首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A long‐term field experiment, conducted since 1962 in Gumpenstein (Austria) on a Dystric Cambisol, was used for the present investigation. We combined a physical fractionation procedure with the determination of natural abundance of 13C and FT‐IR spectroscopy to study the influence of fertilizer amendments (organic manure and mineral fertilizers) and management practices (fallow vs. cropped) on changes in organic carbon (OC) associated with different particle‐size fractions. The OC content in bulk soil decreased or was not affected by slurry+straw, PK, and NPK treatments in both fallow and cropped plots after 28 and 38 yr of treatment. However, OC in plots receiving organic manures increased depending on the quality of the organic manures applied. The ranking among the different treatments under both fallow and cropped plots was: animal manure (liquid) > animal manure (solid) > cattle slurry = slurry+straw = PK = NPK. Results showed that the two types of management practices, fallow (non‐tilled) vs. cropped (tilled) had effects on OC concentrations. Comparing the OC contribution of particle‐size fractions to the total OC amount revealed the following ranking: silt > clay > fine sand > coarse sand except in the plots receiving solid or liquid animal manure. Size fractions within treatments showed larger variations of 13C abundances than bulk samples between treatments. The natural abundances of 13C increased especially in cropped (and tilled) plots. It was shown by cluster analysis that FT‐IR spectra differentiated between the different treatments originating from different land management practices. The present study revealed that below‐ground C deposition by agricultural plants can hardly compensate the C losses due to tillage.  相似文献   

2.
The present study combined a physical fractionation procedure with the determination of the natural abundance of 15N to investigate the impact of organic manure and mineral fertilizer application, and fallow on changes of N associated with different soil particle size fractions. The long‐term field experiment was conducted since 1956 in Ultuna, Sweden, on an Eutric Cambisol. Nitrogen in bulk soil and in particle size fractions changed significantly since 1956. The Nt concentrations in bulk soil decreased in all treatments not receiving organic materials. Comparing the N contribution of particle‐size fractions to the total N amount revealed the following ranking: silt > clay > fine clay > fine sand > coarse sand. The relative contribution of N in silt sized particles significantly increased from low to high bulk soil N contents, whereas N in clay and fine clay fractions decreased. The C : N ratios of particle size fractions differed considerably more between treatments than C : N ratios in bulk soils. Generally, the C : N ratios decreased from coarse to fine fractions emphasizing the tendency of smaller fractions being more significant as N sink than as Corg sink. 15N abundances varied more between particle size fractions of single treatments than between bulk soil from differently treated plots. Within treatments we observed differences of up to 7.1 ‰ between particle size fractions. In most cases δ 15N values increased with decreasing particle sizes. This pattern on average was similar to changes in δ 13 C. Our results suggest that silt sized particles acted as medium‐term sink of introduced N and that 15N abundances in particle size fractions sensitively reflect changes in N status in response to soil management.  相似文献   

3.
This study investigated long‐term effects of soil management on size distribution of dry‐sieved aggregates in a loess soil together with their organic carbon (OC) and their respiratory activity. Soil management regimes were cropland, which was either abandoned, left bare fallow or cropped for 21 yr. Abandonment increased the abundance of macroaggregates (>2 mm) in the surface soil layer (0–10 cm) and reduced that of microaggregates (<0.25 mm) relative to Cropping, whereas the Fallow treatment reduced the abundance of macroaggregates at depths of 0–10 and 10–20 cm. All treatments yielded similar aggregate size distributions at a depth of 20–30 cm. The SOC content of aggregate size fractions in the surface soil from the Abandoned plots was greater (by 1.2–4.8 g/kg) than that of the corresponding fractions from the Cropped plots, but the opposite trend was observed in the subsurface soils. Conversely, the Fallow treatment reduced the SOC content of every aggregate size fraction. Smaller aggregates generally exhibited greater cumulative levels of C mineralization than larger ones. However, the bulk of the SOC losses from the soils via mineralization was associated with aggregates of >2 mm. Abandonment significantly increased the relative contribution of macroaggregates (>2 mm) to the overall rate of SOC loss, whereas the Fallow treatment significantly reduced the contribution of 0.25–2 mm aggregates to total SOC loss in the surface soil while substantially increasing their contribution in the subsurface soil.  相似文献   

4.
Abstract. Knowledge of changes in soil organic matter (SOM) fractions resulting from agricultural practice is important for decision‐making at farm level because of the contrasting effects of different SOM fractions on soils. A long‐term trial sited under Sudano‐Sahelian conditions was used to assess the effect of organic and inorganic fertilization on SOM fractions and sorghum performance. Sorghum straw and kraal manure were applied annually at 10 t ha?1, with and without urea at 60 kg N ha?1. The other treatments included fallowing, a control (no fertilization), and inorganic fertilization only (urea, 60 kg N ha?1). Fallowing gave significantly larger soil organic carbon and nitrogen (N) levels than any other treatment. Total soil SOM and N concentrations increased in the following order: urea only < straw < control < straw+urea < manure with or without urea < fallow. Farming had an adverse effect on SOM and N status; however, this mostly affected the fraction of SOM >0.053 mm (particulate organic matter, POM). The POM concentrations in the control, straw and urea‐only treatments were about one‐half of the POM concentrations in the fallow treatment. POM concentrations increased in the following order: urea only < control < straw with or without urea < manure with or without urea < fallow. The fraction of SOM <0.053 mm (fine organic matter, FOM) was greater than POM in all plots except in fallow and manure+urea plots. Total N concentration followed the same trend as SOM, but cultivation led to a decline in both POM‐N and FOM‐N. Crop yield was greatest in the manure plots and lowest in the straw, control and urea‐only plots. Results indicate that under Sudano‐Sahelian conditions, SOM, POM and FOM fractions and crop performance were better maintained using organic materials with a low C/N ratio (manure) than with organic material with a high C/N ratio (straw). Urea improved the effect of straw on crop yield and SOM concentration.  相似文献   

5.
Abstract. Experiments were set up at two sites to measure nitrogen (N) leaching loss from applications of separated pig/cattle slurry and cattle farmyard manure(FYM), during winters 1990/91–1993/94 (site A) and from broiler litter and FYM, during winters 1990/91–1992/93 (site B). The manures were applied at a target rate of 200 kg ha-1 total N during the autumn and winter to overwinter fallow or top dressed onto winter rye. The total N in leachate was calculated from leachate N concentrations, in samples collected using ceramic cups buried at 90 cm, and an estimate of drainage volume. Nitrogen losses were greatest following manure applications in September, October and November but losses following applications in December or January were not significantly elevated above those from untreated controls. Losses were consistently lower from FYM than from broiler litter or separated slurry. The presence of a cover crop (winter rye) significantly reduced overall N leaching compared with the fallow, but only reduced the manure N leaching losses at one site during one winter when a high proportion of drainage occurred late. The incorporation of a nitrification inhibitor (DCD) with manures applied in October did not significantly reduce the manure N leaching.  相似文献   

6.
Utilization of N in cattle slurry and liquid manure with Dicyandiamide in field trials In several field trials on deep loess soils, effects of DCD on utilization of N in cattle slurry and liquid manure by silage maize, sugar beets and turf was tested. DCD inhibited nitrification of NH4 nitrogen added with slurry or liquid manure and thus decreased losses by infiltration or leaching considerably. If measured as so called “Nmin nitrogen” at the start of vegetation, amounts of nitrogen actually present in the soil are underrated in plots with slurry or liquid manure + DCD. Addition of DCD at a rate of 30 kg/ha to slurry and 15–30 kg to liquid manure improved in all cases utilization of N in slurry applied in April or between August and November and of liquid manure applied in November. By use of the nitrification inhibitor Dicyandiamide as complement to slurry or liquid manure it is therefore possible to inhibit decomposition of ammonium nitrogen in these organic manures for 2–4 months depending on temperature, and to “preserve” it during periods without vegetation when soils are especially exposed to leaching. By this means, utilization of slurry-nitrogen by the following crop can be improved considerably.  相似文献   

7.
Soil loss and runoff prediction models were developed for a clay soil from a five-factor small-scale physical simulation of the field environment by following a central composite rota table experimental design. The uncalibrated models efficiently ranked observed annual soil losses and runoff over a 4–year period between nine field treatments consisting of two bare fallows, two weed fallows and five plots cropped to soyabeans. When calibrated against the field data, the soil loss model predicted the 4–year mean losses from cropped and bare fallow treatments to within 6% for two of the plots, to within 12% for five of the plots and to within 14% for all seven treatments. Over the same period, the runoff model predicted mean annual runoff for the cropped and bare fallow treatments to within 4% for four of the plots and to within 16% for all seven treatments. Percentage vegetal cover proved to be an adequate parameter for describing the role of the soyabean crop in runoff and soil loss processes for a wide range of planting densities of the crop. However, it did not prove to be an efficient index for weed fallows and it was apparent that factors other than simple above-ground cover became important soon after germination.  相似文献   

8.
The effects of cattle manure and inorganic N‐fertilizer application on soil organic carbon (SOC), bulk density, macro‐aggregate stability and aggregate protected carbon were determined on clay and sandy soils of the Murewa smallholder farming area, Zimbabwe. Maize was grown in four fields termed homefields (HFs) and outfields (OFs) because of spatial variability induced by management practices and with the following fertility treatments: control (no fertility amelioration), 5, 15 and 25 t/ha cattle manure + 100 kg/ha N applied annually for seven consecutive years. The addition of cattle manure resulted in significant (P < 0.01) increases in SOC, macro‐aggregate stability and aggregate protected carbon in clay soils from at least the 5 t/ha cattle manure rate and was comparable between HFs and OFs on clay soils. Aggregate protected carbon in clay soils was significantly higher from the 15 and 25 t/ha cattle manure rates compared to the 5 t/ha cattle manure treatment. In contrast, only SOC was significantly (P < 0.05) increased with the addition of cattle manure on the sandy soils, while bulk density, macro‐aggregate stability and aggregate protected carbon were not significantly changed. Bulk density was also not significantly (P > 0.05) different on the clay soils. A significant and positive linear relationship (r2 = 0.85) was found between SOC and macro‐aggregate stability, while an r2 value of 0.82 was obtained between SOC and aggregate protected carbon on the clay soils. However, no regressions were performed on data from the sandy soils because of the lack of significant changes in soil physical properties. Application of cattle manure and inorganic N‐fertilizer significantly increased (P < 0.05) maize grain yield on both soil types. Results show that inorganic N‐fertilizer combined with cattle manure at 5–15 t/ha per yr is necessary to increase maize yields and SOC on sandy soils in Murewa, while at least 15 t/ha per yr cattle manure is required on the clay soils to improve physical properties in addition to maize yields and SOC.  相似文献   

9.
The present paper deals with the long-term effects of bare fallow and organic treatments on soil aggregate stability. Soil samples were collected from plots of the long-term soil organic matter experiment in Ultuna/Sweden, which is already running for 38 years. Soil aggregate stability (SAS) showed a clear response to soil management. SAS increased in following order: bare fa llow < no-N < green manure < peat ≤ farmyard manure. Humus contents of the plots had a significant impact on S AS. Increasing Corg? contents generally enhanced aggregation. However, the unfavourably high C/N ratio of peat treatments and the resulting small size of microbial biomass led to a distinctly lower positive influence of accumu lated soil organic matter in case of peat additions.  相似文献   

10.
This experiment tested whether it was possible to incorporate broiler litter (BL) or cattle farmyard manure (FYM) into a 7‐yr arable rotation on a sandy soil without causing an increase in nitrate‐nitrogen (NO3‐N) leaching. Four manure treatments (with adjusted fertilizer inputs), varying in frequency and timing of application, were imposed on the rotation and compared with a control that received inorganic fertilizer according to recommended rates. Over seven winters, the annual average NO3‐N leached from the inorganic fertilizer treatment (control) was 39 kg/ha in 183 mm drainage. Total manure N loadings over the period of the experiment ranged between 557 and 1719 kg/ha (80–246 kg/ha/yr) for the four treatments. Three of the four manure treatments significantly increased NO3‐N leaching over the rotation (< 0.001). Annual applications of FYM (1719 kg/ha manure N or 246 kg/ha/yr) increased NO3‐N leaching by 39%. We hypothesize that this was due to increased mineralization of the organic N accumulating from repeated FYM applications. BL applied each year (1526 kg/ha manure N or 218 kg N/ha/yr) increased NO3‐N leaching by 52% above the control; BL applied 5 of 7 yr (972 kg/ha manure N or 139 kg N/ha/yr on average) and including inadvisable autumn applications increased leaching by 50%. BL applied in late winter or early spring every 2–3 yr (557 kg/ha manure N or 80 kg N/ha/yr on average) resulted in NO3‐N leaching similar to the control. This suggests that to avoid additional NO3‐N leaching from manure use in an arable rotation, manure should not be applied every year and autumn applications should be avoided; there are real challenges where manure is used on an annual basis.  相似文献   

11.
Land pressures and environmental degradation are driving forces behind shortened fallow periods in the tropics, often resulting in reduced crop yields and increased migration from rural areas. This paper describes contemporary fallow practices in the Western Highlands of Guatemala based on interdisciplinary data collected using participatory rural appraisal and qualitative research methods in combination with a quantitative evaluation of the impacts of fallow management decisions on soil fertility. Case studies of two communities in San Marcos department illustrate contemporary and traditional land use practices. Currently, over 70 per cent of families engage in a variety of fallow management practices, with combined cropping‐fallow cycles within a field averaging 3–6 years. Despite the reduction in length of fallow cycles, new fallow practices in the study area appear to improve some aspects of soil fertility while also providing fodder and fuelwood. Calcium and magnesium concentrations in fallow soil were twice that of cropped plots, indicating that weathering reactions and atmospheric deposition during fallow periods are able to restore base cation fertility that is taken up by potato crops during cropping cycles. Soil in cropped plots, however, showed 25 per cent higher soil organic matter and five times higher nitrate concentrations than soil in fallow plots, which resulted from additions of compost and inorganic fertilizer to cropped plots. Nevertheless, the 13C/12C isotopic ratio of soil organic carbon indicated that as soil organic matter content decreases in cropped plots, the remaining carbon is increasingly degraded. Potential improvements in fallow management practices proposed by farmers and researchers are also presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract. Soil organic matter (SOM) controls the physical, chemical and biological properties of soil and is a key factor in soil productivity. Data on SOM quantity and quality are therefore important for agricultural sustainability. In 1990, an experiment was set up at Saria, Burkina Faso on a sandy loam Lixisol to evaluate long-term effects of tillage (hand hoeing or oxen ploughing) with or without 10 t ha−1 yr−1 of manure and fallowing on SOM and N concentrations and their distribution in particle size fractions. The field was sown annually to sorghum ( Sorghum bicolor [L.] Moench). Ten years later, total organic C and total N, SOM fractions and their N concentrations, and sorghum yield were determined. Continuous sorghum cultivation without organic inputs caused significant losses of C and N in the hoed and ploughed plots. However, addition of manure to hoed plots was effective in maintaining similar levels of C and N to fallow plots. Without manure, SOM was mainly stored in the size-fraction <0.053 mm (fine organic matter, FOM). SOM was mainly stored in the size-fraction between 0.053 and 2 mm (particulate organic matter, POM). In plots with manure and in fallow plots, the addition of manure more than doubled POM concentrations, with levels in tilled plots exceeding those of the fallow plots, and the highest levels in manually hoed plots. Nitrogen associated with POM (POM-N) followed a similar trend to POM. Hoeing and ploughing led to a decline in sorghum grain yield. Manure application increased yields by 56% in the hoed plots and 70% in the ploughed plots. Grain yield was not correlated with total SOM but was positively correlated with total POM. This study indicated that POM was greatly affected by long-term soil management options.  相似文献   

13.
We evaluated the in situ net nitrogen (N) mineralization in a soil cropped to maize and fertilized for 11 years with cattle slurry or farmyard manure, both common on livestock farms of the Po River valley in Northern Italy. The net N mineralization of the tilled soil layer was measured in six consecutive incubation periods after manure application, for a total of 12 weeks, using the polyethylene buried bags technique. Results showed that net N mineralization was followed by N immobilization and finally, by mineralization whose rate increase until maize flowering. On average, net N mineralization was 70.4 kg N ha−1, with the majority being released during the last measurement period. The time and extent of net N mineralization and plant N uptakes were not affected by fresh manure application. Instead, the effect of past management increased the maximum net N mineralization rate obtained with farmyard manure. The buried bag technique probably underestimates the total amount of mineralized N available for crop growth because it excludes the presence of the plant.  相似文献   

14.
In this study, three types of cropping systems with different nutrient management strategies were studied on a clay soil with the aim of comparing leaching of N, P and K and obtaining knowledge on nutrient budgets. A conventional cropping system with cereals and application of mineral fertilizers (CON) was compared with two organic cropping systems, one without animal manure in which green manure crops were used for N supply (OGM) and one where animal manure (cattle slurry) was applied (OAM). Leaching and crop uptake of N, P and K, and soil mineral N were measured in pipe‐drained plots over a 6‐year period. The mean annual leaching loads of N were moderate and did not differ significantly (P > 0.05) between treatments; 13 kg N ha?1 in CON, 11 kg N ha?1 in OGM and 7.4 kg N ha?1 in OAM. Average annual P leaching showed greater variation than N leaching and was significantly greater in OGM (0.81 kg ha?1 year?1) than in CON (0.36 kg ha?1) and OAM (0.41 kg ha?1). For all cropping systems, removal in harvested crops was the most important export of nutrients from the field and constituted between 80 and 94% of total N outputs (harvested and leached N). Yields of cereals in the organic systems were considerably less (15–50%) than in the CON system, leading to a less efficient use of N than in the conventional system.  相似文献   

15.
We investigated whether the long‐term application of compost from agricultural waste improved soil physical structure, fertility and soil organic matter (SOM) storage. In 2006, we began a long‐term field experiment based on a rice–wheat rotation cropping system, having a control without fertilizer (NF) and three treatments: chemical fertilizers (CF), pig manure compost (PMC) and a prilled mixture of PMC and inorganic fertilizers (OICF). Following the harvest of wheat in 2010, the mean‐weight diameter (MWD) of water‐stable aggregates and the concentration of C and N in bulk soil (0–20 cm; <2 mm fraction) were significantly greater (P < 0.05) in PMC and NF plots than in CF or OICF plots. Pig manure compost significantly increased the proportion of >5‐mm aggregates, whereas CF significantly increased the proportion of 0.45‐ to 1‐mm aggregates. The C and N contents of all density fractions were greater in PMC than in other treatments with levels decreasing in the following order: free particulate organic matter (fPOM) >occluded particulate organic matter (oPOM) > mineral‐combined SOM (mineral–SOM). Solid‐state 13C CPMAS NMR spectra showed that alkyl C/O‐alkyl C ratios and aromatic component levels of SOM were smaller in PMC and OICF plots than in CF plots, suggesting that SOM in PMC and OICF plots was less degraded than that in CF plots. Nevertheless, yields of wheat in PMC and NF plots were smaller than those in CF and OICF plots, indicating that conditions for producing large grain yields did not maintain soil fertility.  相似文献   

16.
A major challenge in sustainable crop management is to ensure adequate P supply for crops, while minimizing losses of P that could negatively impact water quality. The objective of the present study was to investigate the effects of long‐term applications of different levels of mineral fertilizers and farmyard manure on (1) the availability of P, (2) the relationship between soil C, N, and P, and (3) the distribution of inorganic and organic P in size fractions obtained by wet sieving. Soil samples were taken from the top 20 cm of a long‐term (29 y) fertilization trial on a sandy Cambisol near Darmstadt, SW Germany. Plant‐available P, determined with the CAL method, was little affected by fertilization treatment (p < 0.05) and was low to optimal. The concentration of inorganic and organic P extracted with a NaOH‐EDTA solution (PNaOH‐EDTA) averaged about 350 mg (kg dry soil)–1, with 42% being in the organic form (Po). Manure application tended to increase soil C, N, and Po concentrations by 8%, 9%, and 5.6%, respectively. Across all treatments, the C : N : Po ratio was 100 : 9.5 : 2 and was not significantly affected by the fertilization treatments. Aggregate formation was weak due to the low clay and organic‐matter content of the soil, and the fractions > 53 μm consisted predominantly of sand grains. The different fertilization treatments had little effect on the distribution of size fractions and their C, N, and P contents. In the fractions > 53 μm, PNaOH‐EDTA ranged between 200 and 300 mg kg–1, while it reached 1260 mg kg–1 in the fraction < 53 μm. Less than one third of PNaOH‐EDTA was present as Po in the fractions > 53 μm, while Po accounted for 70% of PNaOH‐EDTA in the smallest fraction (< 53 μm). Therefore, 16% and 28% of PNaOH‐EDTA and Po, respectively, were associated with the smallest fraction, even though this fraction accounted for < 5% of the soil mass. Therefore, runoff may cause higher P losses than the soil P content suggests in this sandy soil with a weak aggregate formation. Overall, the results indicate that manure and mineral fertilizer had similar effects on soil P fractions.  相似文献   

17.
The objective of this study was to investigate the effects of biogas slurry derived from straw-rich farmyard manure on the soil microbial biomass, on the mineralization in the field and on the related crop yield. The experiment was carried out in the following four treatments: (1) fallow, (2) fallow + biogas slurry, (3) spring barley, and (4) spring barley + biogas slurry. The CO2 evolution rate ranged between 15 and 120 mg C m−2 h−1 in both fallow treatments and showed a significant exponential relationship with the soil temperature at 5 cm depth. According to the extrapolation of the CO2 evolution rates into amounts per hectare, approximately 200 kg C ha−1 or 27% of the biogas slurry derived C were mineralized to CO2 during a 50 days’ period to 18 June in the fallow treatment with biogas slurry. An additional amount of up to 29.5 kg inorganic N ha−1 could be calculated as the sum of NH4-N already present in biogas slurry at the time of amendment and from the amount of biogas slurry mineralized in the soil to NO3-N. A good agreement between measured and modelled stocks of inorganic N at 0–60 cm depth was obtained after having five-fold increased soil organic C turnover compared to the default values of the model DNDC. The mineralization data are in line with an amount of up to 21 kg ha−1 more N transferred by the barley plants to their aboveground biomass in biogas slurry treatment. The N not accounted for by the aboveground plant biomass could be explained by the belowground plant-derived N. CO2 evolution from the soil surface, inorganic N content at 0–60 cm depth and N transfer into barley aboveground biomass lead apparently to similar results after the application of biogas slurry. The soil ATP content after harvest of the barley was significantly larger in the two treatments with biogas slurry, especially in the fallow treatment indicating a positive effect on the soil microbial community.  相似文献   

18.
Organic inputs [e.g. animal manure (AM) and plant residues] contribute directly to the soil organic N pool, whereas mineral N fertilizer contributes indirectly by increasing the return of the crop residues and by microbial immobilization. To evaluate the residual effect of N treatments established in four long‐term (>35 yr) field experiments, we measured the response of barley (grain yield and N offtake at crop maturity) to six rates (0, 30, 60, 90, 120 and 150 kg N/ha) of mineral fertilizer N (Nnew) applied in subplots replacing the customary long‐term plot treatments of fertilizer inputs (Nprev). Rates of Nprev above 50–100 kg N/ha had no consistent effect on the soil N content, but this was up to 20% greater than that in unfertilized treatments. Long‐term unfertilized plots should not be used as control to test the residual value of N in modern agriculture with large production potentials. Although the effect of mineral Nprev on grain yield and N offtake could be substituted by Nnew within a range of previous inputs, the value of Nprev was not eliminated irrespective of Nnew rate. Provided a sufficient supply of plant nutrients other than N, the use‐efficiency of Nnew did not change significantly with previous mineral N fertilizer rate. The residual effect of mineral N fertilizer was negligible compared with the residual effect of N from AM and catch crop residues.  相似文献   

19.
A substantial proportion of farmed grassland soils in Northern Ireland (NI) are overly enriched with P and pose a risk to water quality. To address this problem, manure could be exported rather than recycled to P‐enriched land and the latter intensively cropped with grass silage to deplete soil P. To assess the efficacy of such a strategy, a P‐ and K‐enriched grassland site was intensively cropped over a 6‐yr period with fertilizer N alone supplied to support silage growth. By year 6, soil P had declined from index 5 to index 3, and it was estimated that two more years of this management may bring it into the target index 2 range. Soil K, however, declined rapidly from index 4 to index 1 in just 4 yr, with the result that grass production became limited by K deficiency. It was concluded that nonrecycling of manure to P‐enriched grassland under silage management is probably the most effective strategy for lowering soil P status, but care must be taken to prevent K deficiency occurring.  相似文献   

20.
Abstract

Soil pH can be increased by manure or compost application because feed rations usually contain calcium carbonate. This study was conducted from 1992 to 1996 to evaluate effects of phosphorus (P) and nitrogen (N)‐based manure and compost application management strategies on soil pH level. Composted and uncomposted beef cattle (Bos taunts) feedlot manure was applied to supply N or P needs of corn (Zea mays L.) for either a one‐ or two‐year period. Phosphorus‐based manure or compost treatments also received additional fertilizer N (ammonium nitrate) to provide for a total of 151‐kg available N ha‐1 yr‐1. Fertilized and unfertilized checks also were included. Manure and composted manure contained about 9 g CaCO3kg‐1 resulting in application rates of up to 1730 kg CaCO3 ha‐1 in 4 years. The surface soil (0–150 mm) pH was significantly decreased with ammonium nitrate application compared to soil in the unfertilized check or to soil receiving manure or compost. Soil pH was significantly increased with the N‐based management strategy compared with the soil original level. In contrast, 4 yr of P‐based manure and compost application strategy maintained soil pH at the original level. Nitrogen‐based applications resulted in higher soil pH than P‐based. Beef cattle feedlot manure and compost can be good sources of CaCO3 for soils requiring lime addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号