首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
叶片泵对油液的清洁度要求较高,油液中混入的少量固体颗粒会引起泵内部摩擦副磨损而使其间隙增大,影响叶片泵的容积效率。为了探明颗粒在叶片泵配流副油膜内部的分布状态及其对配流副损坏机制,该研究使用理论分析、数值模拟和试验测试的方法,研究油液中的固体颗粒对高压叶片泵配流副油膜特性的影响。应用Fluent内置的两相流模型,分别改变固体颗粒直径(0.5~13 μm)和固相体积分数(0.2%~1%)、泵的工作压力和转速,开展子母叶片泵配流副油膜内部的固相体积分数分布与温度分布的数值模拟,并对数值模拟结果进行验证。结果表明,油液中的固体颗粒基本不影响配流副油膜的压力数值及其分布,但会引起排油区的油膜温度降低。随着颗粒直径的增大,吸油区油膜固相体积分数减小,最大变化量为0.25%,排油区油膜固相体积分数增大,最大变化量为0.35%,油膜固相体积分数整体上呈增大趋势变化。叶片泵容积效率随着固体颗粒直径的增大而下降,二者近似线性关系。随着颗粒固相体积分数的增加,油膜固相体积分数整体呈增大的趋势变化,最大变化量为0.72%,引起叶片泵容积效率下降,且颗粒固相体积分数与容积效率之间呈非线性关系。油膜表面的温度随颗粒固相体积分数的增加而减小,吸油区各区域油膜温度变化较小,排油区油膜温度最大变化量为2 K。配流副油膜受压差流影响较大的区域内固相体积分数随工作压力升高而减小,最大变化量为0.3%,油膜表面各区域的温度有所上升,核心区域温度变化量为4 K。油膜大部分区域的油膜固相体积分数和温度都随着泵转速的增大而增大,影响较大的区域中固相体积分数最大变化量为0.2%,温度最大变化量为3 K。研究结果可为高压叶片泵配流副的设计提供参考。  相似文献   

2.
弹性变形对轴向柱塞泵配流副润滑特性的影响   总被引:2,自引:2,他引:2  
考虑到配流副在高压条件下的弹性变形量已与油膜厚度同一量级,该文应用弹性流体动力润滑理论,建立了弹性变形条件下配流副的润滑数学模型,采用有限差分法求解了模型的控制方程,进行了弹性变形对配流副润滑特性的影响分析。结果表明,在油膜厚度较小时,配流副的弹性变形使平均油膜厚度相比增大了14.48%,但最大油膜压力却减小了18.60%,且配流副的油膜承载力和泄漏量明显增大,而摩擦转矩明显减小;但油膜厚度大于15 mm时,可以忽略弹性变形对配流副润滑特性的影响。研究为高压化轴向柱塞泵配流副的设计与研究打下了基础。  相似文献   

3.
为保证气隙非浸油式电机叶片泵中主泵在高转速下吸油充足,针对孔板离心泵输出液流在主泵配流窗孔外侧与内侧压差大、旋转液流向主泵配流时流动阻力大的问题,提出了在主泵配流窗孔增设平衡槽和导流槽的结构。流场计算表明:平衡槽将外侧的引油窗孔与内侧的辅助窗孔沟通,控制两窗孔出口的压力差为一较小的定值;导流槽避免了旋转液流在引油窗孔中产生旋涡及其流动阻力,显著地增大了引油窗孔的入口流量,窗孔出口的静压随导流槽包角增大而增大,当导流槽包角大于80°时,引油窗孔出口静压提升了10%,辅助窗孔出口静压相应提升了15.4%。该研究为电机泵的主泵配流设计提供了参考。  相似文献   

4.
为求解高压条件下锥形配流副的润滑模型,该文提出了综合应用有限差分法、液阻网络法和约束最优化复合形法的二元二目标复合形法,研究表明了模型解的存在性和唯一性,并通过实例应用二元二目标复合形法对润滑模型进行了求解。实例结果显示,平衡油槽的无量纲压力随工作压力的变化保持恒定,配流间隙随工作压力增大呈线性减小,而偏心率在工作压力范围内均略小于0,最小为-0.036。研究为锥形配流副弹流润滑特性的分析及其设计提供了参考。  相似文献   

5.
在轴向压力线性分布的条件下,建立了配流副的流场模型,同时建立了配流轴支承系统在突变载荷下的动态仿真模型,在此基础上对球塞式液压泵配流轴的平衡特性进行了研究。结果表明配流轴支承系统具有压力反馈的闭环调节作用,配流轴在压力反馈作用下恢复到偏心率为0的平衡状态,且没有超调量。为高效球塞式液压泵配流副的设计提供了理论依据,同时为高功率密度球塞式液压元件的深入研究打下了基础。  相似文献   

6.
柱塞式能量回收马达是将液压马达与发电机一体化的新一代液压能量回收装置,缸体-配流轴组成的配流副是其关键摩擦副之一,配流副配合面锥度角的选择对马达的配流、承载和摩擦磨损特性有重要影响。该研究采用理论分析、数值模拟和试验测试的方法,探讨柱塞式能量回收马达配流副锥度角的最优值选择。首先根据配流副结构与尺寸,明确锥度角范围,然后以36°、39°、42°和45°共4个配流副锥度角为对象。分别从流场仿真、弱流固耦合和摩擦磨损试验3个方面,评价各锥度角配流副的柱塞腔油液压力与压力脉动、配流副部件应力与变形、配流副摩擦磨损等性能。结果发现配流副锥度角为42°和45°时,位于配流副上死点的柱塞腔内油液压力和压力波动较小,压力分别为4.66、4.62 MPa、压力波动幅度分别为3.307和3.246 MPa;在柱塞腔与高压油孔接通阶段,柱塞腔油液压力波动幅度分别为0.324、0.322 MPa;两种锥度角下的配流轴最大等效应力皆远小于其屈服强度;锥度角为42°缸体的最大等效应力占屈服强度比例较45°锥度角大0.74个百分点,最大变形量大0.251 μm;两种锥度角的配流副没有强度失效的风险,虽然有微量弹性变形,但对配流副的正常工作影响极小。相较于45°锥度角,42°锥度角摩擦副的平均摩擦系数小0.012,且波动小、稳定性好;上、下试件的磨损率分别小1.966×10-6和7.601×10-6 mm3/(N·mm)。所以42°锥度角有利于能量回收马达配流副的稳定工作及高效运转。研究结果可为柱塞式能量回收马达的设计提供参考。  相似文献   

7.
为了提高低速大扭矩水压马达的容积效率,以马达的配流副为研究对象,基于力平衡方程及流量方程,建立了配流体端面与转子端面间的泄漏流量损失和功率损失的数学模型。以配流体转子间的水膜厚度、介质温度和马达转速等为性能指标,分析了不同供流方式下间隙、温度和转速对其性能的影响。研究结果表明:间隙越大,配流体转子端面的泄漏流量损失和功率损失越大,温度越高,功率损失越大,同时内环供流时水压马达的性能要优于外环供流。因此,减小水膜厚度,降低水温,可减小配流副的泄漏流量损失和功率损失,提高水压马达的容积效率及马达性能。综合考虑,配流间隙控制在4~5μm较为合适,水温控制在室温(20±5)℃状态下为宜。同时基于上述研究,设计加工出低速大扭矩水压马达物理样机,并对样机的性能进行了加载试验测试,得到了相应的性能曲线,试验结果表明:加工完成的水压马达样机在带载时的容积效率最高可达到90.97%,机械效率最高可达到93.59%,从而验证了所研制的低速大扭矩水压马达原理正确可行,也证明了上述研究结果的正确性,解决了低速大扭矩水压马达的设计理论及关键技术问题。该研究为低速大扭矩水压马达进一步的产品化提供了参考。  相似文献   

8.
旋流泵固液两相流输送特性试验   总被引:1,自引:3,他引:1  
为探索旋流泵输送固液两相流特性,通过分析将泵内部阻力能耗分为机械和流动损失两部分,阐明机械效率ηm和流动效率ηf经验计算公式。介绍了32WB8-12型旋流泵水力设计结构参数。制定了粮食作物两相流输送试验方案,并在样机上完成输送清水及菜籽、小麦和黄豆两相流外特性试验,得出泵流量-扬程(qv-H)、流量-轴功率(qv-P)、流量-效率(qv-η)和流量-汽蚀余量(qv-NPSHc)性能曲线变化规律。试验结果表明:输送球状菜籽泵效率高于清水和另外两种介质;输送两相流介质抗汽蚀性能低于清水;颗粒浓度不变时,泵的扬程和效率随粒径的增加均有所降低;输送菜籽球体规则形状颗粒介质泵效率高于输送不规则形状颗粒两相流;从颗粒与液流之间直线和旋转相对滑移运动的相对性原理入手,综合考虑介质粒径大小和形状及所受惯性力、摩擦力和浮力对流场影响的特点,解释了外特性与内部流动之间定性的因果关系;证明旋流泵内部两相流动符合畸变速度原理。该研究可为建立旋流泵内部液固两相流动模型提供参考。  相似文献   

9.
为解决钢活塞销孔-销摩擦副因同种材料摩擦配副问题以及钢材密度大和导热性能差所带来的润滑特性差的问题,该研究以D25TCIF农用柴油机钢活塞为对象,建立钢活塞连杆组传热模型和热弹性流体动力学模型,并开展钢活塞温度场测试试验与仿真验证。结合单因素扫值法和Box-Behnken多因素优化算法分析了销孔轴承间隙、销孔表面粗糙度和销孔指数型线内外半径增量变化对销孔轴承润滑特性的影响。结果表明:销孔结构优化后销孔轴承内的最小油膜厚度较优化前增加0.705 μm,最大粗糙接触压力降低255.956 MPa,说明销孔结构对轴承的润滑特性有很大影响,销孔指数型线内半径增量的影响最大,而外半径增量的影响较小。最优参数组合为销孔轴承间隙0.021 mm、销孔表面粗糙度0.798 μm、销孔指数型线内半径增量0.008 mm、销孔指数型线外半径增量0.01 mm,此时预测的最小油膜厚度为0.979 μm;最大粗糙接触压力为249.406 MPa,与该方案下仿真值的相对误差小于5%。本文优化方法效果好,且预测准确,可为后续的钢活塞销孔结构设计提供理论依据。  相似文献   

10.
为研究囊体表面的导叶长度对囊体管道水力输送特性的影响,该研究以导叶长度为控制变量,通过物理模型试验对囊体间断面的螺旋流流速特性进行了研究。结果表明:不同导叶长度下囊体间各断面的轴向流速分布基本相同,从轴心处沿径向呈现先增大后减小的变化趋势,且随着导叶长度的不断增长,囊体间各断面轴向流速的波动减小,轴向流速分布更加均匀。不同导叶长度下囊体间沿程各断面的周向流速梯度均呈现出先减小后增大的变化趋势,而周向速度最大值和最小值均出现在靠近上游囊体的区域,且周向流速随导叶长度的增加而增大,最大值能达到1.2 m/s。不同导叶长度下,靠近上游囊体区域的径向流速梯度最大,而囊体间中部断面的径向流速梯度较小,且随着导叶长度的增长,同一断面的径向流速分布逐渐趋于均匀。不同导叶长度下,同一测环上的轴向、周向和径向流速均呈现波浪状分布,其分别在–1.2~3.5、–0.6~1.2和–1.6~1.2 m/s之间波动。且受囊体支脚的影响,轴向、周向以及径向流速值在测轴为60°、180°、300°位置处均出现极值。该研究成果可为囊体管道水力输送的优化设计提供理论依据。  相似文献   

11.
为明确隔舌安放角对旋流泵性能及非定常流动特性的影响,该研究设计了不同隔舌安放角的蜗壳模型,基于Navier-Stokes方程和RNG k-?湍流模型对旋流泵进行了全流场数值模拟,并通过能量性能和压力脉动试验对数值模拟方法进行了验证。能量性能预测结果表明,存在最优隔舌安放角使泵扬程和效率均达到极大值。流场分析结果表明,隔舌安放角对蜗壳隔舌及扩散段的流态具有较大的影响:较小的隔舌安放角会减小蜗壳喉部的过流面积,使无叶腔内流体的旋转运动受阻,致使循环流与隔舌的动静干涉作用增强;过大的隔舌安放角会造成扩散段产生大尺度的漩涡和回流。压力脉动分析表明,隔舌处压力脉动分布特征受安放角和测点位置共同影响:随隔舌安放角的增大,隔舌处的压力脉动先降低后增大,安放角由30°增大至45°时,2倍轴频(fn)的脉动最大降幅约47%,安放角继续增大至50°时,(0.25~0.5)fn的低频脉动最大增幅约86%;随着测点与叶轮轴向距离增大,隔舌处的压力脉动逐渐减小,叶轮一侧的脉动幅值约为泵体进口一侧的2倍。涡量场分析表明:蜗壳隔舌处频率为2fn的压力脉动由入口螺旋状入流发展扩散产生;隔舌处涡核分布的不对称性是导致蜗壳隔舌处压力分布不对称的原因。适当增大隔舌安放角能有效改善旋流泵隔舌处内流的稳定性,并一定程度提升旋流泵扬程和效率。综合各项性能表明该模型泵隔舌安放角45°时性能最优。研究结果可为旋流泵优化设计提供理论参考。  相似文献   

12.
为研究机电一体化轴流泵间隙泄漏流对泵内流场结构的影响规律及机制,该研究基于RNG k-ε湍流模型,利用ANSYS CFX仿真软件对该泵进行不同流量工况(1 674~2 510 m3/h)的全流场瞬态数值模拟。具体分析该泵压力、湍动能和涡量场分布情况,研究转子摩擦损耗和泄漏量随流量变化的关系,并揭示径向速度和叶轮效率的变化规律,明确机电一体化轴流泵的泄漏流流动特性。研究结果表明:在额定工况(2 092 m3/h)下,机电一体化轴流泵电机转子外壁面的机械摩擦损耗扭矩占泵总扭矩的19.1%,且占比随流量的增加而增大;流体流经该泵电机定转子间隙并泄漏回流至叶轮入口,形成射流,使得叶轮入口轮缘位置存在明显的径向流动。该流动导致叶轮流道内径向系数为0.9~1.0的近轮缘位置出现高湍动能、强涡量区域,引起该区域水力损失增大,水力效率降低,且流量越小,影响越为显著。因此,机电一体化轴流泵节能设计的重点在于电机与叶轮协同设计,在满足水力性能的前提下尽可能降低转子摩擦损耗以及间隙泄漏流流动对叶轮进口流场结构的破坏。研究结果可为机电一体化轴流泵的研究及性能提升提供...  相似文献   

13.
针对轴流泵在输送污水介质中的磨损和缠绕问题,设计了外特性相同但后掠角分别为40°和60°后掠叶片,并采用Particle颗粒模型进行固液两相流数值模拟,发现设计流量工况下60°后掠叶片固相分布情况要优于40°后掠叶片,60°后掠叶片压力面上的固相体积分数平均比40°后掠叶片上的固相体积分数小0.1,60°后掠叶片吸力面上的固相体积分数平均比40°后掠叶片小0.2。进一步对60°后掠叶片进行研究,发现随着颗粒直径的增加,叶片上的固相体积分数随之增加,且固相集中的区域都很相似;随着初始颗粒体积分数的增加,60°后掠叶片上的固相体积分数也随之增加,但初始颗粒体积分数越大,对后掠叶片压力面上固相体积分数的影响越小。为检验后掠叶片的抗缠绕能力,对60°后掠叶片进行缠绕试验,发现单独的后掠叶片形式的轴流叶轮不易发生缠绕,但当叶轮与套筒配合后,若面对大量棉线,容易在进口边轮缘处发生堆积。该研究为输送污水介质轴流泵的抗磨损和抗缠绕性能的研究提供了参考。  相似文献   

14.
为分析叶片安放角对轴流泵马鞍区工况运行特性的影响,以比转速822的轴流泵为研究模型,试验测试了不同叶片安放角下的运行特性。研究表明:随着叶片安放角的增大,模型泵最优工况处的扬程、流量和效率均逐渐增大,-4°到+4°的增幅分别为10.4%,26.7%和0.87%;不同安放角下,泵扬程曲线均存在明显的马鞍区;随着叶片安放角的增大,试验泵马鞍区的绝对位置向右上方偏移,但相对位置仍主要位于0.5QBEP~0.6QBEP(QBEP为最高效率点对应的额定流量),且均在0.55QBEP时扬程达到最小值;随着叶片安放角的减小,马鞍区内相对扬程在逐渐增大,马鞍区驼峰特性有所改善;随着叶片安放角的增大,各个安放角下马鞍区范围内的压力脉动较最优工况下更剧烈;叶轮进口压力脉动主频为叶片通过频率,泵出口处压力脉动主要受导叶影响,随流量减小逐渐向高频移动;随着叶片安放角的增大,叶轮进口和泵出口处主频处的压力脉动幅值均逐渐增大,在叶轮进口处,0.6QBEP和0.55QBEP时压力脉动幅值最大增幅分别达1.78和1.65倍,在泵出口处,正安放角下压力脉动幅值相对负角度有所增大;内流分析表明小流量工况下叶轮进口存在回流现象,叶轮出口靠近轮毂处有明显旋涡,导致小流量下压力脉动幅值增大。  相似文献   

15.
为研究叶片厚度对轴流泵性能影响及其内部流场变化规律,该文采用圆弧法和流线法进行比转速550、转速2900r/min的QY90-4.4-1.5型潜水轴流泵水力模型设计,完成产品开发及样机型式试验。通过加厚叶轮叶片进行对比试验,阐明泵流量—扬程、流量—轴功率和流量—效率曲线产生差别的原因。采用计算流体动力学(CFD)方法进行叶片厚度对流场影响的数值计算,得到最优工况叶片表面相对速度分布和不同工况叶片表面静压分布。经过分析,阐明薄叶片总体性能优于厚叶片,但抗汽蚀性能可能劣于厚叶片。厚叶片翼型脱流、叶片进出口出现回流及二次流情况更为严重,水力损失较大,是泵效率等性能参数偏低的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号