首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
土壤重金属污染及其修复技术研究进展   总被引:1,自引:0,他引:1  
重金属污染严重影响植物的生长发育,影响作物的产量和品质,并通过生物链放大作用进一步对人类和环境造成严重危害,因此重金属污染已成为世界性的重大环境问题。本文综述土壤重金属污染的现状、修复和调控的重要性及对无公害生产的影响,提出用农艺调控、植物修复及微生物修复技术来治理和修复重金属污染的土壤。  相似文献   

2.
中碱性镉污染农田原位钝化修复材料研究进展   总被引:4,自引:1,他引:4  
农田土壤重金属污染威胁人类健康,其修复成为环境领域的研究热点。钝化修复因具有修复速率快、成本低、操作简单、不影响农业生产等特点,广泛应用于大面积重金属污染农田尤其是酸性农田修复治理中。相应,针对酸性重金属污染土壤的钝化修复材料也得到了广泛研究,然而,针对中碱性重金属污染土壤的钝化材料研究相对较少。从无机类、有机类以及复合型3种类型的修复材料概述了钝化修复材料在中碱性Cd污染土壤中的研究进展。总结了中碱性重金属污染土壤钝化修复材料以选用复合型材料为宜,且以钙镁磷肥、椰壳生物炭、油菜秸秆生物炭、腐殖酸形成有机-无机复合效果较好且经济环保。其次,从钝化剂的合理施用、风险评估等方面提出展望,以期为中碱性农田土壤重金属污染修复提供参考。  相似文献   

3.
总结了常见的农田土壤重金属污染的农业生态修复技术,包括合理施用化肥、施用生物有机肥、秸秆还田、调整作物种植结构、筛选重金属低积累作物品种和耐性作物品种、深耕深翻、控制土壤水分以及施用石灰等修复措施,并对农田土壤重金属污染修复技术的前景进行了展望。  相似文献   

4.
中国农田土壤重金属污染防治挑战与对策   总被引:53,自引:5,他引:48  
我国农田土壤重金属污染格局多样,区域污染风险突出。发达国家对污染土壤的修复经验对我国具有借鉴意义。我国农田土壤重金属污染防治面临土壤重金属空间异质性强、土壤类型及农作物品种对重金属累积差异大、土壤酸化严重、土壤元素失衡、不科学的发展方式、土壤重金属累积趋势难以逆转、土壤—农作物重金属累积线性关系不显著,修复技术不完善、修复措施长期风险调控机制缺失等主要挑战。根据我国农田土壤污染防治现状及课题组工作基础,我们提出以预防为主、保护优先和风险管控为基本思路,建立土壤污染防治体系,通过"土壤环境质量调查、土壤污染源头管控、分类管理和土壤环境质量基准推导"等4个步骤推进农田土壤重金属污染防治工作。  相似文献   

5.
农艺措施强化重金属污染土壤的植物修复   总被引:10,自引:0,他引:10  
作为植物修复强化技术,农艺措施可有效提高土壤重金属污染的修复效率。本文从土壤管理和植物管理两大方面综述了农艺措施强化重金属污染土壤植物修复的研究进展,重点讨论了施肥、蚯蚓强化以及植物栽培管理措施用于强化植物修复的基本原理与相关应用,并提出今后研究的方向。  相似文献   

6.
土壤重金属污染现状与修复技术研究   总被引:6,自引:0,他引:6  
土壤是农业的基础,也是人类获取食物和其他再生资源的物质基础。随着工业发展和农业生产的现代化,重金属污染已经成为一个危害全球环境质量的主要问题。本文通过土壤重金属污染的来源、现状、不同修复技术的原理、优缺点、前景作了概述,并重点对目前常用改良剂的修复效果、存在的问题、改良剂原位修复土壤重金属污染的作用机制以及国内外研究进展作简要综述及对未来趋势提出一些看法,为实现对重金属污染土壤进行有效的生态整治和安全高效的利用提供技术途径。  相似文献   

7.
土壤重金属污染现状与修复技术研究进展   总被引:134,自引:9,他引:134  
崔德杰  张玉龙 《土壤通报》2004,35(3):366-370
阐述了土壤重金属污染物的来源和重金属污染土壤修复技术研究现状,分析了各种修复技术的优缺点、实用性与发展动态,为土壤重金属污染综合治理与修复提出了新的思路。  相似文献   

8.
中国耕地土壤重金属污染情况不容乐观,如何安全利用重金属污染耕地仍是当今亟需解决的农业和环保问题。本文综合分析了近几年不同污染程度耕地土壤的安全利用措施,提出重金属低积累作物种植、重金属钝化技术、农艺调控及种植结构调整为当前污染耕地土壤安全利用的主要手段,并指出污染源防控力度不足、土壤污染与作物安全性关系不明、原位钝化技术风险及低积累作物利用效果的局限性仍然是中国污染耕地土壤安全、高效利用面临的主要问题,建议进一步完善污染土壤评价标准、健全污染土壤防控体系、优化污染土壤安全利用技术,以推动重金属污染耕地土壤的安全、高效和可持续利用。  相似文献   

9.
重金属-有机物复合污染已是土壤污染的一种普遍形式,其环境危害和治理难度远大于单一污染土壤,因此,重金属-有机物复合污染土壤修复治理是我国环保领域亟需解决的现实难题。基于此,本文首先介绍了重金属与有机污染物在土壤中的复合污染现状;其次,分析了土壤中重金属与有机污染物的交互作用及其环境效应;然后从物化修复、生物修复和联合修复这3方面,综述了不同技术手段对重金属-有机物复合污染土壤修复的研究进展;最后提出了重金属-有机物复合污染土壤修复研究的发展方向。  相似文献   

10.
土壤重金属污染对农产品质量安全的影响及其防治措施   总被引:4,自引:0,他引:4  
针对当前日益严峻的土壤重金属污染及其所引起的农产品质量安全问题,本文论述了土壤重金属污染物的主要来源、重金属在土壤与植物中的存在形态及危害,探讨了农产品产地土壤重金属污染的防治措施,以期为提升产地土壤环境质量和建立农产品质量安全监管体系提供理论依据。  相似文献   

11.
Heavy metal contamination of soils is usually quantified and guidelines set solely on the basis of total heavy metal content. However, it is recognised that water soluble heavy metal concentrations may provide a better indication of the potential risk that heavy metals may pose to the soil environment. The aim of this study was to use a semi-empirical model based on the competitive adsorption of metal and H+ ions [dependent on solution pH, total metal content, total carbon content and soil oxide content] to predict water soluble Cu, Cr, Cd, Pb, Ni and Zn concentrations in a range of field contaminated soils. The results of multiple linear regressions showed that basic soil properties could predict 85, 72, 66, 78, 50 and 75% of the variation in soluble Ni, Cu, Cr, Pb, Cd and Zn concentrations respectively. Water soluble metal concentrations were best predicted using empirical linear regressions which included total metal content, while the importance of other soil properties such as soil pH, total carbon and oxalate extractable Fe and Al oxides varied between metals. The models have the potential to provide valuable information on metal availability in contaminated soils and offer an indication of the potential risk a metal may pose to a given soil environment, along with providing a basis for developing soil quality guidelines for the prevention, investigation and clean-up of soil metal contamination.  相似文献   

12.
Characteristics of heavy metal contamination in paddy soils were discussed with respect to the soil and field conditions influencing the metal contents in rice.

1. In contaminated areas along the Kuzuryu River, the heavy metal contents of rice (expressed as the average of each area) were largely related to contents of paddy soils in 0.1 N HCl soluble forms as well as in total contents. A correlation was also found for the ratio of Cd to Zn in their soluble forms in the soil.

2. Within a given contaminated field plot, the heavy metal contents were not uniform, i.e: they were high around the irrigation inlet and decreased towards the outlet. However, these changes seemed to alter the Cd rice level much less than expected.

3. Soil pH and exchangeable Ca were negatively correlated with the Cd content of rice at a highly significant level. An un-drained field condition with a low soil Eh remarkably lowered the Cd content, particularly during rainy weather after the heading of the plant.

4. Based on a comparison of the extractable heavy metal contents in the waste ores and their contaminated soils, sulfide minerals derived from the mining appeared to be weathered more rapidly in the soil. With some extraction methods, the Cd origin was distinguished as the solubility of the metal in the soil among the waste products from the zinc mining and refinery.  相似文献   

13.
以大冶典型铜矿区为中心,辐射周边农田,探索农田土壤重金属污染特征及重金属在油菜中的积累变化规律。结果表明,以湖北省土壤背景值进行评价,土壤受到重金属不同程度的污染,其中Cd严重超标,Cu次之;采用国家二级标准进行评价,Zn、Cr和Pb未对土壤造成污染。进行内梅罗综合污染指数法评价发现,以土壤背景值为评价标准,各采样点均达到重金属严重污染水平;以国家二级标准评价时,只有2号采样点土壤属于中度污染水平,其他样点土壤都受到了较为严重的重金属污染。矿区农田油菜各部位重金属含量变化幅度较大,包括Cu、Pb、Zn、Cd和Co在内的5种重金属含量分布规律都是茎叶〉籽粒≈根,Mn则是籽粒〉茎叶〉根。油菜地上部植株中Cu、Pb、Zn、Cd含量均超出食品卫生标准最高限值,且Cd、Pb超标倍数远大于Cu、Zn。富集系数变化规律为Mn〉Zn〉Cd〉Ni〉Cu〉Pb垌Co。  相似文献   

14.
The legacy of industrialization has left many soils contaminated. However, soil organisms and plant communities can thrive in spite of metal contamination and, in some cases, metabolize and help in remediation. The responses of plants and soil organisms to contamination are mutually dependent and dynamic. Plant–soil feedbacks are central to the development of any terrestrial community; they are ongoing in both contaminated and healthy soils. However, the theory that governs plant–soil feedbacks in healthy soils needs to be studied in contaminated soils. In healthy soils, negative feedbacks (i.e. pathogens) play a central role in shaping plant community structure. However to our knowledge, the nature of feedback relationships has never been addressed in contaminated soils. Here we review literature that supports a plant–soil feedback approach to understanding the ecology of metal-contaminated soil. Further, we discuss the idea that within these soils, the role of positive as opposed to negative plant–soil feedbacks may be more important. Testing this idea in a rigorous way in any ecosystem is challenging, and metal contamination imposes an additional abiotic constraint. We discuss research goals and experimental approaches to study plant–soil interactions applicable to metal-contaminated soils; these insights can be extended to other contaminated environments and restoration efforts.  相似文献   

15.
Soil invertebrates suffer from contamination of the soil by heavy metals. We have studied the effects of contamination by cadmium, zinc and lead on their communities in soils in northern France by comparing polluted land with non‐contaminated sites. We have followed the seasonal variations and effects of soil properties. Saprophagous invertebrates (Diplopoda, Isopoda) and Chilopoda were sampled by pitfall‐trapping from February to November in fairly contaminated areas. In addition, a Berlese extraction of the litter in two very highly contaminated sites was conducted during autumn; animals were also trapped during June in the same locations. The most active period for myriapods was spring (April and May), whereas isopods were abundant from April to the end of summer. No clear relation was found relating dominant species or number of myriapods or isopods to concentration of heavy metal in the little‐contaminated soils. The dominant species seemed not to be related to pollution but to vegetation or soil characteristics. In the most contaminated sites, with metalliferous grassland and a thick undecomposed litter layer, a threshold in contamination values seemed to be reached: no isopods or millipedes were found, but only Chilopoda and Symphyla.  相似文献   

16.
[目的]稻田土壤重金属污染是当前农产品安全生产关注的重要问题.本文比较分析工业和农业污染源稻田土壤重金属的赋存形态及水稻吸收运移,以期为稻田土壤重金属污染控制提供参考.[方法]在长江中下游地区调查选取工业源和农业源重金属污染稻田各27块,在水稻成熟期使用抖根法采集根际土壤及水稻根系和籽粒样品,采用Tessier七步提取...  相似文献   

17.
Stability and resilience of a variety of soil properties and processes are emerging as key components of soil quality. We applied recently developed measures of biological and physical resilience to soils from an experimental site treated with metal‐contaminated sewage sludge. Soils treated with cadmium‐, copper‐ or zinc‐contaminated, digested or undigested sewage sludge were studied. Biological stability and resilience indices were: (i) the time‐dependent effects of either a transient stress (heating to 40°C for 18 hours) or a persistent stress (amendment with CuSO4) on decomposition, and (ii) the mineralization of dissolved organic carbon (DOC) released by drying–rewetting cycles. Physical stability and resilience measures were: (i) compression and expansion indices of the soils, and (ii) resistance to prolonged wetting and structural regeneration through drying–rewetting cycles. Soil total carbon and DOC levels were greater in the sludge‐amended soils, but there were no differential effects due to metal contamination of the sewage sludge. Effects of metals on physical resilience were greater than effects on soil C, there being marked reductions in the expansion indices with Cd‐ and Cu‐contaminated sludge, and pointed to changes in soil aggregation. The rate of mineralization of DOC released by drying and wetting was reduced by Zn contamination, while biological resilience was increased in the Zn‐contaminated soil and reduced by Cd contamination. We argue that physical and biological resilience are potentially coupled through the microbial community. This needs to be tested in a wider range of soils, but demonstrates the benefits from a combined approach to the biological and physical resilience of soils.  相似文献   

18.
Sandy loamy agrosoddy-podzolic soils and plants growing on them were studied. The soils had been treated with sewage sludge from the Lyubertsy aeration station applied as organic fertilizer for 5–10 years before 1990. Initially, these soils were used for cultivating vegetables and fodder crops. The content and mobility of heavy metal compounds increased in the plow horizons of studied soils under the influence of sewage sludge. The concentrations of Cd and Zn exceeded the tentative permissible concentrations (TPC) for these elements by 8–16 and 2–4 times, respectively. The contaminated layer was found at the depths within 30–50 cm, which attests to a low migration rate of heavy metals added to the studied soils with sewage sludge (SS) 25 years ago. The concentration of Cd exceeded the maximum permissible concentration (MPC) of this element in all vegetable and fodder crops cultivated on the studied soils. The content of heavy metals in plants differed by three–five times in dependence on the capacity of particular plants to accumulate them. The period of soil self-purification from heavy metals was found to depend on the soil contamination level and element mobility, as well as on the element removal with harvested crops and with soil water flows. The maximal time of achieving the normal level of Cd concentration was estimated as 288 years for maximally contaminated soils; the corresponding values for Cu and Zn were estimated as 74 and 64 years, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号