首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
不同耕作方式对土壤有机碳、微生物量及酶活性的影响   总被引:12,自引:2,他引:10  
【目的】依托8年长期(2005~2012)固定道定位试验,研究不同耕作方式对土壤有机碳、土壤微生物量、土壤酶活性在0—90 cm土层的分布特征,为优化中国西北干旱区的耕作方式提供理论依据。【方法】试验包括固定道垄作(PRB)、固定道平作(PFT)与传统耕作(CT)三种耕作模式下的土壤有机碳土壤总有机碳(TOC)、颗粒有机碳(POC)、土壤微生物量碳(MBC)、土壤微生物量氮(MBN)、土壤微生物量磷(MBP)、蔗糖酶、过氧化氢酶、脲酶及小麦产量进行了测定和分析。【结果】在0—90 cm土层,不同耕作方式下的TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性均随着土层的增加呈下降趋势,过氧化氢酶活性呈先下降后增大的分布特征;在0—60 cm,固定道保护性耕作能够显著增加心土层作物生长带土壤有机碳储量,有机碳储量大小为PRBPFTCT;PRB、PFT较CT可以显著增加0—10 cm作物生长带TOC、POC、MBC、MBN、MBP含量、蔗糖酶、脲酶活性,其大小为PRBPFTCT;耕作方式对过氧化氢酶活性影响不显著;TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性、过氧化氢酶活性之间均达到了显著或极显著相关。【结论】PRB较PFT、CT能够提高耕作层(0—10 cm)土壤有机碳含量、土壤微生物量、土壤酶活性, 增加作物产量, 增大0—60 cm土层有机碳储量,耕作方式(PRB、PFT及CT)对10 cm以下土层土壤环境改善作用不明显。  相似文献   

2.
 The effects of growing trees in combination with field crops on soil organic matter, microbial biomass C, basal respiration and dehydrogenase and alkaline phosphatase activities were studied in soils under a 12-year-old Dalbergia sissoo (a N2-fixing tree) plantation intercropped with a wheat (Triticum aestivum) – cowpea (Vigna sinensis) cropping sequence. The inputs of organic matter through D. sissoo leaf litter increased and crop roots decreased with the increase in tree density. Higher organic C and total N, microbial biomass C, basal soil respiration and activities of dehydrogenase and alkaline phosphatase were observed in treatments with tree-crop combination than in the treatment without trees. Soil organic matter, microbial biomass C and soil enzyme activities increased with the decrease in the spacing of the D. sissoo plantation. The results indicate that adoption of the agroforestry practices led to an improved organic matter status of the soil, which is also reflected in the increased nutrient pool and microbial activities necessary for long-term productivity of the soil. However, tree spacing should be properly maintained to minimize the effects of shading on the intercrops. Received: 21 February 1997  相似文献   

3.
Soil enzymes activities and microbial biomass have an important influence on nutrient cycling. The spatial distribution of soil enzymes activities and microbial biomass were examined along a latitudinal gradient in farmlands of Songliao Plain, Northeast China to assess the impact of climatic changes along the latitudinal transect on nutrient cycling in agroecosystems. Top soils (0-20 cm depth) were sampled in fields at 7 locations from north (Hallun) to south (Dashiqiao) in the end of October 2005 after maize harvest. The contents of total C, N, and P, C/N, available N, and available P increased with the latitude. The activities of invertase and acid phosphatase, microbial biomass (MB) C and N, and MBC/MBN were significantly correlated with latitude (P 〈 0.05, r^2 = 0.198, 0.635, 0.558, 0.211 and 0.317, respectively), that is, increasing with the latitude. Significant positive correlations (P 〈 0.05) were observed between invertase activity and the total N and available P, and between acid phosphatase activity and the total C, C/N, available N, total P and available P. The urease, acid phosphatase, and dehydrogenase activities were significantly correlated with the soil pH and electrical conductivity (EC) (P 〈 0.05). MBC and MBN were positively correlated with the total C, C/N, and available P (P 〈 0.05). The MBC/MBN ratio was positively correlated with the total C, total N, C/N, and available N (P 〈 0.05). The spatial distribution of soil enzyme activities and microbial biomass resulted from the changes in soil properties such as soil organic matter, soil pH, and EC, partially owing to variations in temperature and rainfall along the latitudinal gradient.  相似文献   

4.
Mild extractions were used as indicators of easily decomposable organic matter (OM). However, the chemical composition of extracted OM often remained unclear. Therefore, the composition of cold and hot water–extractable OM was investigated in the O horizons (Oi, Oe, Oa) of a 170 y old beech stand (Fagus sylvatica) in the Ore Mtns., SE Germany. To simulate litter decomposition, the O horizon samples were incubated for 1 week under defined conditions. Cold‐ and hot‐water extracts were analyzed and chemically characterized by pyrolysis–field ionization mass spectrometry (Py‐FIMS). The C and N concentrations were always lower in the cold‐(C: 2.69 to 3.95 g kg–1; N: 0.14 to 0.29 g kg–1) than in the hot‐water extracts (C: 13.77 to 15.51 g kg–1; N: 0.34 to 0.83 g kg–1). The C : N ratios of both extracts increased with increasing depth. Incubation increased the concentrations of C and N in all water extracts, while C : N ratios of extracts decreased. The molecular‐chemical composition of cold and hot water–extracted OM revealed distinct differences. Generally, cold water–extracted OM was thermally more stable than hot water–extracted OM. The mass spectra of the hot water–extracted organic matter revealed more intensive signals of carbohydrates, phenols, and lignin monomers. Additionally, the n‐C28 fatty acid and the n‐C38–to–n‐C52 alkyl monoesters clearly distinguished the hot‐ from the cold‐water extract. A principle‐component analysis visualized (1) alterations in the molecular‐chemical composition of cold‐ and hot‐water extracts due to previous incubation of the solid O horizon samples and (2) a decomposition from the Oi to the Oh horizon. This provides evidence that the macromorphological litter decomposition was reflected by the chemical composition of water extracts, and that Py‐FIMS is well‐suited to explain at the molecular level why OM decomposability is correlated with water‐extracted C.  相似文献   

5.
Short‐rotation forestry (SRF) on arable soils has high potentials for biomass production and leads to long‐term no‐tillage management. In the present study, the vertical distributions of soil chemical and microbial properties after 15 y of SRF with willows and poplar (Salix and Populus spp.) in 3‐ and 6‐year rotations on an arable soil were measured and compared to a pertinent tilled arable site. Two transects at different positions in the relief (upper and lower slope; transect 1 and 2) were investigated. Short‐rotation forestry caused significant changes in the vertical distribution of all investigated soil properties (organic and microbial C, total and microbial N, soil enzyme activities), however, the dimension and location (horizons) of significant effects varied. The rotation periods affected the vertical distribution of the soil properties within the SRF significantly. In transect 1, SRF had higher organic‐C concentrations in the subsoil (Bv horizon), whereas in transect 2, the organic‐C concentrations were increased predominantly in the topsoil (Ah horizon). Sufficient plant supply of P and K in combination with decreased concentrations of these elements in the subsoil under SRF pointed to an effective nutrient mobilization and transfer from the deeper soil horizons even in the long term. In transect 1, the microbial‐C concentrations were higher in the B and C horizons and in transect 2 in the A horizons under SRF than under arable use. The activities of β‐glucosidases and acid phosphatases in the soil were predominantly lower under SRF than under arable use in the topsoil and subsoil. We conclude, that long‐term SRF on arable sites can contribute to increased C sequestration and changes in the vertical distribution of soil microbial biomass and soil enzyme activities in the topsoil and also in the subsoil.  相似文献   

6.
The demand for information on cropping system impact on soil organic matter (SOM) calls for efforts to improve the utilization of short‐term field experiments (e.g., to evaluate the parameterization of cropping systems in models). Those approaches have coped with the problem of determining small SOM changes within a large background mass. Thus, objectives of this survey are (1) the improvement of the minimum detectable difference (MDD) in SOM in the hudycrop short‐term field experiment by methods of sampling design and data treatment, (2) the verification to what extend the hudycrop short‐term field experiment allows for the determination of management induced effects on SOM, and (3) the investigation to what extent the obtained results may be suitable to evaluate the parameterization of a SOM balance model. The design of the hudycrop is suitable for excluding outliers plotwise. The estimation of plot means can be improved by the sampling design. Instead of determining a single plot mean in a mixed sampling procedure, the design provides multiple values for each plot, allowing for the identification of extreme values before calculating plot means. In consequence, minimum detectable differences decrease by a factor of 0.53 for soil organic C (SOC) and 0.63 for soil total N (STN) masses, allowing for detection of changes in the magnitude of 3.7 and 2.6% of background SOC and STN levels, respectively. Differences between treatments, however, are significant with corrected values (after outlier exclusion) for the crop production systems with the highest impact (potatoes and mulched red clover). Determining outliers based on Student's t‐test gives the lowest MDD and is therefore considered to be the most suitable method in this case. Correlations between apparent changes and SOM balances according to the HU‐MOD–2 model, used in this survey, indicate that the experimental design, in principal, is suitable for the evaluation of the parameterization of crop production systems in models. Still, an improved precision in SOM change detection is necessary. Reasonable options for that purpose are discussed in the paper.  相似文献   

7.
Within different land‐use systems such as agriculture, forestry, and fallow, the different morphology and physiology of the plants, together with their specific management, lead to a system‐typical set of ecological conditions in the soil. The response of total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities involved in C and N cycling to different soil management was investigated in a sandy soil at a field study at Riesa, Northeastern Germany. The management systems included agricultural management (AM), succession fallow (SF), and forest management (FM). Samples of the mineral soil (0—5, 5—10, and 10—30 cm) were taken in spring 1999 and analyzed for their contents on organic C, total N, NH4+‐N and NO3‐N, KCl‐extractable organic C and N fractions (Corg(KCl) and Norg(KCl)), microbial biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With the exception of Norg(KCl), all investigated C and N pools showed a clear relationship to the land‐use system that was most pronounced in the 0—5 cm profile increment. SF resulted in greater contents of readily available C (Corg(KCl)), NH4+‐N, microbial biomass C and N, and enzyme activities in the uppermost 5 cm of the soil compared to all other systems studied. These differences were significant at P ≤ 0.05 to P ≤ 0.001. Comparably high Cmic:Corg ratios of 2.4 to 3.9 % in the SF plot imply a faster C and N turnover than in AM and FM plots. Forest management led to 1.5‐ to 2‐fold larger organic C contents compared to SF and AM plots, respectively. High organic C contents were coupled with low microbial biomass C (78 μg g—1) and N contents (10.7 μg g—1), extremely low Cmic : Corg ratios (0.2—0.6 %) and low β‐glucosidase (81 μg PN g—1 h—1) and L‐asparaginase (7.3 μg NH4‐N g—1 2 h—1) activities. These results indicate a severe inhibition of mineralization processes in soils under locust stands. Under agricultural management, chemical and biological parameters expressed medium values with exception for NO3‐N contents which were significantly higher than in SF and FM plots (P ≤ 0.005) and increased with increasing soil depth. Nevertheless, the depth gradient found for all studied parameters was most pronounced in soils under SF. Microbial biomass C and N were correlated to β‐glucosidase and L‐asparaginase activity (r ≥ 0.63; P ≤ 0.001). Furthermore, microbial biomass and enzyme activities were related to the amounts of readily mineralizable organic C (i.e. Corg(KCl)) with r ≥ 0.41 (P ≤ 0.01), suggesting that (1) KCl‐extractable organic C compounds from field‐fresh prepared soils represent an important C source for soil microbial populations, and (2) that microbial biomass is an important source for enzymes in soil. The Norg(KCl) pool is not necessarily related to the size of microbial biomass C and N and enzyme activities in soil.<?show $6#>  相似文献   

8.
 The effect of long-term waste water irrigation (up to 80 years) on soil organic matter, soil microbial biomass and its activities was studied in two agricultural soils (Vertisols and Leptosols) irrigated for 25, 65 and 80 years respectively at Irrigation District 03 in the Valley of Mezquital near Mexico City. In the Vertisols, where larger amounts of water have been applied than in the Leptosols, total organic C (TOC) contents increased 2.5-fold after 80 years of irrigation. In the Leptosols, however, the degradability of the organic matter tended to increase with irrigation time. It appears that soil organic matter accumulation was not due to pollutants nor did microbial biomass:TOC ratios and qCO2 values indicate a pollutant effect. Increases in soil microbial biomass C and activities were presumably due to the larger application of organic matter. However, changes in soil microbial communities occurred, as denitrification capacities increased greatly and adenylate energy charge (AEC) ratios were reduced after long-term irrigation. These changes were supposed to be due to the addition of surfactants, especially alkylbenzene sulfonates (effect on denitrification capacity) and the addition of sodium and salts (effect on AEC) through waste water irrigation. Heavy metals contained in the sewage do not appear to be affecting soil processes yet, due to their low availability. Detrimental effects on soil microbial communities can be expected, however, from further increases in pollutant concentrations due to prolonged application of untreated waste water or an increase in mobility due to higher mineralization rates. Received: 28 April 1999  相似文献   

9.
Long‐term effects of liming on microbial biomass and activity and soil organic matter (SOM) were investigated in samples from organic horizons (Of/Oh) in spruce forests at Adenau, Höglwald, Idar‐Oberstein, and Schluchsee (Southern Germany) where plots have been manually treated 7 to 13 years ago with dolomitic limestone. At all sites, pH values were markedly increased after liming. The contents of C and N in the organic horizons of the limed plots appeared to be lower with the greatest decrease at Höglwald (Dystric Luvisol) where liming has affected the soil properties for the longest time of all sites. Catalase activity was promoted after liming at Adenau (Cambic Podzol). This was also the case for the Dystric Luvisol where liming resulted also in higher basal respiration. Biomass‐C was higher in samples from the limed plot at Idar‐Oberstein (Dystric Cambisol). The 13C CPMAS NMR spectra of organic horizons from the control plots indicate no differences in the gross carbon composition of SOM. Furthermore, spectra from the limed Cambic Podzol, Dystric Cambisol, and Haplic Podzol (Schluchsee) were remarkably similar. However, for the Dystric Luvisol, the lime‐induced promotion of microbial activity resulted in lower O‐alkyl‐C intensity. The observed patterns of microbial biomass and activity were site‐dependent rather than a result of liming. Obviously liming had only small long‐term effects on the humus quality in the organic horizons, as far as detectable by CPMAS NMR spectroscopy. More sensitive techniques like pyrolysis‐GC/MS should be applied to analyze differences in C composition.  相似文献   

10.
Long‐term applications of inorganic fertilizers and farmyard manure influence organic matter as well as other soil‐quality parameters, but the magnitude of change depends on soil‐climatic conditions. Effects of 22 annual applications (1982–2003) of N, P, and K inorganic fertilizers and farmyard manure (M) on total organic carbon (TOC) and nitrogen (TON), light‐fraction organic C (LFOC) and N (LFON), microbial‐biomass C (MB‐C) and N (MB‐N), total and extractable P, total and exchangeable K, and pH in 0–20 cm soil, nitrate‐N (NO ‐N) in 0–210 cm soil, and N, P, and K balance sheets were determined using a field experiment established in 1982 on a calcareous desert soil (Orthic Anthrosol) at Zhangye, Gansu, China. A rotation of irrigated wheat (Triticum aestivum L.)‐wheat‐corn (Zea mays L.) was used to compare the control, N, NP, NPK, M, MN, MNP, and MNPK treatments. Annual additions of inorganic fertilizers for 22 y increased mass of LFON, MB‐N, total P, extractable P, and exchangeable K in topsoil. This effect was generally enhanced with manure application. Application of manure also increased mass of TOC and MB‐C in soil, and tended to increase LFOC, TON, and MB‐N. There was no noticeable effect of fertilizer and manure application on soil pH. There was a close relationship between some soil‐quality parameters and the amount of C or N in straw that was returned to the soil. The N fertilizer alone resulted in accumulation of large amounts of NO ‐N at the 0–210 cm soil depth, accounting for 6% of the total applied N, but had the lowest recovery of applied N in the crop (34%). Manure alone resulted in higher NO ‐N in the soil profile compared with the control, and the MN treatment had the highest amount of NO ‐N in the soil profile. Application of N in combination with P and/or K fertilizers in both manured and unmanured treatments usually reduced NO ‐N accumulation in the soil profile compared with N alone and increased the N recovery in the crop as much as 66%. The N that was unaccounted for, as a percentage of applied N, was highest in the N‐alone treatment (60%) and lowest in the NPK treatment (30%). In the manure + chemical fertilizer treatments, the unaccounted N ranged from 35% to 43%. Long‐term P fertilization resulted in accumulation of extractable P in the surface soil. Compared to the control, the amount of P in soil‐plant system was surplus in plots that received P as fertilizer and/or manure, and the unaccounted P as percentage of applied P ranged from 64% to 80%. In the no‐manure plots, the unaccounted P decreased from 72% in NP to 64% in NPK treatment from increased P uptake due to balanced fertilization. Compared to the control, the amount of K in soil‐plant system was deficit in NPK treatment, i.e., the recovery of K in soil + plant was more than the amount of applied K. In manure treatments, the recovery of applied K in crop increased from 26% in M to 61% in MNPK treatment, but the unaccounted K decreased from 72% in M to 37% in MNPK treatment. The findings indicated that integrated application of N, P, and K fertilizers and manure is an important strategy to maintain or increase soil organic C and N, improve soil fertility, maintain nutrients balance, and minimize damage to the environment, while also improving crop yield.  相似文献   

11.
The production and composition of leaf litter, soil acidity, exchangeable nutrients, and the amount and distribution of soil organic matter were analyzed in a broad‐leaved mixed forest on loess over limestone in Central Germany. The study aimed at determining the current variability of surface‐soil acidification and nutrient status, and at identifying and evaluating the main factors that contributed to the variability of these soil properties along a gradient of decreasing predominance of European beech (Fagus sylvatica L.) and increasing tree‐species diversity. Analyses were carried out in (1) mature monospecific stands with a predominance of beech (DL 1), (2) mature stands dominated by three deciduous‐tree species (DL 2: beech, ash [Fraxinus excelsior L.], lime [Tilia cordata Mill. and/or T. platyphyllos Scop.]), and (3) mature stands dominated by five deciduous‐tree species (DL 3: beech, ash, lime, hornbeam [Carpinus betulus L.], maple [Acer pseudoplatanus L. and/or A. platanoides L.]). The production of leaf litter was similar in all stands (3.2 to 3.9 Mg dry matter ha–1 y–1) but the total quantity of Ca and Mg deposited on the soil surface by leaf litter increased with increasing tree‐species diversity and decreasing abundance of beech (47 to 88 kg Ca ha–1 y–1; 3.8 to 7.9 kg Mg ha–1 y–1). The soil pH(H2O) and base saturation (BS) measured at three soil depths down to 30 cm (0–10 cm, 10–20 cm, 20–30 cm) were lower in stands dominated by beech (pH = 4.2 to 4.4, BS = 15% to 20%) than in mixed stands (pH = 5.1 to 6.5, BS = 80% to 100%). The quantities of exchangeable Al and Mn increased with decreasing pH and were highest beneath beech. Total stocks of exchangeable Ca (0–30 cm) were 12 to 15 times larger in mixed stands (6660 to 9650 kg ha–1) than in beech stands (620 kg ha–1). Similar results were found for stocks of exchangeable Mg that were 4 to 13 times larger in mixed stands (270 to 864 kg ha–1) than in beech stands (66 kg ha–1). Subsoil clay content and differences in litter composition were identified as important factors that contributed to the observed variability of soil acidification and stocks of exchangeable Ca and Mg. Organic‐C accumulation in the humus layer was highest in beech stands (0.81 kg m–2) and lowest in stands with the highest level of tree‐species diversity and the lowest abundance of beech (0.27 kg m–2). The results suggest that redistribution of nutrients via leaf litter has a high potential to increase BS in these loess‐derived surface soils that are underlain by limestone. Species‐related differences of the intensity of soil–tree cation cycling can thus influence the rate of soil acidification and the stocks and distribution of nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号