共查询到17条相似文献,搜索用时 15 毫秒
1.
Plants show different growth responses to N sources supplied with either NH4+ or NO3-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavailability of soil phosphorus, particularly in alkaline soils. The plant growth, P uptake, and P availability in the rhizosphere of oat (Avena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH4+-N, sole NO3--N, or a combination. Sole NO3--fed oat plants accumulated more biomass than sole NH4+-fed ones. The highest biomass accumulation was observed when N was suppliedw ith both NH4+-N and NO3--N. Growth of the plant root increased with the proportion of NO3- in the cultural medium. Better root growth and higher root/shoot ratio were consistently observed in NO3--fed plants. However, root vigor was the highest when N was supplied with NO3-+NH4+. NH4+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO4 added as P source. No P deficiency was observed, and plant P concentrations were generally above 2 g kg-1. P uptake was increased when N was supplied partly or solely as NO3--N, similarly as biomass accumulation. The results suggested that oat was an NO3--preferring plant, and NO3--N was essential for plant growth and the maintenance of root absorption capacity. N supply with NH4+-N did not improve P nutrition, which was most likely due to the absence of P deficiency. 相似文献
2.
SHENTU Jia-Li HE Zhen-Li ZENG Yan-Yan HE Shan-Ying DU Shao-Ting SHEN Dong-Sheng 《土壤圈》2014,24(4):553-562
The effects of root activity on microbial response to cadmium (Cd) loading in the rhizosphere are not well understood. A pot experiment in greenhouse was conducted to investigate the effects of low Cd loading and root activity on microbial biomass and community structure in the rhizosphere of pakchoi (Brassica chinensis L.) on silty clay loam and silt loamy soil. Cd was added into soil as Cd(NO3)2 to reach concentrations ranging from 0.00 to 7.00 mg kg-1. The microbial biomass carbon (MBC) and community structure were affected by Cd concentration, root activity, and soil type. Lower Cd loading rates (〈 1.00 mg kg-1) stimulated the growth of pakchoi and microorganisms, but higher Cd concentrations inhibited the growth of microorganisms. The content of phospholipid fatty acids (PLFAs) was sensitive to increased Cd levels. MBC was linearly correlated with the total PLFAs. The content of general PLFAs in the fungi was positively correlated with the available Cd in the soil, whereas those in the bacteria and actinomycetes were negatively correlated with the available Cd in the soil. These results indicated that fungi were more resistant to Cd stress than bacteria or actinomycetes, and the latter was the most sensitive to Cd stress. Microbial biomass was more abundant in the rhizosphere than in the bulk soil. Root activity enhanced the growth of microorganisms and stabilized the microbial community structure in the rhizosphere. PLFA analysis was proven to be sensitive in detecting changes in the soil microbial community in response to Cd stress and root activity. 相似文献
3.
Intercropping has been shown to increase total yield and nutrient uptake compared to monocropping. However, depending on crop combinations, one crop may dominate and decrease the growth of the other. Interactions in the soil, especially in the rhizosphere, may be important in the interactions between intercropped plant genotypes. To assess the role of the rhizosphere interactions, we intercropped a P-inefficient wheat genotype (Janz) with either the P-efficient wheat genotype (Goldmark) or chickpea in a soil with low P availability amended with 100 mg P kg−1 as FePO4 (FeP) or phytate. The plants were grown for 10 weeks in pots where the roots of the genotypes could intermingle (no barrier, NB), were separated by a 30 μm mesh (mesh barrier, MB), preventing direct root contact but allowing exchange of diffusible compounds and microorganisms, or were completely separated by a solid barrier (SB). When supplied with FeP, Janz intercropped with chickpea had higher shoot and grain dry weight (dw) and greater plant P uptake in NB and MB than in SB. Contact with roots of Janz increased shoot, grain and root dw, root length, shoot P concentration and shoot P uptake of chickpea compared to SB. Root contact between the two wheat genotypes, Janz and Goldmark, had no effect on growth and P uptake of Janz. Shoot and total P uptake by Goldmark were significantly increased in NB compared to MB or SB. In both crop combinations, root contact significantly increased total plant dw and P uptake per pot. Plant growth and P uptake were lower with phytate and not significantly affected by barrier treatment. Differences in microbial P, available P and phosphatase activity in the rhizosphere among genotypes and barrier treatments were generally small. Root contact changed microbial community structure (assessed by fatty acid methyl ester (FAME) analysis) and all crops had similar rhizosphere microbial community structure when their roots intermingled. 相似文献
4.
Root proliferation and greater uptake per unit of root in the nutrient‐rich zones are often considered to be compensatory responses. This study aimed to examine the influence of plant phosphorus (P) status and P distribution in the root zone on root P acquisition and root and shoot growth of wheat (Triticum aestivum L.) in a split‐root soil culture. One compartment (A) was supplied with either 4 or 14 mg P (kg soil)–1, whereas the adjoining compartment (B) had 4 mg P kg–1 with a vertical high‐P strip (44 mg kg–1) at 90–110 mm from the plant. Three weeks after growing in the split‐root system, plants with 4 mg P kg–1 (low‐P plants) started to show stimulatory root growth in the high‐P strip. Two weeks later, root dry weight and length density in the high‐P strip were significantly greater for the low‐P plants than for the plants with 14 mg P (kg soil)–1. However, after 8 weeks of growth in the split‐root system, the two P treatments of compartment A had similar root growth in the high‐P strip of compartment B. The study also showed that shoot P concentrations in the low‐P plants were 0.6–0.8 mg g–1 compared with 1.7–1.9 mg g–1 in the 14 mg P kg–1 plants after 3 and 5 weeks of growth, but were similar (1.1–1.4 mg g–1) between the two plants by week 8. The low‐P plants had lower root P concentration in both compartments than those with 14 mg P kg–1 throughout the three harvests. The findings may indicate that root proliferation and P acquisition under heterogeneous conditions are influenced by shoot P status (internal) and soil P distribution (external). There were no differences in the total root and shoot dry weight between the two P treatments at weeks 3 and 5 because enhanced root growth and P uptake in the high‐P strip by the low‐P plants were compensated by reduced root growth elsewhere. In contrast, total plant growth and total root and shoot P contents were greater in the 14 mg P kg–1 soil than in the low‐P soil at week 8. The two P treatments did not affect the ratio of root to shoot dry weight with time. The results suggest that root proliferation and greater P uptake in the P‐enriched zone may meet the demand for P by P‐deficient plants only for a limited period of time. 相似文献
5.
Application of legume green manure (GM) is suggested to be effective in increasing the availability of native soil phosphorus (P) and the dissolution and utilization of phosphate rock (PR)‐P by food crops. Experiments were conducted to study the dynamics of extractable P (P extracted by Bray‐1‐extracting solution) of an Ultisol amended with or without GM residues of contrasting P concentrations in the absence of growing plants. In two separate experiments, GM residues of Aschynomene afraspera (a flood‐tolerant legume) and of Crotalaria micans (upland) with varying P concentrations were added to an acidic soil amended with PR‐P or triple superphosphate (TSP) in plastic bottles. Soil moisture was brought to field capacity of the soil in the upland experiment and saturated with distilled water in the lowland setup. This was done to simulate aerobic upland and anaerobic lowland soil conditions in the relevant plastic bottles. Only P concentration of the residues added varied, while lignin and C : N ratios were similar. A temperature of 25°C was maintained throughout the experiment. Changes in soil extractable Bray‐1‐P were measured at the end of the incubation period (60 or 80 d). In the aerobic soils, extractable P in the combined PR+GM or TSP+GM treatments was significantly lower than in the PR‐ or TSP‐ treated soils. The amendment with GM residues alone significantly increased Bray‐1‐P over the unamended control in the case of the inorganic P‐fertilized GM residues. The trend in extractable P was similar in the soils incubated under anaerobic conditions. However, in the case of PR, concentrations of P extracted by Bray‐1 solution did not significantly change in the presence or absence of GM. The results suggest that the incorporation of GM residues with low P concentration does not lead to a net P release in upland or lowland soils. These results have implications for nutrient cycling in farming systems in W Africa as most of the soils are poor and very low in available P. 相似文献
6.
Growth,P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability 总被引:1,自引:0,他引:1
Zakaria Solaiman Petra Marschner Dongmei Wang Zed Rengel 《Biology and Fertility of Soils》2007,44(1):143-153
The aim of the present study was to assess the role of soil type on growth, P uptake and rhizosphere properties of wheat and
canola genotypes in an alkaline soil with low P availability. Two wheat (Goldmark and Janz) and two canola genotypes (Drum
and Outback) were grown in a calcareous soil (pH 8.5) at two P levels [no P addition (0P) or addition of 200 mg kg−1 P as Ca3(PO4)2 (200P)] and harvested at flowering or maturity. Shoot and root dry weight, root length and shoot P content were greater in
the two canola genotypes than in wheat. There were no consistent differences in available P, microbial P and phosphatase activity
in the rhizosphere of the different genotypes. Shoot P content was significantly positively correlated with root length, pH
and phosphatase activity in the rhizosphere. The microbial community composition, assessed by fatty acid methylester analysis,
of the canola genotypes differed strongly from that of the wheat genotypes. The weight percentage bacterial fatty acids, the
bacteria/fungi (b/f) ratio and the diversity of fatty acids were greater in the rhizosphere of the canolas than in the rhizosphere of the wheat
genotypes. In contrast to the earlier studies in an acidic soil, only small differences in growth and P uptake between the
genotypes of one crop were detected in the alkaline soil used here. The results confirmed the importance of root length for
P uptake in soils with low P availability and suggest that the rhizosphere microbial community composition may play a role
in the better growth of the canola compared to the wheat genotypes. 相似文献
7.
Yi‐mei Huang Kerstin Michel Shao‐shan An Sophie Zechmeister‐Boltenstern 《植物养料与土壤学杂志》2011,174(5):765-774
Microbial‐community structure is closely associated with plant‐community composition. The objective of this study was to evaluate the effects of depth and revegetation time on the microbial‐community structure of restored grassland soils of the Loess Plateau of China. Microbial‐community structure at 0–10 cm (depth 1) and 10–20 cm (depth 2) of eight sites of a grassland chronosequence with revegetation time ranging from 1 to 78 y was determined using phospholipid fatty acid (PLFA) analysis. Except for the youngest site microbial‐community structure at the two depths varied distinctly with actinomycetes and vesicular arbuscular mycorrhiza as the most important discriminators. Total PLFA content decreased with depth and increased with revegetation time. Protozoa were the only functional group whose proportion did not change with depth. Their relative abundance tended to decrease with increasing revegetation time. The microbial community at all sites was bacteria‐dominated with Gram‐negative bacteria representing the largest proportion. Principal‐component and cluster analysis revealed that microbial‐community structure in the surface soil (depth 1) of the older sites (23–78 y of revegetation) was rather similar which may be due to only small effects of the plant species present on the soil environment. Differences in microbial‐community composition at 0–20 cm depth of the eight sites were partly related to variations in the physico‐chemical characteristics. Relations to organic C, alkali‐extractable N, pH, and available P were found. Revegetation of former agricultural sites on the Loess Plateau improves the soil status and leads to shifts in microbial‐community structure more pronounced with depth than time. 相似文献
8.
Nitrate‐N uptake from soil depends on root growth and uptake activity. However, under field conditions N‐uptake activity is difficult to estimate from soil‐N depletion due to different loss pathways. We modified the current mesh‐bag method to estimate nitrate‐N‐uptake activity and root growth of two oilseed‐rape cultivars differing in N‐uptake efficiency. N‐efficient cultivar (cv.) ‘Apex' and N‐inefficient cv. ‘Capitol' were grown in a field experiment on a silty clayey gleyic fluvisol near Göttingen, northern Germany, and fertilized with 0 (N0) and 227 (N227) kg N ha–1. In February 2002, PVC tubes with a diameter of 50 mm were installed between plant rows at 0–0.3 and 0–0.6 m soil depth with an angle of 45°. At the beginning of shooting, beginning of flowering, and at seed filling, the PVC tubes were substituted by PVC tubes (compartments) of the same diameter, but with an open window at the upper side either at a soil depth of 0–0.3 or 0.3–0.6 m allowing roots to grow into the tubes. Anion‐exchange resin at the bottom of the compartment allowed estimation of nitrate leaching. The compartments were then filled with root‐free soil which was amended with or without 90 mg N (kg soil)–1. The newly developed roots and nitrate‐N depletion were estimated in the compartments after the installing period (21 d at shooting stage and 16 d both at flowering and grain‐filling stages). Nitrate‐N depletion was estimated from the difference between NO ‐N contents of compartments containing roots and control compartments (windows closed with a membrane) containing no roots. The amount of nitrate leached from the compartments was quantified from the resin and has been taken into consideration in the calculation of the N depletion. The amount of N depleted from the compartments significantly correlated with root‐length density. Suboptimal N application to the crop reduced total biomass and seed‐yield formation substantially (24% and 38% for ‘Apex’ and ‘Capitol’, respectively). At the shooting stage, there were no differences in root production and N depletion from the compartments by the two cultivars between N0 and N227. But at flowering and seed‐filling stages, higher root production and accordingly higher N depletion was observed at N0 compared to N227. Towards later growth stages, the newly developed roots were characterized by a reduction of root diameter and a shift towards the deeper soil layer (0.3–0.6m). At low but not at high N supply, the N‐efficient cv. ‘Apex’ exhibited higher root growth and accordingly depleted nitrate‐N more effectively than the N‐inefficient cv. ‘Capitol’, especially during the reproductive growth phase. The calculated nitrate‐N‐uptake rate per unit root length was maximal at flowering (for the low N supply) but showed no difference between the two cultivars. This indicated that the higher N‐uptake efficiency of cv. ‘Apex’ was due to higher root growth rather than higher uptake per unit of root length. 相似文献
9.
Nitrogen uptake,nitrate leaching and root development in winter‐grown wheat and fodder radish 下载免费PDF全文
L. J. Munkholm E. M. Hansen I. K. Thomsen E. M. Wahlström H. S. Østergaard 《Soil Use and Management》2017,33(2):233-242
Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder radish on N dynamics and root growth. Field experiments were carried out on a humid temperate sandy loam soil. Aboveground biomass and soil inorganic N were determined in late autumn; N uptake and grain yield of winter wheat were measured at harvest. Nitrate leaching was estimated from soil water samples taken at 1 m depth. Root growth was measured late autumn using the core break and root washing methods. Winter wheat root growth dynamics were followed during the growing season using the minirhizotron method. The 2013–2014 results showed that early seeding of wheat improved autumn growth and N uptake and reduced N leaching during the winter compared with the normal seeding time. Early‐seeded wheat (WWearly) was, however, not as efficient as fodder radish at reducing N leaching. Proper establishment of WWearly was a prerequisite for benefiting from early seeding, as indicated by the 2012–2013 results. Early seeding improved root growth throughout the 2013–2014 growing season compared with normal seeding time, but had no significant effect on crop grain yield. Our results indicate the potential of using early seeding as a tool to limit drought susceptibility and increase nutrient uptake from the subsoil. 相似文献
10.
The effect of tillage systems and crop rotation on microbial biomass phosphorus (MBP) and acid phosphatase (P‐ase) activity, and the amount of different phosphorus (P) forms measured by 31P‐NMR spectroscopy were studied on a field experiment carried out in a temperate Ultisol from southern Chile. Two tillage systems, no tillage (NT) and conventional tillage (CT) and two crop rotations, oat–wheat (OW) and lupine–wheat (LW) were evaluated 4 yr after the start of the experiment to determine the effects of such management on some soil biological parameters and P forms at three depths (0–5, 0–10 and 10–20 cm). Microbial biomass P ranged from 6.5 to 22.6 mg/kg, whereas the mean total P (PT) was 1995 mg/kg for all treatments (OW and LW). Microbial biomass carbon (MBC) and surface P accumulation (at 0–5 cm depth), including Olsen P, MBP, orthophosphate monoesters (monoester‐P), were larger under NT than CT. Tillage effects were greater than crop rotation effects in enhancing P availability. The LW rotation showed enhanced P‐ase activity and increased monoester‐P forms (57 vs. 30% of the total integral area of the spectra, in average) compared with OW. Nevertheless, OW rotation increased orthophosphate (ortho‐P), especially at 10–20 cm. Microbial biomass carbon ranged from 532 to 2351 mg/kg, which represented 1.2–4.5% of total organic C (Co). Furthermore, MBP correlated positively with MBC (r = 0.80), Olsen P (r = 0.77), Co (r = 0.77), pH (r = 0.65), PT (r = 0.65) and P‐ase activity (r = 0.57), suggesting the importance of the microbial biomass on soil P availability. 相似文献
11.
AbstractA pot experiment was done in a greenhouse to investigate the effect of low phosphorus (P) and moisture content on growth and yield components of four spring wheat (Triticum aestivum L.) varieties. Days to emergence of seedlings were shortened, plant height, tiller number, and SPAD (Soil-Plant Analyses Development) index of the leaves were significantly (p?0.01) reduced by low P. Root and shoot biomass, nitrogen and P uptake decreased significantly with low moisture and P content in the potting mix. Moisture and P interactions had a significant (p?0.01) effect on shoot and root biomass and P uptake and these variables were closely related to each other with regression (Coefficient of determination R2) values ranging from 0.72 to 0.90. The study underlines the strong relationship between moisture, P availability and uptake and provides more information on P nutrition during the vegetative stage of wheat in moisture and P deficient soils. 相似文献
12.
Mohammad Hassan Sayyari‐Zahan Upkar Singh Sadana Bernd Steingrobe Norbert Claassen 《植物养料与土壤学杂志》2009,172(3):425-434
Manganese (Mn) deficiency is reported worldwide and often decreases crop yield. However, plant species differ in their susceptibility to Mn deficiency. Poaceae are often inefficient, whereas Brassicaceae seem to be efficient in Mn uptake. The objective of this paper was to determine the relevance of Mn‐uptake kinetics, root‐system size, and Mn mobilization for differences in Mn efficiency of wheat, oat, and raya. To determine Mn‐uptake kinetics, wheat (Triticum aestivum L. cv. PBW 343), raya (Brassica juncea L. cv. RLM 619), and oat (Avena sativa L. cv. Aragon) were grown in a growth chamber together in complete nutrient solution having an average Mn concentration of 90, 180, 360, 910, and 2270 nmol L–1. For determining Mn efficiency of the three species in soil, the plants were grown for 22 d in pots filled with 3 kg of a loamy soil low in Mn availability (pH (CaCl2) 7.4; DTPA‐extractable Mn: 3.5 mg (kg soil)–1). The soil was fertilized with 0, 1, 2, 4, and 8 mmol Mn (kg soil)–1 resulting in Mn soil‐solution concentrations ranging from 40 to 90 nmol L–1, hence lower than in the solution experiment. In order to determine Mn soil‐solution concentration close to the root surface, the root length density was increased by growing two plants of raya and four plants of wheat in only 250 mL soil columns for 25 d. In solution culture at high concentrations, raya showed a higher Mn uptake compared to wheat and oat. However, at low Mn supply, all three species were comparably Mn‐efficient, i.e., plant growth was similar, and also the uptake was similar. In soil, the highest yield was achieved for raya in the unfertilized treatment whereas the Poaceae needed at least a fertilization of 1 mmol Mn (kg soil)–1. The Poaceae showed a yield reduction of about 40% in the unfertilized treatment. Manganese concentration in the shoot dry weight was always higher in raya than in wheat or oat. This was due to a higher Mn uptake whereas relative shoot‐growth rate and root‐to‐shoot ratio were similar among the species. The higher Mn uptake of raya in soil was in contradiction to the comparable Mn‐uptake kinetics of the three crops at low Mn concentration in solution. This points to plant differences in their ability to affect Mn availability in the rhizosphere. In the bulk soil, all the crops decreased Mn solution concentration, but this effect was somewhat less for raya. But in the rhizosphere, raya increased Mn soil‐solution concentration significantly to 58 nmol L–1, as compared to 37 nmol L–1 of the unplanted control soil. In contrast, wheat showed a Mn solution concentration of 25 nmol L–1 which was not significantly different from the control. The results indicate that differences in Mn efficiency among the crops studied are related to their ability to affect the solubility of Mn in the rhizosphere. 相似文献
13.
The secretion of O2 by rice roots results in aerobic conditions in the rhizoshere compared to the bulk flooded soil. The effect of this phenomenon on the adsorption/desorption behavior and on the availability of phosphorus (P) in a flooded soil was investigated in a model experiment. An experimental set‐up was developed that imitates both O2 release and P uptake by the rice root. The results showed that O2 secretion significantly reduced P adsorption/retention and increased P desorption/release in the “rhizosphere” soil, compared to the anaerobic bulk soil. The P uptake by an anion exchange resin from both unfertilized and P‐amended soil was significantly increased. The results confirm that the O2 secretion is an important mechanism to enhance P availability and P uptake of rice under flooded conditions, where the “physico‐chemical” availability of P in the anaerobic bulk soil is strongly reduced. The decrease of P availability in the P‐amended flooded bulk soil was mainly associated with the almost complete transformation of the precedingly enriched Al‐P fraction into Fe‐bound P with extremely low desorption/release characteristics during the subsequent flooding. 相似文献
14.
Various soil test methods including Olsen, Colwell, Bray and Truog have been used to assess the levels of plant‐available P (PAP) in soils situated in the highlands of Papua New Guinea (PNG). Up until now, though, there has been no guarantee that these tests provide valid assessments of PAP in these somewhat atypical organic matter‐rich tropical soils. Furthermore, the critical soil‐P concentrations associated with the tests have been based on studies conducted elsewhere in sub‐tropical and temperate latitudes and as such may or may not be valid for soils or cropping situations in PNG. Soil (Colwell)‐P and leaf‐P data collected during a recent survey of sweet potato gardens in the highlands of PNG were therefore used to determine if useful relationships existed between these variables for different groups of soils, and if they do, to use these relationships to evaluate critical soil Colwell‐P concentrations corresponding to a known critical concentration of P in sweet potato index leaf tissue. Separate, highly significant linear relationships were obtained between leaf‐P and Colwell‐P for soils of volcanic and non‐volcanic origins. Based on these relationships, the critical Colwell‐P concentration for volcanic soils was found to be four times greater than that for non‐volcanic soils, presumably because much of the P extracted from the former soils with alkaline sodium bicarbonate had been chemically ‘fixed’ via sorption and precipitation reactions with sesquioxides and rendered unavailable to plants at ambient soil pH. These critical Colwell‐P concentrations if adopted as benchmark values for the soil groups in question should ensure that the results of future soil fertility surveys involving Colwell‐P assessments are correctly interpreted. 相似文献
15.
In rice-wheat rotation systems, changes in soil phosphorus(P) pools and microorganisms in rice-growing seasons have been studied;however, further investigations are required to test whether these indexes exhibit different responses in wheat-growing seasons. Additionally, such studies need to include potential variations in soil carbon(C) structure and microbial community composition. In this study, a long-term rice-wheat rotation P-input reduction experiment was conducted to observe the variations in soil P pools and C composition in the 7th wheat season and to investigate the responses of soil enzyme activity and microbial communities. Four P fertilization treatments were included in the experiment, i.e., P application for rice season only(PR), for wheat season only(PW), and for both rice and wheat seasons(PR+W) and no P application in either season(Pzero). Compared with PR+W treatment, Pzero treatment significantly decreased(P < 0.05) labile and stable P pools. Different P fertilization regimes altered soil microbial community composition and enzyme activity, whereas C composition did not vary. However, PW treatment resulted in relatively more O-alkyl-C than PR treatment and the highest number of microorganisms. Besides, the higher ratios of fungi/bacteria and Gram-positive bactetia/Gram-negative bactetia were related to labile C pools, particularly O-alkyl-C, as opposed to recalcitrant C. Our results clarified the status of soil P pools, C chemistry, and the response of microorganisms under dry-farming conditions in the P input-reduced rice-wheat rotation system. 相似文献
16.
Hasan Pervej Ahmed Jeff J. Schoenau Tom King Gourango Kar 《Journal of plant nutrition》2017,40(4):543-557
The form of sulfur fertilizer can influence its behavior and crop response. A growth chamber study was conducted to evaluate five sulfur fertilizer forms (ammonium sulfate, ammonium thiosulfate, gypsum, potassium sulfate, and elemental sulfur) applied in seed row at 20 kg S ha?1 alone, and in combination with 20 kg phosphorus pentoxide (P2O5) ha?1, to three contrasting Saskatchewan soils. Wheat, canola, and pea were grown in each soil for 8 weeks and aboveground biomass yields determined. The fate of fertilizer was evaluated by measuring crop sulfur and phosphorus concentration and uptake, and supply rates and concentrations of available sulfate and phosphate in the seed row. Canola was most responsive in biomass yield to the sulfur fertilizers. Sulfate and thiosulfate forms were effective in enhancing soil-available sulfate supplies in the seed row, crop sulfur uptake, and yield compared to the elemental sulfur fertilizer. Combination of sulfur fertilizer with monoammonium phosphate may provide some enhancement of phosphate availability, but effects were often minor. 相似文献
17.
Fen‐soil cultivation in NE Germany resulted in severe peat degradation; therefore present and future management is aimed to restore degraded sites by re‐wetting. Evidence in the literature indicates that decreasing redox potentials in re‐wetted fens may result in an increased risk of diffuse water pollution with P. However, little is known about the impact of different fen‐preserving land‐management schemes on the redox potential in soil and on the P dynamics in adjacent surface water. We investigated effects of peat degradation and re‐wetting on redox potential and P mobilization on extensive grassland, re‐wetted intensive grassland, and alder swamp forest in the Drömling (Saxony‐Anhalt, Germany). The results showed that the redox potentials of peat lands were almost below the theoretical stability fields of Fe(III)‐containing minerals. The re‐wetted site was characterized by the highest concentrations of soluble reactive P (SRP) in surface water. Average SRP concentrations up to 0.36 mg l–1 indicated an increased P load. The concentration of SRP in the Ohre river, which is the central drainage channel of the Drömling catchment, significantly increased since 1996. The P concentrations of surface water were found to be indirectly correlated with the redox potentials. 相似文献