首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
赤霉病已上升为黄淮冬麦区的主要病害, 提高小麦品种对赤霉病的抗性成为该麦区主要的育种目标之一。宁麦9号、生选6号、建阳798、建阳84、苏麦3号和宁麦13均携带Fhb1基因, 对赤霉病表现中抗水平以上。本研究以这6个品种(系)为供体, 分别与高感赤霉病的周麦16矮败小麦近等基因系杂交和回交, 构建6个回交群体。利用Fhb1基因的KASP标记在回交后代中进行基因型分析, 分别选择携带和不携带Fhb1基因的可育株, 对后代株系进行单花滴注接种鉴定和田间病圃自然鉴定。回交后代携带Fhb1家系整体抗性达到中感, 比不携带Fhb1家系的平均病小穗数低4.2 (P < 0.01), 平均病情指数低4.0, 比轮回亲本周麦16的平均病小穗数和病情指数分别低8.1 (P < 0.01)和28.4 (P < 0.01)。不同供体品种(系)回交后代在赤霉病抗性上表现出明显差异, 以生选6号为供体的回交后代家系抗性表现最好。本研究表明, 利用Fhb1基因分子标记辅助选择技术能够有效地提高黄淮冬麦区小麦品种的赤霉病抗性水平。  相似文献   

2.
针对小麦赤霉病抗性,利用与3个抗扩展性QTL位点、1个抗侵染性QTL位点和1个控制低毒素积累的QTL位点紧密连锁的11个分子标记,对中抗赤霉病小麦品种宁麦9号及其10个衍生品种进行抗性溯源,同时利用单花滴注、病麦粒接种和ELISA方法分别进行赤霉病抗扩展、抗侵染和低毒素积累抗性进行鉴定。结果表明,宁麦9号拥有抗扩展性主效QTL位点Fhb1和Fhb2,其赤霉病抗性来源于亲本扬麦6号。10个衍生品种中,生选4号与宁麦9号的遗传背景高度相似,扬辐麦4号与宁麦9号的遗传相似系数最小。宁麦衍生系的抗扩展与低毒素积累抗性相关性较高,但抗侵染性受环境影响较大,表现更为复杂。不同衍生品种的抗扩展性有差异,但总体毒素含量水平较高。衍生品种宁麦13抗性位点数多于宁麦9号,且赤霉病抗性水平最高,与宁麦9号均可作为抗性亲本直接应用于小麦抗赤霉病育种。本研究为今后赤霉病抗性基因的进一步研究和小麦抗赤霉病分子育种提供理论参考。  相似文献   

3.
小麦赤霉病是一种严重危害小麦生产的真菌性病害,其抗性由多基因控制,抗性机制复杂。type Ⅰ(抗侵入)和type Ⅱ(抗扩展)是小麦抵御赤霉病侵害的2种最主要抗性类型。在抗赤霉病育种中兼顾2种抗性,对于保证生产上抗性的稳定和持久有着重要意义。在前期研究中,作者所在课题组从小麦地方品种望水白中克隆了抗赤霉病扩展的主效QTL Fhb1,精细定位了Fhb4和Fhb5,获得了功能性/紧密连锁的分子标记。本研究利用这些标记,以小麦品系NMAS022作为供体亲本,现代小麦品种百农4199作为受体亲本,通过分子标记辅助回交育种方法选育成了聚合望水白Fhb1、Fhb4、Fhb5的小麦新品系百农4299。与百农4199相比,百农4299在2年的田间试验中type Ⅰ抗性至少增加了73%~74%, type Ⅱ抗性至少增加了83%~88%(以病小穗数计),并且产量潜力也得到了提高。上述结果证明了通过分子标记辅助选择聚合不同类型抗赤霉病QTL以提高小麦赤霉病抗性的可行性。抗赤霉病小麦品系百农4299有望成为一个新的抗赤霉病小麦品种。  相似文献   

4.
为了明确2个小麦抗赤霉病侵入的主效QTL Fhb4和Fhb5的抗性遗传和互作模式,采用土表法并结合扬花期喷洒孢子液接种,以病小穗率(PDS)为鉴定指标,对携带Fhb4和Fhb5的不同遗传背景的BC3F1、BC3F2以及抗感对照进行了抗赤霉病侵入的表型鉴定和评价。结果表明,Fhb4和Fhb5在温麦6号和周麦22这2个不同的遗传背景中,PDS表现出杂合基因型和供体亲本望水白基因型的差异不显著,而与轮回亲本基因型之间的差异达到显著水平,抗感分离比经卡方检验符合9∶3∶3∶1的分离比例,其抗性遗传遵循2个独立的遗传因子控制的显性遗传模式;同时,Fhb4和Fhb5抗侵入性效应相当,它们之间存在加性效应,二者累加后的病小穗率显著低于单个Fhb4或Fhb5。因此,在育种实践中对这2个抗赤霉病显性基因的聚合利用将有助于提高育种材料的基础抗性。  相似文献   

5.
小麦赤霉病是一种危害性很强的小麦真菌病害,而Fhb1是抗赤霉病的主效基因。为了筛选黄淮冬麦区携带Fhb1基因的种质材料,利用TaHRC-Kasp和His-InDel标记对来自河北、河南、山东、陕西、江苏和安徽的共336份小麦材料进行检测,共筛选出2份来自河北省的材料(石家庄75和紫茎白)携带Fhb1基因。通过序列分析,其His基因序列与苏麦3号一致,为抗赤霉病类型。利用9 779个SNP位点对供试的336份材料进行PCA主成分分析,结果显示,石家庄75和紫茎白与江苏的材料亲缘关系较近。石家庄75是建国初期的育成品种,紫茎白是河北省的地方农家种,其携带Fhb1基因,说明最初Fhb1基因可能在国内一些地方品种中有所分布,但在现代育种进程中受到人工选择而消失。研究结果为黄淮冬麦区抗赤霉病小麦育种提供了宝贵的遗传信息及亲本材料。  相似文献   

6.
小麦赤霉病是一种对小麦生产危害很强的世界性真菌病害,利用抗赤霉病品种是减轻危害的有效手段之一,但是具有赤霉病抗性的小麦种质很少。本研究鉴定筛选出适合黄淮麦区中抗赤霉病的种质材料漯抗1号、漯抗4号和漯抗6号。3份材料的发病小穗率分别是19.0%、20.9%和20.2%,与苏麦3号(13.8%)差异显著,但与扬麦158(19.2%)差异不显著。从平均严重度和发病小穗率分析,漯抗1号、漯抗4号和漯抗6号的赤霉病抗性为中抗,与扬麦158相当。从耐寒性、株高、千粒重、穗粒数和小穗密度等方面对漯抗1号、漯抗4号和漯抗6号分析表明,漯抗6号与周麦22无显著差异,漯抗6号更适用于黄淮麦区小麦育种。  相似文献   

7.
小麦赤霉病、白粉病和黄花叶病是长江下游麦区小麦生产的主要病害。本研究对长江下游麦区新育成49个品种(系)的上述3种病害进行抗性鉴定,同时利用与抗赤霉病主效QTL Fhb1和QFhs.crc-2D、抗白粉病基因Pm21以及抗黄花叶病主效QTL QYm.nau-5A.1和QYm.nau-2D连锁的分子标记检测试验品种3种病害抗病基因/QTL组成。结果显示, 49.0%的品种赤霉病抗性达中抗以上, 32.6%的品种对白粉病免疫或抗, 44.9%的品种抗黄花叶病。30.6%和73.6%的试验品种分别含有抗赤霉病主效QTL Fhb1和QFhs.crc-2D,宁麦9号和扬麦158及其衍生品种分别是Fhb1和QFhs.crc-2D的主要载体品种; 28.6%的品种含抗白粉病基因Pm21,镇麦9号和扬麦18及其衍生品种为Pm21的主要载体品种;分子检测含抗黄花叶病主效QTL QYm.nau-5A.1和QYm.nau-2D的品种比例均为24.5%,宁麦9号和苏麦6号及其衍生品种分别是QYm.nau-5A.1和QYm.nau-2D的主要载体品种。宁麦9号和扬麦158衍生品种在小麦抗赤霉病和黄花叶病基因/Q...  相似文献   

8.
本研究对黄淮麦区86个小麦品种进行了抗赤霉病评估。由结果看出某些品种有较好的抗性,并发现小麦抗赤霉病机制极为复杂。提出了今后该区小麦品种选育和布局的建议及进一步研究品种抗赤霉病机制的必要性。  相似文献   

9.
由镰孢属(Fusarium)真菌侵染引起的赤霉病是严重威胁小麦生产的重要病害之一,但小麦育种中可直接利用的抗源非常有限。采用单花滴注法接种赤霉菌株F0609,对来源于中间偃麦草或长穗偃麦草的119份小偃麦衍生品系进行3年6个环境的抗病鉴定,发现平均病小穗率<10%的材料有13份,抗性评价为抗病(R);平均病小穗率介于10%~25%之间的材料有61份,抗性评价为中抗(MR);其余45份材料的平均病小穗率介于25%~50%或>50%,抗性评价为中感或高感(MS和S)。在13份高抗赤霉病材料中,CH16387的抗性显著优于苏麦3号和望水白,CH16371和CH16379的抗性显著优于望水白,其余10个品系与抗病对照苏麦3号和望水白的抗性水平相当。这13份材料分别来自小麦-中间偃麦草部分双二倍体TAI8045和小麦-长穗偃麦草部分双二倍体TAP8430与普通小麦的杂交组合,TAI8045抗性显著优于对照品种望水白, TAP8430与苏麦3号和望水白的抗性相当,而杂交组合中的小麦亲本对赤霉病表现感病,推测这些材料的抗性可能来自TAI8045和TAP8430。这些抗病材料为小麦抗赤霉病育种提供了新的种质资源。  相似文献   

10.
李韬  郑飞  秦胜男  李磊  顾世梁 《作物学报》2016,42(3):320-329
黑麦1R染色体短臂(1RS)携带条锈病、叶锈病、秆锈病、白粉病和蚜虫等抗性基因。为了检测1RS上是否携带与赤霉病抗性相关的基因,本研究采用1RS特异标记Xscm9对192个来自不同国家的品种/系构成的小麦自然群体和1个重组自交系(RIL)群体(宁7840与Chokwang杂交的F_7群体,共184个系)进行了分子检测,并在2011 2013年采用单花滴注法于温室中进行赤霉病抗性鉴定。结果发现,自然群体中22个品种携带1RS,携带1RS的株系三季赤霉病平均病小穗率(PSS)均显著低于不携带1RS株系的PSS(P0.01),表明1RS对降低病小穗率有显著作用。分子标记和基因组原位杂交(GISH)检测结果表明,宁7840携带1RS。通过对宁7840/Chokwang衍生的RIL群体进行赤霉病抗性鉴定和基因型分析,发现不论主效赤霉病抗性基因Fhb1(标记Xsts142)存在与否,携带1RS株系的PSS显著低于不携带1RS株系的PSS(P0.01);方差分析表明,宁7840携带的Fhb1与1RS在赤霉病抗扩展性上无显著互作(P0.05)。因此认为,黑麦1RS染色体很可能携带赤霉病扩展抗性相关基因,与Fhb1基因有累加效应。  相似文献   

11.
Identification of new sources of resistance to Russian wheat aphid (RWA) (Diuraphis noxia (Kurdjumov) in wheat (Triticum aestivum L.) has become very important with the identification of several new biotypes since 2003. Our objective was to characterize inheritance and expression of resistance to RWA biotype 2 from three tetraploid wheat landraces (Triticum turgidum L. subsp. dicoccon) during transfer to hexaploid wheat. Resistant tetraploid accessions PI 624903, PI 624904, and PI 624908 were crossed to the susceptible hexaploid cultivars ‘Len’ and ‘Coteau’. Resistant F1 progeny were advanced to the F2:3 by self-pollination and to the BC1F2 and BC2F1 by backcrossing. Leaf rolling and chlorosis were recorded in standard seedling screening tests on F1 and F2:3 individuals while the F2, BC1F1, BC1F2, and BC2F1 were scored as resistant or susceptible. Segregation in the BC1F1 and BC2F1 fit a 1:1 resistant:susceptible ratio, indicative of control by a single dominant gene. Segregation for resistance in the F2 did not fit 3:1, 13:3, or 15:1 ratios for any of the resistant accessions. Expression of resistance in homogeneous resistant F2:3 lines was greater than susceptible checks, similar to the resistant tetraploid accessions, and less than a line carrying the Dn7 resistance gene. Resistance derived from these tetraploid accessions will be useful to broaden the base of RWA resistance available for use in wheat breeding.  相似文献   

12.
Genetic diversity of wheat storage proteins and bread wheat quality   总被引:17,自引:0,他引:17  
To understand the genetic and biochemical basis of the bread makingquality of wheat varieties, a large experiment was carried out with a set of162 hexaploid bread wheat varieties registered in the French or EuropeanWheat Catalogue. This material was used to analyse their allelic compositionat the twelve main storage protein loci. A large genetic and biochemicaldiversity of the gluten proteins was found. Several gliadin encoding lociexhibited the highest allelic diversity whereas the lowest diversity was foundfor Glu-A1 and Glu-D3 loci encoding some high molecularweight glutenin subunits (HMW-GS) and LMW-GS respectively. Thevarieties were grown in three experimental locations in France. Qualityevaluation was carried out from material harvested in each location usingseven technological tests: grain protein content (Prot), grain hardness(GH), Zeleny sedimentation test (Zel), Pelshenke test (Pel), water solublepentosans (relative viscosity: Vr ), mixograph test (giving 11 parameters)and the alveograph test (dough strength W, tenacity P , extensibility L,swelling G, ratio P/L and the elasticity index Ie). Genetic and locationeffects as well as broad-sense heritability of each of the 22 technologicalparameters were calculated. GH, corresponding to the major Ha gene, Pel,and MtxW (mixograph parameter) had the highest heritability coefficients,alveograph parameters like W, P, the relative viscosity Vr and severalmixograph parameters had medium heritability coefficients whereas Protand L had the lowest. Variance analysis (using GLM procedure) allowed theeffect of the allelic diversity of the storage proteins, on the geneticvariations of each quality parameters, to be estimated. Glu-1 and Glu-3 loci had significant additive effects in the genetic variations of manyparameters. Gliadin alleles encoded at Gli-1 and Gli-2 were alsofound to play significant effect on several quality parameters. The majorpart of the phenotypic variation of the different quality parameters like Zel,Pel, W or mixograph peak time MPT was explained with the GH and allelesencoded at Glu-1 and Glu-3. Allelic variants encoded at Glu3and Gli-2 had similar contribution to the phenotypic variations ofquality parameters and accounted for 4% up to 21% each.  相似文献   

13.
D.R. Porter  J.A. Webster 《Euphytica》2000,111(3):199-203
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a perennial, serious pest of wheat (Triticum aestivum L.) in the western United States. Current methodologies used to enhance RWA resistance in wheat germplasm could benefit from an understanding of the biochemical mechanisms underlying resistance to RWA. This study was initiated to identify specific polypeptides induced by RWA feeding that may be associated with RWA resistance. The effects of RWA feeding on PI 140207 (a RWA-resistant spring wheat) and Pavon (a RWA-susceptible spring wheat) were examined by visualizing, silver-stained denatured leaf proteins separated by two-dimensional polyacrylamide gel electrophoresis. Comparisons of protein profiles of noninfested and RWA-infested Pavon and PI 140207 revealed a 24-kilodalton-protein complex selectively inhibited in Pavon that persisted in PI 140207during RWA attack. No other significant qualitative or quantitative differences were detected in RWA-induced alterations of protein profiles. These results suggest that RWA feeding selectively inhibit synthesis and accumulation of proteins necessary for normal metabolic functions in susceptible plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
In order to understand if the mechanisms leading to stabilization of hexaploid wheats occurred in early generations after hybridization or accumulated slowly over the evolutionary course, we extracted tetraploids from newly synthesized allohexaploid wheats and characterized the effects of changes in polyploidy levels. Extracted wheat tetraploids (ETW) were developed from two neo-allohexaploids and their five phenotypic traits were compared to the parents. The ETWs displayed few small amplitude differences relative to the tetraploid parent of the synthetics. This suggest that genomic changes that might have occurred during the first three generations of the newly-synthesized wheat allopolyploids had very weak effects on the phenotypes.  相似文献   

15.
Summary In former Czechoslovakia virulence of rusts attacking wheat was studied since the sixties. Since the same time genes for resistance in the registered cultivars were identified. The role of Berberis and Thalictrum as alternate hosts for stem rust and leaf rust, respectively, was investigated as well. Determined changes of virulence in rust populations could only partially be ascribed to changes of resistance genes in the grown cultivars. Unnecessary genes for virulence had no negative effect on the fitness of the pathogen. All tested samples of aeciospores from barberries attacked rye, not wheat. None of Thalictrum species occurring in the Czech and Slovak Republics was found to host wheat leaf rust. However, the sexual stage of wheat stem rust and wheat leaf rust could be induced on Berberis vulgaris and Thalictrum speciosissimum, respectively. General epidemiological conclusions are drawn from the results and experience of the last 35 years.  相似文献   

16.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a serious, perennial pest of wheat (Triticum aestivum L.) in many areas of the world. This study was initiated to determine the inheritance of RWA resistance in PI 140207 (a RWA-resistant spring wheat) and to determine its allelic relationship with a previously reported RWA resistance gene. Crosses were made between PI 140207 and ‘Pavon’ (a RWA-susceptible spring wheat). Genetic analysis was performed on the parents, F1, F2, backcross (BC) population and F2-derived F3 families. Analyses of segregation patterns of plants in the F1, F2, and BC populations, and F2-derived F3 families indicated single dominant gene control of RWA resistance in PI 140207. Results of the allelism test indicated that the resistance gene in PI 140207, while conferring distinctly different seedling reactions to RWA feeding, is the same as Dn 1, the resistance gene in PI 137739.  相似文献   

17.
黄淮海麦区小麦倒伏的原因与对策   总被引:1,自引:1,他引:0  
地处黄淮海麦区的项城市是河南省重要的商品粮基地之一.小麦是当地主要的粮食作物,栽培面积大,总产约占当地粮食产量的70%,小麦生产丰歉对其粮食生产起着举足轻重的作用.近年来,依靠国家农资综合补贴和科学技术成果的应用,小麦产量呈逐年提高的趋势,高产稳产具有十分重要的意义.多年的经验和教训告诉我们,影响该区小麦稳产和进一步高产的主要因素是倒伏问题.本文就小麦倒伏的原因及对策作以阐述.  相似文献   

18.
H. Dong    J. S. Quick  Y. Zhang 《Plant Breeding》1997,116(5):449-453
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) has caused serious reduction in wheat production in 17 Western states of the United States since 1986. Inheritance of resistance to RWA in seven wheat lines and the allelism of the resistance genes in these lines with three known resistance genes Dn4, Dn5, and Dn6 were studied. The seven resistant lines were crossed to a susceptible wheat cultivar ‘Carson’ and three resistant wheats: CORWA1 (Dn4), PI 294994 (Dn5), and PI 243781 (Dn6). Seedlings of the parents, F1, and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21–28 days after the infestation using a 1–9 scale. The resistance level of all the F1 hybrids was similar to that of the resistant parent, indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 population, suggesting qualitative, nonadditive gene action, in which the presence of any one of the dominant alleles confers complete resistance to RWA. Resistance in CI 2401 is controlled by two dominant genes. Resistance in CI 6501 and PI 94365 is governed by one dominant gene. Resistance in PI 94355 and PI 151918 may be conditioned by either one dominant gene or one dominant and one recessive gene. No conclusion can be made on how many resistance genes are in AUSVA1-F3, since the parent population was not a pure line. Allelic analyses showed that one of resistance genes in CI 2401 and PI 151918 was the same allele as Dn4, the resistance gene in CI 6501 was the same allele as Dn6, and AUS-VA1-F3 had one resistance gene which was the same allele as one of the resistance genes in PI 294994. One non-allelic resistance gene different from the Dn4, Dn5, and Dn6 genes in CI 2401, PI 94355, PI 94365, and PI 222668 was identified and should be very useful in diversifying gene sources in wheat breeding.  相似文献   

19.
Summary Five spring wheat cultivars differing in partial resistance (PR) to wheat leaf rust were tested at Wageningen (the Netherlands) on a sandy and a clay site, El Batan (CIMMYT, Mexico) and Ponta Grossa (Brazil) over two years. The cultivars were Skalavatis 56, Little Club (both very susceptible), Westphal 12A, Akabozu and BH 1146 (all three with high levels of PR). The results showed that PR was expressed at all four locations in both years. The level of expression was influenced by the environment but the cultivar ranking was hardly affected. Selection for PR in the field can therefore be carried out over a wide range of environments.  相似文献   

20.
An endemic hexaploid wheat found in Tibet, China was taxonomically classified as a subspecies in common wheat, i.e. Triticum aestivum ssp. tibetanum. Seven accessions of the Tibetan wheat, 22 cultivars of common wheat and 17 lines of spelt wheat were used for RAPD analysis to study the genetic relationships of the Tibetan wheat with common wheat and spelt wheat, and to assess the genetic diversity (GD) among and within the taxa. RAPD polymorphism was found to be much higher within spelt wheat and the Tibetan wheat than within common wheat. The GD value between the Tibetan wheat and common wheat is lower than that between the Tibetan wheat and spelt wheat. The result of cluster analysis showed that the 46 genotypes were distinctly classified into two groups. Group 1 included all European spelt wheat lines, while group 2 includes all Chinese common wheat and the Tibetan wheat accessions. However, the Tibetan wheat was substantially differentiated from Chinese common wheat at a lower hierarchy. Our results support an earlier classification of the Tibetan wheat as a subspecies in common wheat. European spelt wheat and the Tibetan wheat showed much higher genetic diversity than Chinese common wheat, which could be used to diversify the genetic basis for common wheat breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号