首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A natural‐13C‐labeling approach—formerly observed under controlled conditions—was tested in the field to partition total soil CO2 efflux into root respiration, rhizomicrobial respiration, and soil organic matter (SOM) decomposition. Different results were expected in the field due to different climate, site, and microbial properties in contrast to the laboratory. Within this isotopic method, maize was planted on soil with C3‐vegetation history and the total CO2 efflux from soil was subdivided by isotopic mass balance. The C4‐derived C in soil microbial biomass was also determined. Additionally, in a root‐exclusion approach, root‐ and SOM‐derived CO2 were determined by the total CO2 effluxes from maize (Zea mays L.) and bare‐fallow plots. In both approaches, maize‐derived CO2 contributed 22% to 35% to the total CO2 efflux during the growth period, which was comparable to other field studies. In our laboratory study, this CO2 fraction was tripled due to different climate, soil, and sampling conditions. In the natural‐13C‐labeling approach, rhizomicrobial respiration was low compared to other studies, which was related to a low amount of C4‐derived microbial biomass. At the end of the growth period, however, 64% root respiration and 36% rhizomicrobial respiration in relation to total root‐derived CO2 were calculated when considering high isotopic fractionations between SOM, microbial biomass, and CO2. This relationship was closer to the 50% : 50% partitioning described in the literature than without fractionation (23% root respiration, 77% rhizomicrobial respiration). Fractionation processes of 13C must be taken into account when calculating CO2 partitioning in soil. Both methods—natural 13C labeling and root exclusion—showed the same partitioning results when 13C isotopic fractionation during microbial respiration was considered and may therefore be used to separate plant‐ and SOM‐derived CO2 sources.  相似文献   

2.
Separate determination of root respiration and rhizomicrobial respiration is one of the most interesting, important, and methodologically complicated problems in the study of the carbon budget in soils and the subdivision of the CO2 emission from soils into separate fluxes. In this review, we compare the main principles, the advantages and disadvantages, and the results obtained by the methods of component integration, substrate-induced respiration, respiratory capacity, girdling, isotope dilution, model rhizodeposition, modeling of the 14CO2 efflux dynamics, exudates elution, and the δ13C measurements of the microbial biomass and CO2. Summarizing the results of the determinations performed by these methods, we argue that about 40% of the rhizosphere CO2 efflux is due to root respiration and about 60% of this efflux is due to the respiration of microorganisms decomposing root exudates.  相似文献   

3.
A theoretical approach to the partitioning of carbon dioxide (CO2) efflux from soil with a C3 vegetation history planted with maize (Zea mays), a C4 plant, into three sources, root respiration (RR), rhizomicrobial respiration (RMR), and microbial soil organic matter (SOM) decomposition (SOMD), was examined. The δ13C values of SOM, roots, microbial biomass, and total CO2 efflux were measured during a 40-day growing period. A three-source isotopic mass balance based on the measured δ13C values and on assumptions made in other studies showed that RR, RMR, and SOMD amounted to 91%, 4%, and 5%, respectively. Two assumptions were thoroughly examined in a sensitivity analysis: the absence of 13C fractionation and the conformity of δ13C of microbial CO2 and that of microbial biomass. This approach strongly overestimated RR and underestimated RMR and microbial SOMD. CO2 efflux from unplanted soil was enriched in 13C by 2.0‰ compared to microbial biomass. The consideration of this 13C fractionation in the mass balance equation changed the proportions of RR and RMR by only 4% and did not affect SOMD. A calculated δ13C value of microbial CO2 by a mass balance equation including active and inactive parts of microbial biomass was used to adjust a hypothetical below-ground CO2 partitioning to the measured and literature data. The active microbial biomass in the rhizosphere amounted to 37% to achieve an appropriate ratio between RR and RMR compared to measured data. Therefore, the three-source partitioning approach failed due to a low active portion of microbial biomass, which is the main microbial CO2 source controlling the δ13C value of total microbial biomass. Since fumigation-extraction reflects total microbial biomass, its δ13C value was unsuitable to predict δ13C of released microbial CO2 after a C3-C4 vegetation change. The second adjustment to the CO2 partitioning results in the literature showed that at least 71% of the active microbial biomass utilizing maize rhizodeposits would be necessary to achieve that proportion between RR and RMR observed by other approaches based on 14C labelling. The method for partitioning total below-ground CO2 efflux into three sources using a natural 13C labelling technique failed due to the small proportion of active microbial biomass in the rhizosphere. This small active fraction led to a discrepancy between δ13C values of microbial biomass and of microbially respired CO2.  相似文献   

4.
Various methods have been suggested to separate root and microbial contributions to soil respiration. However, to date there is no ideal approach available to partition below-ground CO2 fluxes in its components although the combination of traditional methods with approaches based on isotopes seems especially promising for the future improvement of estimates. Here we provide evidence for the applicability of a new approach based on the hypothesis that root-derived (rhizomicrobial) respiration, including root respiration and CO2 derived from microbial activity in the immediate vicinity of the root, is proportional to non-structural carbon contents (sugars and organic acids) of plant tissues. We examined relationships between root-derived CO2 and non-structural carbon of rice (Oryza sativa) seedlings using 14C pulse labelling techniques, which partitioned the 14C fixed by photosynthesis into root-derived 14CO2, and 14C in sugars and organic acids of roots and shoots. After the 14C pulse 14C in both sugars and organic acids of plant tissues decreased steeply during the first 12 h, and then decreased at a lower rate during the remaining 60 h. Soil 14CO2 efflux and soil CO2 efflux strongly depended on 14C pools in non-structural carbon of the plant tissues. Based on the linear regression between root-derived respiration and total non-structural carbon (sugars and organic acids) of roots, non-rhizomicrobial respiration (SOM-derived) was estimated to be 0.25 mg C g−1 root d.w. h−1. Assuming the value was constant, root-derived respiration contributed 85–92% to bulk soil respiration.  相似文献   

5.
Sources of CO2 efflux from soil and review of partitioning methods   总被引:7,自引:0,他引:7  
Five main biogenic sources of CO2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO2 efflux from the soil including: root-derived CO2, plant-derived CO2, SOM-derived CO2, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO2 from plant-derived CO2, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO2 and for interpreting the sources of CO2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and insitu root respiration; continuous and pulse labeling, 13C natural abundance and FACE, and radiocarbon dating and bomb-14C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent disturbance of the ecosystem and C fluxes, and their versatility under various conditions. The shortfalls of existing approaches and the need for further development and standardization of methods are highlighted.  相似文献   

6.
Abstract

The measurement of soil, root, and rhizomicrobial respiration has become very important in evaluating the role of soil on atmospheric carbon dioxide (CO2) concentration. The objective of this study was to partition root, rhizosphere, and nonrhizosphere soil respiration during wheat growth. A secondary objective was to compare three techniques for measuring root respiration: without removing shoot of wheat, shading shoot of wheat, and removing shoot of wheat. Soil, root, and rhizomicrobial respiration were determined during wheat growth under greenhouse conditions in a Carwile loam soil (fine, mixed, superactive, thermic Typic Argiaquolls). Total below ground respiration from planted pots increased after planting through early boot stage and then decreased through physiological maturity. Root‐rhizomicrobial respiration was determined by taking the difference in CO2 flux between planted and unplanted pots. Also, root and rhizomicrobial respirations were directly measured from roots by placing them inside a Mason jar. It was determined that root‐rhizomicrobial respiration accounted for 60% of total CO2 flux, whereas 40% was from heterotrophic respiration in unplanted pots. Rhizomicrobial respiration accounted for 18 to 25% of total CO2 flux. Shade and no‐shoot had similar effects on root respiration. The three techniques were not significantly different (p>0.05).  相似文献   

7.
A greenhouse experiment was conducted by growing oats (Avenasativa L.) in a continuously 13CO2 labeled atmosphere. The allocation of 13C-labeled photosynthates in plants, microbial biomass in rhizosphere and root-free soil, pools of soil organic C, and CO2 emissions were examined over the plant's life cycle. To isolate rhizosphere from root-free soil, plant seedlings were placed into bags made of nylon monofilament screen tissue (16 μm mesh) filled with soil. Two peaks of 13C in rhizosphere pools of microbial biomass and dissolved organic carbon (DOC), as well as in CO2 emissions at the earing and ripeness stages were revealed. These 13C maxima corresponded to: (i) the end of rapid root growth and (ii) beginning of root decomposition, respectively. The δ13C values of microbial biomass were higher than those of DOC and of soil organic matter (SOM). The microbial biomass C accounted for up to 56 and 39% of 13C recovered in the rhizosphere and root-free soil, respectively. Between 4 and 28% of 13C assimilated was recovered in the root-free soil. Depending on the phenological stage, the contribution of root-derived C to total CO2 emission from soil varied from 61 to 92% of total CO2 evolved, including 4-23% attributed to rhizomicrobial respiration. While 81-91% of C substrates used for microbial growth in the root-free soil and rhizosphere came from SOM, the remaining 9-19% of C substrates utilized by the microbial biomass was attributable to rhizodeposition. The use of continuous isotopic labelling and physical separation of root-free and rhizosphere soil, combined with natural 13C abundance were effective in gaining new insight on soil and rhizosphere C-cycling.  相似文献   

8.
A novel method of separating exudates from root respiration in non‐sterilized soils has been developed. The method is based on a simultaneous elution of exudates from rhizosphere and the blowout of CO2 originating from root respiration. The innovation of the method lies in the function of a membrane pump to drive the movement of air and simultaneously the circulation of water according to the Siphon principle. The separation method was tested by means of 14C pulse labeling of Lolium perenne to track the C dynamics in the production of rhizosphere CO2 and of exudates, which were eluted. The total 14C activity of rhizosphere CO2 and of eluted exudates was found to be 8.5 % and 2.3 % of total assimilated 14C, respectively. Thus, at least 19 % of root‐derived C can be accounted to root exudation. However, the suggested Siphon method underestimates the amount of exudates and shows only a minimum of organic substances exuded by roots. The diurnal dynamics of exudation was detected, but no significant day‐night changes were measured in root and microbial respiration. Tight coupling of assimilation with exudation, but not with root and microbial respiration, was observed. The advantages, shortcomings, and possible applications of the Siphon method are discussed.  相似文献   

9.
The methods used for estimating below‐ground carbon (C) translocation by plants, and the results obtained for different plant species are reviewed. Three tracer techniques using C isotopes to quantify root‐derived C are discussed: pulse labeling, continuous labeling, and a method based on the difference in 13C natural abundance in C3 and C4 plants. It is shown, that only the tracer methods provided adequate results for the whole below‐ground C translocation. This included roots, exudates and other organic substances, quickly decomposable by soil microorganisms, and CO2 produced by root respiration. Advantages due to coupling of two different tracer techniques are shown. The differences in the below‐ground C translocation pattern between plant species (cereals, grasses, and trees) are discussed. Cereals (wheat and barley) transfer 20%—30% of total assimilated C into the soil. Half of this amount is subsequently found in the roots and about one‐third in CO2 evolved from the soil by root respiration and microbial utilization of rootborne organic substances. The remaining part of below‐ground translocated C is incorporated into the soil microorganisms and soil organic matter. The portion of assimilated C allocated below the ground by cereals decreases during growth and by increasing N fertilization. Pasture plants translocated about 30%—50% of assimilates below‐ground, and their translocation patterns were similar to those of crop plants. On average, the total C amounts translocated into the soil by cereals and pasture plants are approximately the same (1500 kg C ha—1), when the same growth period is considered. However, during one vegetation period the cereals and grasses allocated beneath the ground about 1500 and 2200 kg C ha—1, respectively. Finally, a simple approach is suggested for a rough calculation of C input into the soil and for root‐derived CO2 efflux from the soil.  相似文献   

10.
This study addresses the issue of carbon (C) fluxes through below ground pools within the rhizosphere of Lolium perenne using the 14C pulse labeling. Lolium perenne was grown in plexiglas chambers on topsoil of a Haplic Luvisol under controled laboratory conditions. 14C‐CO2 efflux from soil, as well as 14C content in shoots, roots, soil, dissolved organic C (DOC), and microbial biomass were monitored for 11 days after the pulsing. Lolium allocates about 48 % of the total assimilated 14C below the soil surface, and roots were the primary sink for this C. Maximum 14C content in the roots was observed 12 hours after the labeling and it amounts to 42 % of the assimilated C. Only half of the 14C amount was found in the roots at the end of the monitoring period. The remainder was lost through root respiration, root decomposition, and rhizodeposition. Six hours after the 14C pulse labeling soil accounted for 11 %, DOC for 1.1 %, and microbial biomass for 4.9 % of assimilated C. 14C in CO2 efflux from soil was detected as early as 30 minutes after labeling. The maximum 14C‐CO2 emission rate (0.34 % of assimilated 14C h—1) from the soil occurred between four and twelve hours after labeling. From the 5th day onwards, only insignificant changes in carbon partitioning occurred. The partitioning of assimilated C was completed after 5 days after assimilation. Based on the 14C partitioning pattern, we calculated the amount of assimilated C during 47 days of growth at 256 g C m—2. Of this amount 122 g C m—2 were allocated to below ground, shoots retained 64 g C m—2, and 70 g C m—2 were lost from the shoots due to respiration. Roots were the main sink for below ground C and they accounted for 74 g C m—2, while 28 g C m—2 were respired and 19 g C m—2 were found as residual 14C in soil and microorganisms.  相似文献   

11.
The aim of this study was to assess differences in rhizodeposition quantity and composition from maize cropped on soil or on 1:1 (w/w) soil–sand mixture and distribution of recently assimilated C between roots, shoots, soil, soil solution, and CO2 from root respiration. Maize was labeled in 14CO2 atmosphere followed by subsequent simultaneous leaching and air flushing from soil. 14C was traced after 7.5 h in roots and shoots, soil, soil solution, and soil‐borne CO2. Rhizodeposits in the leachate of the first 2 h after labeling were identified by high‐pressure liquid chromatography (HPLC) and pyrolysis–field ionization mass spectrometry (Py‐FIMS). Leachate from soil–sand contained more 14C than from soil (0.6% vs. 0.4%) and more HPLC‐detectable carboxylates (4.36 vs. 2.69 μM), especially acetate and lactate. This is either because of root response to lower nutrient concentrations in the soil–sand mixture or decreasing structural integrity of the root cells during the leaching process, or because carboxylates were more strongly sorbed to the soil compared to carbohydrates and amino acids. In contrast, Py‐FIMS total ion intensity was more than 2 times higher in leachate from soil than from soil–sand, mainly due to signals from lignin monomers. HPLC‐measured concentrations of total amino acids (1.33 μM [soil] vs. 1.03 μM [soil–sand]) and total carbohydrates (0.73 vs. 0.34 μM) and 14CO2 from soil agreed with this pattern. Higher leachate concentrations from soil than from soil–sand for HPLC‐measured carbohydrates and amino acids and for the sum of substances detected by Py‐FIMS overcompensated the higher sorption in soil than in sand‐soil. A parallel treatment with blow‐out of the soil air but without leaching indicated that nearly all of the rhizodeposits in the treatment with leaching face decomposition to CO2. Simultaneous application of three methods—14C‐labeling and tracing, HPLC, and Py‐FIMS—enabled us to present the budget of rhizodeposition (14C) and to analyze individual carbohydrates, carboxylates, and amino acids (HPLC) and to scan all dissolved organic substances in soil solution (Py‐FIMS) as dependent on nutrient status.  相似文献   

12.
By means of 14C pulse labelling and sterilization of soil, a C release into soil of 14?–?18% of net CO2 assimilation (corresponding to 23?–?26% of 14C incorporated in plant tissue) was observed during vegetation period (excluding root respiration). Microbial colonization increased this rhizodeposition. About 60?–?80% of the primary root-borne compounds were very quickly respirated by microorganisms (secondary respiration of exudates). Fourteen to 38% (corresponding to 130?–?400?kg C?ha?1 a?1) of the remaining rhizodeposites were located in a zone close to root surface (up to 5?mm). Their solubility in water decreased with increasing distance to the root. The fraction of water-soluble root exudates included primarily carbohydrates (sucrose, glucose, fructose, ribose), amino acids/amides (glutamine, serine, aspartic acid) as well as organic acids (citric, succinic and tartaric acids). The water-insoluble portion of rhizodeposites were strongly absorbed by soil clay-fraction and substantially increased stability of SOM and soil aggregates.  相似文献   

13.
Estimation of the amount of root exudates and simultaneous identification of their composition in non‐sterile soil is a challenging objective in rhizosphere research. We coupled 3 methods: (1) labeling of corn in 14CO2 atmosphere to separate root‐derived and soil‐derived organic substances in the rhizosphere, (2) a previously developed leaching method to collect rhizodeposits, and (3) pyrolysis field ionization mass spectrometry (Py‐FIMS) to investigate the molecular‐chemical composition of rhizodeposits. Eluted rhizodeposits accounted for 2.8 % (Loam) and 0.97 % (nutrient solution in quartz sand) of recovered 14C and showed clear differences in composition between the growth substrates. The 14CO2 evolved mostly by root respiration accounted for 3.5–4.0 % without significant differences according to growth substrate or diurnal dynamics. Principal component analysis of the Py‐FI mass spectra of leachates showed a clear diurnal dynamics of the amount and the composition of corn rhizodeposits collected during day‐time and night‐time. Differences originated mostly from signals assigned to carbohydrates, sterols, and peptides. This approach is recommended for forthcoming studies of rhizodeposition in different soil substrates, crops grown, and time‐series of exudate sampling.  相似文献   

14.
Photosynthesis of higher plants drives carbon (C) allocation below-ground and controls the supply of assimilates to roots and to rhizosphere microorganisms. To investigate the effect of limited photosynthesis on C allocation, redistribution and reutilization in plant and soil microorganisms, perennial grass Lolium perenne and legume Medicago sativa were clipped or shaded. Plants were labelled with three 14C pulses to trace allocation and reutilization of C assimilated before clipping or shading. Five days after the last 14C pulse, plants were clipped or shaded and the total CO2 and 14CO2 efflux from the soil was measured. 14C in above- and below-ground plant biomass and bulk soil, rhizosphere soil and microorganisms was determined 10 days after clipping or shading.After clipping, 2% of the total assimilated 14C originating mainly from root reserves were detected in the newly grown shoots. This corresponded to a translocation of 5 and 8% of total 14C from reserve organs to new shoots of L. perenne and M. sativa, respectively. The total CO2 efflux from soil decreased after shading of both plant species, whereas after clipping, this was only true for L. perenne. The 14CO2 efflux from soil did not change after clipping of both species. An increased 14CO2 efflux from soil under shading for both plants indicated that lower assimilation was compensated by higher utilization of the reserve C for root and rhizomicrobial respiration.We conclude that C stored in roots is an important factor for plant recovery after limiting photosynthesis. This stored C is important for shoot regrowth after clipping, whereas after shading, it is utilized mainly for maintenance of root respiration. Based on these results as well as on a review of several studies on C reutilization for regrowth after clipping, we conclude that because of the high energy demand for nitrogen fixation, legumes use a higher portion (9–10%) of stored C for regrowth compared to grasses (5–7%). The effects of limited photosynthesis were of minor importance for the exudation of the reserve C and thus, have no effect on the uptake of this C by microorganisms.  相似文献   

15.
Temporal changes in soil CO2‐efflux rate was measured by a canopy‐gap method in a Populus euphratica forest located at the both sides of Tarim River banks (W China). Soil CO2‐efflux rates in situ were correlated with key soil biotic (e.g., fungal, bacterial, and actinomycetes populations) and abiotic (e.g., soil moisture, temperature, pH, organic C) variables. Two kinds of measurement plots were selected: one under the crown of a living Populus euphratica tree and the other under a dead standing Populus euphratica tree. Diurnal variations in soil respiration in these plots were measured both before and after the occurrence of the first frost. Soil respiration of the dead standing Populus euphratica (Rd) was assumed to be a measure of heterotrophic respiration rate (Rh), and root respiration rate (Rr) was estimated as the difference between soil respiration under living (Rl) minus soil respiration under dead standing Populus euphratica. Daily variation of Rr contribution to the total soil respiration in Populus euphratica forests were analyzed before and after the frost. The contribution of root respiration to total soil respiration before and after frost varied from 22% to 45% (mean 30%) and from 38% to 50% (mean 45%), respectively. In addition, Rh was significantly correlated with soil temperature both before and after frost. In contrast, Rr was not significantly correlated with soil temperature. Change in Q10 of Rr was different from that of Rh from before the frost to after the frost. Variation of Q10 of Rr from before the frost to after the frost was larger than that of Q10 of Rh. Thus, the results indicate that different soil respiration models are needed for Rr and Rh because different factors control the two components of soil respiration.  相似文献   

16.
Nitrogen (N) deposition to semiarid ecosystems is increasing globally, yet few studies have investigated the ecological consequences of N enrichment in these ecosystems. Furthermore, soil CO2 flux – including plant root and microbial respiration – is a key feedback to ecosystem carbon (C) cycling that links ecosystem processes to climate, yet few studies have investigated the effects of N enrichment on belowground processes in water-limited ecosystems. In this study, we conducted two-level N addition experiments to investigate the effects of N enrichment on microbial and root respiration in a grassland ecosystem on the Loess Plateau in northwestern China. Two years of high N additions (9.2 g N m−2 y−1) significantly increased soil CO2 flux, including both microbial and root respiration, particularly during the warm growing season. Low N additions (2.3 g N m−2 y−1) increased microbial respiration during the growing season only, but had no significant effects on root respiration. The annual temperature coefficients (Q10) of soil respiration and microbial respiration ranged from 1.86 to 3.00 and 1.86 to 2.72 respectively, and there was a significant decrease in Q10 between the control and the N treatments during the non-growing season but no difference was found during the growing season. Following nitrogen additions, elevated rates of root respiration were significantly and positively related to root N concentrations and biomass, while elevated rates of microbial respiration were related to soil microbial biomass C (SMBC). The microbial respiration tended to respond more sensitively to N addition, while the root respiration did not have similar response. The different mechanisms of N addition impacts on soil respiration and its components and their sensitivity to temperature identified in this study may facilitate the simulation and prediction of C cycling and storage in semiarid grasslands under future scenarios of global change.  相似文献   

17.
The input of labeled C into the pool of soil organic matter, the CO2 fluxes from the soil, and the contribution of root and microbial respiration to the CO2 emission were studied in a greenhouse experiment with continuous labeling of oat plants with 13CO2 using the method of the natural 13C abundance in the air. The carbon of the microbial biomass composed 56 and 39% of the total amounts of 13C photoassimilates in the rhizosphere and in the bulk soil, respectively. The contribution of root respiration to the CO2 emission from the soil reached 61–92%, including 4–23% of the rhizomicrobial respiration. The contribution of the microbial respiration to the total CO2 emission from the soil varied from 8 to 39%. The soil organic matter served as the major carbon-containing substrate for microorganisms in the bulk soil and in the rhizosphere: 81–91% of the total amount of carbon involved in the microbial metabolism was derived from the soil organic matter.  相似文献   

18.
Both plant species and CO2 concentration can potentially affect rhizodeposition and consequently soil microbial activity and community composition. However, the effect differs based on plant developmental stage. We focused on the effect of three plant species (forbs, grasses, and N2‐fixers) at an early stage of development on root C deposition and fate, soil organic matter (SOM) mineralization and soil microbial community composition at ambient (aCO2) and elevated (eCO2) CO2 levels. Plants were grown from seed, under continuous 13C‐labelling atmospheres (400 and 800 µmol mol?1 CO2), in grassland soil for three weeks. At the end of the growth period, soil respiration, dissolved organic C (DOC) and phospholipid fatty acid (PLFA) profiles were quantified and isotopically partitioned into root‐ and soil‐derived components. Root‐derived DOC (0.53 ± 0.34 and 0.26 ± 0.29 µg mL soil solution?1) and soil‐derived CO2 (6.14 ± 0.55 and 5.04 ± 0.44 µg CO2‐C h?1) were on average two times and 22% higher at eCO2 than at aCO2, respectively. Plant species differed in exudate production at aCO2 (0.11 ± 0.11, 0.10 ± 0.18, and 0.58 ± 0.58 µg mL soil solution?1 for Plantago, Festuca, and Lotus, respectively) but not at eCO2 (0.20 ± 0.28, 0.66 ± 0.32, and 0.75 ± 0.15 µg mL soil solution?1 for Plantago, Festuca, and Lotus, respectively). However, no differences among plant species or CO2 levels were apparent when DOC was expressed per gram of roots. Relative abundance of PLFAs did not differ between the two CO2 levels. A higher abundance of actinobacteria and G‐positive bacteria occurred in unplanted (8.07 ± 0.48 and 24.36 ± 1.18 mol%) and Festuca‐affected (7.63 ± 0.31 and 23.62 ± 0.69 mol%) soil than in Plantago‐ (7.04 ± 0.36 and 23.41 ± 1.13 mol%) and Lotus‐affected (7.24 ± 0.17 and 23.13 ± 0.52 mol%) soil. In conclusion, the differences in root exudate production and soil respiration are mainly caused by differences in root biomass at an early stage of development. However, plant species evidently produce root exudates of varying quality affecting associated microbial community composition.  相似文献   

19.
Summary The rates of CO2 efflux were measured by an alkali absorption method (using 20 ml 0.5 N NaOH) from soils in four undisturbed sites [two evergreen oak forests, Quercus floribunda Lindl. (tilonj oak), Quercus leucotrichophora A Camus (banj oak), and two evergreen conifer forests, Cedrus deodara Loud. (deodar forest) and Pinus roxburghii Sarg. (chir pine forest)] and three disturbed sites. The sites were located between elevations of 1850 and 2360 m in the Central Himalaya. The seasonal pattern of soil respiration was similar in all the sites with a maximum during the rainy season, intermediate rates during the summer season and the lowest level of activity in winter. The rate of CO2 efflux was higher in broadleaf than in conifer forests, and it was lowest in the disturbed sites. Among the edaphic conditions, soil moisture, N, organic C, pH, soil porosity, and root biomass positively affected total soil respiration. The proportion of root respiration to total soil respiration was higher in the disturbed sites than the undisturbed sites in winter. Conditions in the winter season were less favourable for microbial respiration than for root respiration.  相似文献   

20.
In soils of arid and semiarid climates, dissolution of primary (lithogenic) carbonate and recrystallization with CO2 from soil air leads to precipitation of pedogenic carbonates and formation of calcic horizons. Thus, their carbon isotope composition represents the conditions prevailing during their formation. However, the widespread use of the isotopic signature (δ13C, δ18O, Δ14C) of pedogenic carbonates for reconstruction of local paleovegetation, paleoprecipitation and other environmental conditions lacks knowledge of the time frame of pedogenic carbonate formation, which depends on climatic factors. We hypothesized that temperature-dependent biotic processes like plant growth and root and rhizomicrobial respiration have stronger influence on soil CaCO3 recrystallization than abiotic temperature-dependent solubility of CO2 and CaCO3.To assess the effect of temperature on initial CaCO3 recrystallization rates, loess with primary CaCO3 was exposed to 14CO2 from root and rhizomicrobial respiration of plants labeled in 14CO2 atmosphere at 10, 20 or 30 °C. 14C recovered in recrystallized CaCO3 was quantified to calculate amounts of secondary CaCO3 and corresponding recrystallization rates, which were in the range of 10−6-10−4 day−1, meaning that 10−4-10−2% of total loess CaCO3 were recrystallized per day. Increasing rates with increasing temperature showed the major role of biological activities like enhanced water uptake by roots and respiration. The abiotic effect of lower solubility of CO2 in water by increasing temperature was completely overcompensated by biotic processes. Based on initial recrystallization rates, periods necessary for complete recrystallization were estimated for different temperatures, presuming that CaCO3 recrystallization in soil takes place mainly during the growing season. Taking into account the shortening effect of increasing temperature on the length of growing season, the contrast between low and high temperature was diminished, yielding recrystallization periods of 5740 years, 4330 years and 1060 years at 10, 20 and 30 °C, respectively. In summary, increasing CaCO3 recrystallization rates with increasing temperature demonstrated the important role of vegetation for pedogenic CaCO3 formation and the predominantly biotic effects of growing season temperature.Considering the long periods of pedogenic carbonate formation lasting to some millennia, we conclude that methodological resolution of paleoenvironmental studies based on isotope composition of pedogenic carbonates is limited not by instrumental precision but by the time frame of pedogenic carbonate formation and hence cannot be better than thousands of years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号