首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of secondary metabolites by plants growing in natural populations is conditioned by environmental factors. In the present study, we have investigated the relationships among soil properties, micronutrients in soils and plants, and cardenolide production from wild Digitalis obscura (Scrophulariaceae) populations. Young and mature leaves and soil samples were collected in ten different populations, corresponding to three Mediterranean bioclimatic belts (Thermo‐, Meso‐, and Supramediterranean belts). Soil (total and EDTA‐extractable) and leaf micronutrients (Fe, Mn, Zn, and Cu), and leaf cardenolide accumulation have been determined. Significant negative correlations were observed between Fe, Mn or Zn concentration in leaves and soil pH, as well as between Fe or Mn in leaves and carbonate content of soils. Only EDTA‐extractable Mn was significantly correlated with Mn content in the plants. With regard to cardenolide content in leaves, this parameter was negatively correlated with Znleaf in young leaves and with Mnleaf in old leaves. Positively correlated, however, were Fe and cardenolide content in young leaves. The influence of environmental conditions and leaf micronutrient contents on cardenolide accumulation is discussed.  相似文献   

2.
Results of several studies show interactive effects of salinity and macronutrients on the growth of wheat plants. These effects may be associated with the nutrient status in plant tissues. The objective of this study was to investigate interactive effects of salinity and macronutrients on mineral element concentrations in leaves, stems, and grain of spring wheat (Triticum aestivum L. cv. Lona), grown in hydroponics, and the relation of these effects to yield components. Eight salinity levels were established from 0 to 150 mM NaCl, and 1, 0.2, and 0.04 strength Hoagland macronutrient solution (x HS) were used as the macronutrient levels. Sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chlorine (Cl), and phosphorus (P) in leaves, stems, and grain, NO3 in leaves and stems, and total nitrogen (N) in grain were determined. Supplemental Ca, Mg, K, and NO3 added to 0.2 x HS increased mineral concentrations in leaves and stems, but did not improve growth or yield in salinized wheat plants except moderately at 100–150 mM NaCl. In contrast, growth or yield was improved significantly when the concentration of macronutrients was increased from 0.04 to 0.2 × HS. In contrast to leaves and stems, mineral concentrations in grain increased (Na, Cl) or decreased (Ca, Mg, K) only slightly or were not affected (K) by salinity except at high salinity and low macronutrient level. Nitrogen and P concentrations in grain were not affected by salinity. Sodium and Cl concentrations in leaves and stems increased significantly, whereas K and NO3 decreased significantly, with an increase in salinity regardless of the macronutrient level. The latter was also observed for Ca and Mg in leaves. Extreme Na/Ca ratios in plant tissues negatively affected grain yield production at high salinity with medium or high macronutrient levels and at low macronutrient level together with medium salinity. Even though strong and significant correlations between mineral concentration at grain maturity in leaves, stems, and grain and various yield parameters were observed, our results are inconclusive as to whether toxicity, nutrient imbalance, nutrient deficiency, or all of these factors had a strong influence on grain yield.  相似文献   

3.
The effects of different levels of arsenic (As) and salinity on bean plant (Phaseolus vulgaris L., cv. Buenos Aires) nutrition were investigated. We studied the processes of absorption and accumulation of macronutrient elements: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg). The experiment was performed in soilless culture at two levels of As: 2 and 5 mg AsL‐1 (added as sodium arsenite, NaAsO2), and three saline levels [only sodium chloride (NaCl) was added]: 1, 2, and 4 dS‐m‐1. Sodium arsenite and NaCl significantly affected macronutrients allocation within bean plant at concentration levels used in this study. Arsenite depressed K, Na, and Mg concentrations in root, whereas root N, and Ca levels were increased. Nitrogen, P, K, and Na concentrations were significantly higher in As‐stressed plants compared with controls. The addition of NaCl increased Ca concentration in roots and decreased that of K. Salinity tended to increase leaf concentrations of K, Na, Ca, and Mg; whereas leaf N and P levels decreased with increasing salinity.  相似文献   

4.
’Dormanred’ raspberry (Rubus species) plants grown in sand culture were subjected to varying concentrations of N, Ca, and Mg over a two‐year period. Increasing nitrogen fertilization resulted in linear reductions of leaf Ca, K, Zn, Fe, and Mn but did not affect leaf Mg. Leaf Ca and K increased linearly with Ca fertilization, but applied Ca had an antagonistic influence on leaf Mg. Magnesium fertilization had a positive influence on leaf Mg but negatively affected leaf K, Ca, and Mn. Plant growth was negatively correlated with leaf Ca and leaf K, but had a positive correlation with leaf Mg and Mn. Nitrogen fertilization increased plant growth up to the mid‐level of applied N, but additional N reduced plant growth.  相似文献   

5.
The leaf nutrient concentrations and the N‐to‐nutrient ratios were analyzed to evaluate the nutritional status of holm oaks (Quercus ilex L.) experiencing various anthropogenic pressures. Leaves (1 year old) of Q. ilex and surface soil (0–5 cm) surrounding the trees were collected at seven natural and seven urban sites in Campania Region (Southern Italy) and analyzed for the concentrations of macro (C, N, P, S) and micronutrients (Mn, K, Na, Cu, Mg, Ca, Fe, Zn). The available soil fraction of micronutrients was also evaluated. The nutrients showed different concentration ranges for the natural and the urban sites in the soil (total and available) and in the leaves, that we reported separately. Organic‐matter content and macronutrient concentrations were higher in the natural soils, while the highest leaf N, S, and P concentrations were found at some urban sites. Concentrations of Cu, Na and Zn both in leaves and soil, and Mg and Fe in leaves from the urban sites appeared to be affected by air depositions. Manganese was the only micronutrient to show higher concentrations at the natural than at the urban sites, both in soil and leaves. For this nutrient, in addition, a relationship between leaf and available soil concentrations was found at the natural sites. The ratios between the concentrations of N and each studied nutrient in the leaves highlighted a different nutritional status between the plants from the natural and urban sites.  相似文献   

6.
Abstract

The ability of poultry litter to support plant growth by supplying essential plant nutrients in the absence of other sources of the nutrients has not been studied thoroughly. The objectives of this research were to (1) determine the ability of poultry litter, as the sole nutrient source, to provide macronutrients and support growth of cotton (Gossypium hirsutum L.) (2) evaluate the distribution of these nutrients within the different plant parts, and (3) estimate the efficiency with which these nutrients are extracted by cotton. The research was conducted in plastic containers filled with a 2:1 (v/v) sand:vermiculite growing mix under greenhouse conditions. The treatments included broiler litter rates of 0, 30, 60, 90, or 120 g pot?1 with or without supplemental Hoagland's nutrient solution. Broiler litter supplied adequate amounts of the macronutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) and supported normal growth of cotton. Tissue nutrient analysis showed that the concentration of N, P, K, and Mg in the upper mainstem leaves was within published sufficiency ranges for cotton growth. Evaluation of the N distribution indicated that the cotton plant partitions N to reproductive parts when faced with deficiency of this nutrient and favors allocating N to new leaf growth once the requirement for reproductive growth is met. The partitioning of P was similar to that of N but less distinct. Cotton extracted Mg and K with greater efficiency (up to 58%) than the other nutrients and stored these nutrients in older leaves. The extraction efficiency of N ranged between 21% at 120 g pot?1 litter and 27% at 30 g pot?1 litter. Phosphorus was the most poorly extracted nutrient, with only 16% of the total applied P extracted when 30 g pot?1 litter was applied and only 6% extracted at the higher litter rates. This suggests that the same problem of P buildup that has been reported in soils under pasture may also occur when poultry litter is repeatedly applied to the same soil planted to cotton. These results show that broiler litter not only supplied enough N but also supplied the four other macronutrients (P, K, Ca, and Mg) in amounts sufficient to support normal cotton growth. This research implies that poultry litter can effectively substitute for several fertilizers to meet crop macronutrient (N, P, K, Ca, and Mg) needs in soils deficient in any or all of these nutrients.  相似文献   

7.
Compost application to turf grasses can increase availability of nutrients in soil and improve growth, but can potentially lead to accumulation of macronutrients in soil and contribute to leaching and runoff losses. The objectives of this study were to investigate the influence of compost source and application rate on concentrations of plant-available macronutrients in soil over 29 months after a one-time application to saint augustine grass [Stenotaphrum secundatum (Walt.) Kuntze] and Bermuda grass [Cynodon dactylon (L.) Pers.] turf. Compost application increased soil organic C, P, Ca, and S concentrations by 3 months after addition, but further increases from 3 to 29 months were seldom observed. In contrast, NO3-N and K levels declined while Mg levels increased slightly from 3 to 29 months. Seasonal or cyclical patterns of soil macronutrient levels were apparent, as lower concentrations were observed during dormant stages of Bermuda grass growth in winter. Initial macronutrient concentrations of compost sources strongly influenced macronutrient dynamics in surface soil, while higher application rates resulted in higher levels of P, K, Ca, Mg, but not NO3-N and S. Higher levels of macronutrients in Bermuda grass than saint augustine grass turf suggested plant-mediated uptake and assimilation differed between turf grass species. Utilization of turf grass systems for compost application should take into account plant species composition and the related impacts of plant uptake. Macronutrient concentrations were significantly correlated with both total organic C and dissolved organic C (DOC). Formation of organic matter-cation complexes appeared to influence macronutrient dynamics in soil, and may contribute to leaching and runoff losses.  相似文献   

8.
Long‐term conservation tillage can modify vertical distribution of nutrients in soil profiles and alter nutrient availability and yields of crops. This study aimed to evaluate the effect of 14 yr of conventional (CT) and reduced tillage (RT) on soil macronutrient availability (0–5, 5–15, 15–30 cm) and uptake by Italian ryegrass and maize in a forage rotation under a temperate–humid climate (NW Spain). Soil contents of total C, plant available Ca, Mg, Na, K and P and their uptake by plants were evaluated over 2 yr. The three‐way ANOVA showed that tillage and its interactions with soil depth and sampling date have little influence on soil C and macronutrients contents (<13% of variance explained). In the topsoil layer, all studied variables (except K) increased in RT compared with CT, but they remained unchanged (C, Ca and Na) or decreased (Mg, K and P) in deeper layers. Crop yields were greater with RT than CT during the year with soil‐water‐deficit periods, while limited tillage effect was found in the other year. Whereas no differences were obtained for maize, nutrient concentration (Mg, Na, K and P) in ryegrass increased under RT. Conservation tillage improved surface soil fertility, maize yield and ryegrass nutrient content.  相似文献   

9.
Several interelemental relationships have been examined in field‐cultivated wheat (Triticum aestivum L. cv Vergina) growing on naturally enriched copper (Cu) soils. Mean soil Cu concentration per site ranged from 103–394 μg.g‐1 dry weight (DW). Interrelationships between Cu, iron (Fe), calcium (Ca), potassium (K), zinc (Zn), lead (Pb), and magnesium (Mg) concentrations in the soil and plant tissue (roots, stems, and leaves) were examined using Principle Components Analysis. Soil samples were clustered according to collection site and were primarily differentiated according to their Cu concentrations. Soil Cu concentrations were positively correlated with Zn, Ca, Fe, and K in the soil, with Cu, K, and Ca in the roots, and Cu and Fe in the leaves and negatively correlated with Fe in the roots. The increase in Cu in the roots and leaves was positively correlated with increases in K and Ca in the roots and Fe and Ca in the leaves, but negatively with Fe in the roots. Increases in leaf Ca concentrations were correlated with increases in Mg and decreases in Zn concentrations in the leaf. Plants growing in soil with high Cu concentration exhibited toxicity symptoms with reduced height, decreased total leaf area and lower chlorophyll concentrations. Photosynthesis expressed per unit leaf area was not affected by increasing Cu concentrations in the soil or plant tissue.  相似文献   

10.
This research evaluates the influence of light regime and substrate composition on the flower productivity and leaf macronutrient content of two gerbera cultivars (‘Ruby Red’ and ‘Vino’) grown in a greenhouse. A special emphasis was given to macro-element ratios in gerbera leaf. The results confirm positive influence of supplemental lighting on flower yield in both gerbera cultivars. Also, mixed substrate (coco fiber + rice husks) resulted with higher flower yield. Cultivar ‘Vino’ showed better productivity and significantly lower concentration of nitrogen (N), potassium (K), and magnesium (Mg) as compared to ‘Ruby Red’. The total flower productivity per plant correlated with some of the tested macronutrients in gerbera leaf (N, K, Mg) only in natural light conditions. Among all calculated leaf nutrient ratios, only P/Mg was significantly and positively correlated to flower yield, based on data from both light variants.  相似文献   

11.
Effectiveness of surface-applied unincorporated broiler litter as a fertilizer relative to conventional inorganic fertilizers under no-till or conventional-till cotton (Gossypium hirsutum L.) production systems in the upland soils of the southern and southeastern USA is not well documented. The objectives of this research were to (1) test if broiler litter improves plant macronutrient (N, P, K, and Mg) nutrition of cotton above that of cotton fertilized with conventional inorganic fertilizers and (2) determine if lack of incorporating litter into the soil reduces macronutrient concentration in cotton plant parts in an upland soil considered marginal for cotton. Six treatments consisting of an unfertilized control, a fertilized standard (STD), two litter-only, and two litter plus inorganic N as urea–ammonium nitrate solution (UAN) were tested in two adjacent fields, one under no-till (NT) and the other under conventional-till (CT) systems. Litter alone, UAN, or a combination of litter plus UAN were applied to supply 101 kg ha−1 plant available N assuming nearly all of the UAN-N and 50% of the total litter N becomes plant available during the cotton growing season. Concentration of N, P, K, and Mg were measured in leaves, stems, and reproductive parts on three or four dates between early flowering and maturity. Cotton fertilized with the litter-only treatments always had less N concentration but greater P and K concentration in leaves, stems, and reproductive parts than cotton that received the STD treatment. Leaf and stem Mg concentration seems to depend on the N concentration in these plant parts. Lack of incorporating litter into the soil reduced N concentration in nearly all plant parts at all growth stages, suggesting some amount of the litter-derived N is lost due to lack of incorporation. Lack of incorporation also reduced leaf and stem Mg concentration, which seemed to be due to its reducing effect on N concentration. Unlike N and Mg, lack of incorporation did not consistently affect concentrations of P and K in all plant parts. Regardless of the incorporation treatment, fertilization with the litter-only treatments increased tissue P and K concentration and supported lint yield exceeding that of the STD without increasing tissue N concentration.  相似文献   

12.
Abstract

Mature leaves of naturally occurring Jatropha curcas plants and soils samples were collected from four different populations to determine the soil characteristics, soil‐available nutrients, and leaf nutrient contents. This study provides a reliable account of the endogenic concentrations of nutrients present in jatropha leaves. Soil manganese [diethylenetriamine pentaacetic acid (DTPA)‐Mn] was the only soil‐available nutrient significantly correlated with its content in the plant. Relationships between soil characteristics, available nutrient in soil, and their content in plant leaves were also attempted.  相似文献   

13.
ABSTRACT

Nutrient use efficiency and overall plant fertilization strategies are key issues in food production in increasingly adverse environmental conditions. The plant Actinidia arguta (Siebold et Zucc.) Planch. ex Miq. is a species that has increased cultivation in recent years. The aim of this study was to assess seasonal leaf macronutrient changes and the relationship between soil nitrogen (N) fertility and N, as well as the concentration of other leaf essential macronutrients. The experiment was conducted during the growing seasons of 2015–2016 and tested two cultivars: “Weiki” and “Geneva”. Soil N level had a significant impact on the concentration of all leaf macronutrients, except sulfur, in both cultivars. Leaf macronutrient concentration was significantly lower in 2015, which was characterized by a higher average temperature and lower precipitation than the long term averages. A clear downward trend for leaf N and potassium concentrations was observed during the vegetation period. In contrast, leaf calcium and magnesium concentrations increased gradually throughout the season, while phosphorus and sulfur concentration changes were more cultivar dependent. In the soil and climatic conditions in which study was conducted (Central Europe), a time from mid-July to mid-August seems to be the suitable for leaf sampling for diagnostic purposes. Fruit macronutrient composition was predominantly cultivar and year dependent.  相似文献   

14.
Accelerated soil erosion can impact upon agronomic productivity by reducing topsoil depth (TSD), decreasing plant available water capacity and creating nutrient imbalance in soil and within plant. Research information on soil‐specific cause – effect relationship is needed to develop management strategies for restoring productivity of eroded soils. Therefore, two field experiments were established on Alfisols in central Ohio to quantify erosion‐induced changes in soil properties and assess their effects on corn growth and yield. Experiment 1 involved studying the effects of past erosion on soil properties and corn yield on field runoff plots where soil was severely eroded and comparing it with that on adjacent slightly eroded soil. In addition, soil properties and corn grain yield in runoff plots were compared on side‐slopes with that on toe‐slopes or depositional sites. Experiment 2 involved relating corn growth and yield to topsoil depth on a sloping land. With recommended rates of fertilizer application, corn grain yield did not differ among erosional phases. Fertilizer application masked the adverse effects of erosion on corn yield. Corn grain yield on depositional sites was about 50 per cent more than that on side‐slope position. Corn plants on the side‐slope positions exhibited symptoms of nutrient deficiency, and the ear leaves contained significantly lower concentrations of P and Mg and higher concentrations of Mn and K than those grown on depositional sites. Corn grain yield in experiment 2 was positively correlated with the TSD. Soil in the depositional site contained significantly more sand and silt and less clay than that on the side‐slope position. There were also differences in soil properties among erosional phases. The soil organic carbon (SOC) content was 19\7 g kg−1 in slightly eroded compared with 15\1 g kg−1 in severely eroded sites. Aggregate stability and the mean weight diameter (MWD) were also significantly more in slightly eroded than severely eroded soils. Adverse effects of severe erosion on soil quality were related to reduction in soil water retention, and decrease in soil concentration of N and P, and increase in those of K, Ca and Mg. Severe erosion increased leaf nutrient contents of K, Mn and Fe and decreased those of Ca and Mg. Corn grain yield was positively correlated with aggregation, silt and soil N contents. It was also negatively correlated with leaf content of Fe. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
The correct nutrition of basil (Ocinum basilicum L.) is important to increase its production and quality; however, few papers have deal with this subject. The aim of this work was to evaluate the effects of omission of individual macronutrients on the growth and nutritional status of basil cultivated in nutritive solution. The treatments consisted of nutrient solutions with nitrogen, phosphorus, potassium, calcium, magnesium or sulfur (N, P, K, Ca, Mg, or S) omissions and a complete solution treatment. The plants were cultivated in 8 L plant pots. Plant height, number of leaves per plant, leaf area, relative chlorophyll index, net photosynthesis rate, stomatal conductance, plant dry matter, concentration levels of macronutrients in the aerial part and root system, and nutritional disorders were all evaluated. Nutrient omission was a limiting factor for plant development, substantially reducing its growth. There was also a considerable decrease in nutrient accumulation when compared to the control treatment.  相似文献   

16.
A semi-hydroponic culture was used to compare growth and cation nutrition of mycorrhizal (Paxillus involutus) and non-mycorrhizal Scots pine seedlings. When roots and hyphae grew together, concentrations and contents of macronutrients in needles and roots were not significantly different between mycorrhizal and non-mycorrhizal plants. When grown in two separate compartments, root potassium (K) concentrations, concentrations and contents of calcium (Ca) in needles and roots, needle nitrogen (N) concentrations, total N content and contents of root K and Mg were significantly reduced in mycorrhizal plants. Whereas 15N abundance increased in roots of mycorrhizal plants. The results indicated that the extraradical mycelium of the fungus strain used was able to transport N to the plant but did not contribute to long-term cation uptake and growth of host plants. An insufficient supply of macro-elements [N, phosphorus (P)] may account for the reduced growth of mycorrhizal plants and the differences in cation uptake between mycorrhizal and non-mycorrhizal plants.  相似文献   

17.
  【目的】  黔西南烤烟还原糖(RS)和总糖(TS)含量过高是影响其品质的两个重要原因。我们研究了该地区土壤养分对烟叶总糖和还原糖的贡献,为通过施肥提高黔西南烟区的烤烟质量提供理论依据。  【方法】  选取黔西南州晴隆、普安、兴仁、兴义、贞丰和安龙6个县(市)烟草种植集中连片区,确定典型烟田,采集土壤样品和对应的烤后烟叶样品,测定土壤大、中、微量养分含量以及烟叶总糖和还原糖含量,并对两者之间的关系进行相关分析、逐步回归分析和通径分析。  【结果】  黔西南州烟叶的总糖和还原糖含量总体偏高;植烟区土壤酸碱性处于中性至弱碱性,土壤有机质、碱解氮、交换性钙、交换性镁、有效铁和有效锰含量丰富,速效钾、有效磷、有效铜、有效锌、有效硼和有效钼含量适宜,但存在空间分布不均问题。烟叶总糖和还原糖与土壤养分显著相关,其中,烟叶总糖与土壤速效钾(AK)、有效锌(Zn)和有效硼(B)呈极显著负相关,与土壤有效钼(Mo)呈极显著正相关;烟叶还原糖与土壤速效钾(AK)呈极显著负相关,与土壤有效锌(Zn)和有效硼(B)呈显著负相关,与有效铜(Cu)呈极显著正相关,与有效锰(Mn)呈显著正相关。烟叶总糖和还原糖与土壤养分的回归方程分别为TS=31.69?1.78Zn+17.05Mo+1.09Cu+0.003Mg?0.01AK和RS=25.12?0.01AK+1.39Cu+6.91Mo。土壤速效钾、有效铜、有效锌、有效钼和交换性镁为影响烟叶总糖含量的重要指标,土壤速效钾、有效铜和有效钼是影响烟叶还原糖含量的重要指标。通径分析表明,土壤养分含量对烟叶糖含量既有正面(促进)也有负面(制约)作用。  【结论】  对黔西南州烟叶糖含量贡献较大的土壤养分是速效钾、有效镁、有效铜、有效锌和有效钼。在速效钾和有效锌相对丰富的情况下,土壤速效钾含量和有效锌含量会抑制烤后烟叶总糖、还原糖含量的积累,而有效镁、有效铜和有效钼会增加烤后烟叶的总糖和还原糖含量。  相似文献   

18.
Abstract

The effect of salinity in inducing soil macro and micronutrient deficiencies that can decrease crop growth was evaluated in a corn (Zea mays L.) field located in east central Wyoming. In this study water soluble Na was found to be a better predictor of salinity than pH and other cations. Soil saturated paste extracts had electrical conductivities that were negatively correlated with soil total K, Cu, Fe, and Mn. Total N, NO3‐N, PO4‐P, Zn, pH, and water soluble Na, Ca, and Mg of the soil were positively correlated with EC. Significant positive relationships existed between soil EC and N, P, Mo, and Zn, and negative relationships with K, Cu, Fe, and Mn of corn leaves and kernels. Concentrations of nutrients in the kernels were positively correlated with corresponding nutrient concentrations in the leaves and with AB‐DTPA extractable soil nutrients. The analysis of variance of EC data indicated that soil samples possessing high salinity were higher in pH and contained significantly higher soluble Na, Ca and Mg, total N, N03‐N, PO4‐P, and Zn and significantly lower Mn compared to samples having low salinity. The kernel weight per cob and plant height were significantly reduced as salinity increased.  相似文献   

19.
Abstract

The lowbush blueberry (Vaccinium angustifolium Ait.) is an important commercial crop of the Lac‐Saint‐Jean area (Quebec, Canada). The major blueberry fields are located on sandy soils relatively poor in available mineral nutrients. The nutrients originate from a thin organic layer found on the top of these sandy soils. The leaf mineral contents (N, P, K, Mg, Ca, Mn, Fe, Cu, Zn and B) were measured in five blueberry fields during 1984 and 1985. Soil pH and soil available P, K, and Mg were also assessed. The results show that the leaf mineral contents are generally adequate. However, K and Zn might be occasionally deficient when compared to the actual established standards. The available Mg in soil was significantly correlated with the leaf Mg concentration. The data also suggest that the increase of the pH following the burn pruning seems to influence the nutrition of this species.  相似文献   

20.
《Journal of plant nutrition》2013,36(12):2453-2468
Abstract

The top three leaves play important roles in biomass production and grain yield of rice (Oryza sativa L.) crop since the three leaves not only assimilate majority of carbon for grain filling during ripening phase, but also provide large proportion of remobilized‐nitrogen (N) for grain development during their senescence. The objectives of this study were to (a) compare senescence of the top three leaves and (b) compare the changes in N, chlorophyll, and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) contents of the top three leaves after their full expansion in field‐grown rice plants. When the basis of comparison among the top three leaves was plant age in terms of days after transplanting (DAT), senescence generally started earliest in ?3rd leaf, intermediate in ?2nd leaf, and latest in flag leaf. If the basis of comparison among the top three leaves was leaf age in terms of days after full leaf expansion (DAFE), it was not clear which leaf senesced earlier. Senescence rate was generally greatest in flag leaf, intermediate in ?2nd leaf, and smallest in ?3rd leaf. Ribulose‐1,5‐bisphosphate carboxylase/oxygenase content declined earlier, and at a faster rate than N and chlorophyll contents during the senescence of all top three leaves. Correlation analysis indicated a close relationship between N and chlorophyll contents. Ribulose‐1,5‐bisphosphate carboxylase/oxygenase content correlated with N content better than with chlorophyll content. The suitability of N, chlorophyll, and Rubisco contents for quantifying the leaf senescence of field‐grown rice plants is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号