 kg ha?1 (14% moisture content) for the treatments with undersown clover for all three years when 90 kg N ha?1 were added. The experiment within the organic system showed a different pattern with a better development of the undersown clover species, with nitrogen contents approximately 25 kg ha?1 and an improvement in oat grain yield, from around 2?000 kg ha?1 for the control to almost 3?500 kg ha?1 with clover undersown the previous year.  相似文献   

10.
Summary A greenhouse experiment was conducted to study the changes in different organic fractions of soil N after application of N fertilizer as organic N alone or in combination with inorganic N. The decrease in the amount of hydrolysable NH4 + and amino-acid N was positively related to mineral-N production, grain yield and N uptake, but changes in the amount of amino sugars were not related to these three parameters. The non-hydrolysable N fraction was negatively related to grain yield and N uptake. The average mineral-N production during incubation was highly correlated with both grain yield and N uptake.  相似文献   

11.
On the basis of our findings that the germination of intact wheat seeds (with husks) belonging to dormancy varieties was restrained as compared with that of the dehusked seeds (grains), the germination inhibitors in the husks were explored. The water-soluble extracts from the husks were separated by the aid of inhibition assay experiments, resulting in the characterization of 2-phenylethyl alcohol 1, 4-vinylphenol 2 and its 2-methoxy derivative 3, and dihydroactinidiolide 4, all of which showed clear inhibition of germination at 500 ppm in aqueous solution. The related compounds 1-phenylethyl alcohol 5 and tetrahydroactinidiolide 6 were as active as 1 and 4, while no noticeable difference in activity was detected among both enantiomers and the DL-form of compounds 4-6. Clear synergistic relations were observed between 4 and 1 and also 4 and 3. Since the present inhibitors have been isolated from various kinds of seed plants, they may be responsible for the general germination inhibition in the seed plants.  相似文献   

12.
局部无菌培养条件下,采用聚乙二醇(PEG6000)模拟水稻幼苗的干旱逆境,研究不同氮营养对其生长及抗氧化性能的影响。结果表明,与缺氮及无机氮处理相比,干旱胁迫后,有机氮营养处理的水稻具有较强的叶片抗脱水能力及茎叶干物质积累能力,并可维持相对较高的叶水势;抗氧化性能方面,有机氮营养的水稻叶片保护酶(SOD、POD、CAT)在干旱胁迫后可维持相对较高活性或受抑程度较低,所受膜脂过氧化(MDA含量)程度亦相对较低。  相似文献   

13.
Summary A greenhouse experiment was conducted with wetland rice (Oryza sativa cv. IR-50) in a clay-loam soil (Fluventic Eutrochrept) to study the effect of cyanobacterial inoculation a mixed culture of Aulosira fertilissima, Nostoc muscorum, Nostoc spp., and Anabaena spp., applied at the rate of 0.15 g (dry weight pot-1 or 43 kg ha-1) on acetylene reduction activity in soil and the root system (excised root), and the grain and straw yield. The effects of applying P (40 kg ha-1), N (60 kg ha-1), and P+N to the soil were also evaluated. Cyanbacterial inoculation significantly increased (more than 200% on average) photo-dependent acetylene reduction activity in soils, particularly where the indigenous activity was considerably low, i.e. under unfertilized and N-fertilized conditions. The effect of inoculation was prominent at the maximum tillering and grain formation stages of the crop. This inoculation benefit was, however, marginal in P-applied soils (P and P+N), where the indigenous activity was stimulated more than threefold. The inoculation led to a remarkable increase in root-associative acetylene reduction activity after the maximum tillering stage of the crop, particularly with applied N but for other treatments this inoculation effect was not significant. Cyanobacterial inoculation also increased the grain and straw yield of the crop when N was not applied. The grain and straw yield was significantly correlated with the acetylene reduction activity in flooded soils and in the root system during the tillering and maximum tillering stages of rice growth, respectively.  相似文献   

14.
Summary A pot experiment was conducted to study the availability of soil and fertilizer N to wetland rice as influenced by wheat straw amendment (organic amendment) and to establish the relative significance of the two sources in affecting crop yield. Straw was incorporated in soil at 0.1, 0.2, and 0.3% before transplanting rice. Inorganic N as 15N-ammonium sulphate was applied at 30, 60, and 90 g g-1 soil either alone or together with wheat straw in different combinations. After harvesting the rice, the plant and soil samples were analyzed for total N and 15N. Straw incorporation significantly decreased the dry matter and N yield of rice, the decrease being greater with higher rates of straw. The reduction in crop yield following the straw incorporation was attributed mainly to a decrease in the uptake of soil N rather than fertilizer N. The harmful effects of organic matter amendment were mitigated by higher levels of mineral N addition. The uptake of applied N increased and its losses decreased due to the straw incorporation. Mineral N applied alone or together with organic amendment substantially increased the uptake of unlabelled soil N. The increase was attributed to a real added N interaction.  相似文献   

15.
In order to analyze the effectiveness of colonization by arbuscular mycorrhizal fungi (AMF) at the nursery stage on the growth and nutrient concentration of wetland rice after transplanting, the experiments were conducted under glasshouse conditions using two types of soil, namely (i) sterilized paddy soil (PS) and (ii) sterilized paddy soil diluted with sterilized Andosol subsoil 5 times (DS) under two water regimes, (i) flooded conditions changed to non-flooded conditions 30 d before harvest (F-NF) and (ii) continuous flooding (CF) up to harvest. Treatments consisting of mycorrhizal inoculation (+AMF) and non-inoculation ( — AMF) were applied only at the nursery stage when the seedlings were produced under dry nursery (60% moisture of maximum water holding capacity) conditions.

Seedlings grown in PS showed a significantly higher biomass yield and nutrient concentrations than in DS. At 90 and 105 d after transplanting, the mycorrhizal plants showed a higher biomass than non-mycorrhizal plants in PS whereas there were no differences in DS except for roots. Mycorrhizal colonization at the transplanting stage was higher in DS than in PS. However, after transplanting opposite results were obtained, the level in PS being relatively higher than in DS. Grain yield and P concentration of unhulled grain and shoots in PS were higher in the +AMF treatments than in the -AMF treatments under both water regimes. Contents of micronutrients (Zn, Cu, Fe, and Mn) were higher in the +AMF plants than in the -AMF ones at all growth stages up to maturation irrespective of soil fertility and water regimes. These results suggest that AMF inoculation at the nursery-stage was beneficial for wetland rice after transplanting to flooded conditions in terms of growth promotion and increase of nutrient concentrations.  相似文献   

16.
Summary A nutrient-rich compost from paddy straw was prepared using urea and Mussoorie rock phosphate for N and P enrichment respectively. Inorganic N was partly conserved in the compost by the addition of pyrite. Citric-acid-soluble P also increased with the addition of pyrite. Compost containing about 1.6% total N and 3.3% total P was found to be a good source of P for a wheat crop and also supplied a significant amount of N to the plants.  相似文献   

17.
Nitrogen in winter wheat (Triticum aestivum L.) forage was fractionated into water‐soluble protein N (WSPN) and non‐protein N (NPN). Both WSPN and NPN can be rapidly converted to ammonia in the rumen which may increase pH of rumen fluid and decrease solubility of Mg compounds and lead to increased incidence of grass tetany. In plant samples taken after spring growth initiation, WSPN represented approximately 50% of total N and NPN represented approximately 25% of total N. Total N concentration and relative percentages of WSPN and NPN decreased with advancing plant maturity in 1974, but during 1975 the relative WSPN and NPN percentages remained relatively constant at 43 to 55% and 18 to 30% of total N, respectively. Total N, WSPN, and NPN concentrations decreased as plants matured.

Total water‐soluble carbohydrates (TWSC) were determined and N/TWSC ratios were calculated in wheat forage. TWSC concentrations increased from the initial sampling date to a peak concentration and then declined during the latter part of the sampling period. N/TWSC ratios were widest at the initial sampling date and decreased markedly in subsequent samplings.

Organic acid concentrations were determined in 1975 wheat forage samples by gas‐liquid chromatography. Citric and trans‐aconitic acids have been implicated in the etiology of grass tetany as chelating agents for Mg and Ca. Chelation in the rumen fluid may reduce Mg and Ca absorption or chelation in the blood serum may reduce biological activity. Malic and aconitic acids accumulated in wheat. Malic acid concentration increased with advancing plant maturity to a maximum of 1.70% (dry weight basis). Aconitic acid concentrations were highest at the mid‐point in the sampling period, a maximum of 1.24% being determined.  相似文献   


18.
In the recent past, biochar and crop residues have attracted lots of attention as a viable strategy for maintaining soil health. This paper evaluates the comparative effect of two different doses (equivalent to 2 and 5 t C ha?1) of each of pine needle and Lantana biochar (PBC and LBC), wheat residue and lentil residue (WR and LR) on soil biological properties, nutrient availability and yield of rice and wheat in pot culture. Energy-dispersive X-ray spectroscopy (EDS) revealed higher C content of biochar than crop residues. Evaluation of biochemical quality reflected high recalcitrance indices of C and N for both PBC and LBC. Application of LBC and PBC increased the wheat grain yield significantly by 6.2%–24.2% over control. Both PBC and LBC significantly increased N and P uptakes in grain over the control and crop residues. Both biochars recorded a significant decrease of 33.9 and 71,7% in β-glucosidase activity in comparison to control at termination of study. PBC and LBC also resulted in more soil available N, P and K in soil at different intervals. The geometric mean of enzyme activities (GMea) reflected improved soil quality by PBC and LR and reduction by LBC application.  相似文献   

19.
The cultivation of Triticum spelta (spelt) has no tradition in Hungary. In recent years the interest towards this old species renewed in many countries. This high‐nutritional cereal, which has a high ash and fibre content, can be used in many health‐oriented grain‐based food products. Therefore, field experiments have been conducted for some years to test the performance of this species under home growing conditions. Here we report the results of analyses for some important quality parameters of grain samples from the 1996/97 season in comparison with those of older and new home‐grown bread wheat cultivars. Three common wheat cultivars and one advanced spelt line were grown on small plots fertilised with an NPK dose necessary to reach the highest yield and quality. Spikes were sampled weekly from the time of 70–77% grain moisture to full ripening. The grains were analysed for ash, N, P and K content and amino acid composition. Concentrations of 16 other macro + micro elements and in the ripe grains, baking quality parameters were also assessed. The grain development of spelt showed a remarkable time‐lag compared to that of the common wheat cultivars. However, the highest thousand‐grain‐masses, ash, N, and P concentrations were measured in this cultivar after milk ripening. The grains of spelt contained the macro‐nutrient Mg and four micro‐nutrients (Zn, Mn, Fe, Cu) in higher concentrations compared to those of the common wheat varieties. The total and essential amino acid concentrations measured in the ripe grains of spelt were also remarkably higher.

Although its wet gluten content (47.5%) was considerably higher than that of the bread wheat cultivars, its breadmaking quality was poor.  相似文献   

20.
Summary In this study the bacterial populations on root tips (1–2 days old) of wheat (Triticum aestivum L.) were compared with the populations on root segments about 1 week older (root base). The isolates were characterized with a set of physiological tests and the test results were used to group the bacteria by means of cluster analysis. Some clusters contained bacteria that occurred mainly on the root tips and were characterized by the ability to produce acid from different sugars and by the presence of the enzymes nitrate reductase, lipase, and oxidase; they were sensitive to high salt concentrations in the media. Another cluster included significantly more isolates from the root-base segments; these bacteria were characterized by a negative reaction to most of the physiological tests; the colonies formed by these bacteria had yellow pigmentation. Possiblemechanisms for the changes in the bacterial populations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号