首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concentration-effect relationships of phenylbutazone, indomethacin, betamethasone, pentosan polysulphate (PPS) and polysulphated glycosaminoglycan (PSGAG), on proteoglycan synthesis by equine cultured chondrocytes grown in monolayers, and articular cartilage explants were measured. The effect of PSGAG on interleukin-1beta induced suppression of proteogycan synthesis was also investigated. Proteoglycan synthesis was measured by scintillation assay of radiolabelled sulphate (35SO4) incorporation. Polysulphated glycosaminoglycan and PPS stimulated proteoglycan synthesis in chondrocyte monolayers in a concentration-related manner with maximal effects being achieved at a concentration of 10 microg/mL. Polysulphated glycosaminoglycan reversed the concentration-related suppression of proteoglycan synthesis induced by interleukin-1beta. Neither PSGAG nor PPS exerted significant effects on radiolabel incorporation in cartilage explants. Betamethasone suppressed proteoglycan synthesis by both chondrocytes and explants at high concentrations (0.1-100 microg/mL), but the effect was not concentration-related. At low concentrations (0.001-0.05 microg/mL) betamethasone neither increased nor decreased proteoglycan synthesis. Phenylbutazone and indomethacin increased radiolabel incorporation in chondrocyte cultures but not in cartilage explants at low (0.1, 1 and 10 microg/mL), but not at high (20 and 100 microg/mL) concentrations. These findings may be relevant to the clinical use of these drugs in the treatment of equine disease.  相似文献   

2.
OBJECTIVE: To study the effect of polysulfated glycosaminoglycan (PSGAG) on proteoglycan metabolism and DNA content of control and osteoarthritic (OA) cartilage. STUDY DESIGN: An in vitro study comparing the effects of PSGAG on articular cartilage explants from canine stifle joints with and without chronic OA after transection of the left cranial cruciate ligament. SAMPLE POPULATION: Five large cross-breed dogs. METHODS: Cartilage explants (6 to 13 per treatment group) from the medial side of the femoral trochlea and medial femoral condyle from both stifles of each dog were incubated in a defined medium containing 0, 0.05, 0.5, or 5 mg/mL of PSGAG. After 72 hours in culture, explants were pulsed for 6 hours with sodium [35S]sulfate. Aminophenylmercuric acetate (APMA) was used to activate endogenous neutral matrix metalloproteinases (MMPs) and induce proteoglycan degradation in the radiolabeled explants. DNA content and radioactivity were measured in papain-digested explants, and radioactivity was measured in the medium by liquid scintillation counting. Proteoglycan synthesis and degradation were calculated. Cartilage was examined histologically for signs of OA. A mixed model analysis of variance and linear contrasts were used to test for significant (P < .05) effects of OA and treatment with PSGAG. RESULTS: Transection of the cranial cruciate ligament produced OA in operated joints. DNA content and proteoglycan synthesis of OA cartilage were significantly lower than in cartilage from control joints. For both DNA content and proteoglycan synthesis, significant interactions occurred between the concentration of PSGAG and whether the articular cartilage was from OA or control joints. The two lower concentrations of PSGAG (0.05 and 0.5 mg/mL) predominantly increased DNA content in OA cartilage (7 and 18%, respectively, compared with 0 mg/mL PSGAG) while the highest concentration (5 mg/mL) predominantly increased DNA content in control cartilage (30% compared with 0 mg/mL PSGAG). PSGAG at .05 mg/mL predominantly decreased proteoglycan synthesis in OA cartilage (19% reduction compared with 0 mg/mL PSGAG) while PSGAG at .5 and 5 mg/mL predominantly decreased proteoglycan synthesis in control cartilage (17 and 55% reduction, respectively, compared with 0 mg/mL PSGAG). Following activation of MMPs, PSGAG caused a dose-dependent decrease in degradation of radiolabeled proteoglycan in both OA and control cartilage. CONCLUSIONS: OA cartilage was responsive to treatment with PSGAG at 100-fold lower concentration than control cartilage. When treated with PSGAG, articular cartilage explants maintained or increased DNA content at the expense of proteoglycan synthesis. Following MMP activation, proteoglycan degradation was inhibited in OA and control explants in a dose-dependent manner. CLINICAL RELEVANCE: If the results of this study extend to in vivo use, treatment with PSGAG may modify the progression of OA in articular cartilage by maintaining chondrocyte viability or stimulating chondrocyte division as well as protecting against extracellular matrix degradation.  相似文献   

3.
OBJECTIVE: To investigate effects of the anti-arthritic agents hyaluronan and polysulfated glycosaminoglycan (PSGAG) on inflammatory metabolism in cultured equine synoviocytes. SAMPLE POPULATION: Synoviocytes cultured from samples obtained from the metacarpophalangeal joints of 4 horses. PROCEDURE: Equine synoviocytes were grown in monolayer culture. Synoviocytes were stimulated with lipopolysaccharide (LPS) and simultaneously treated with various concentrations of hyaluronan or PSGAG for 48 hours. Three hyaluronan preparations were compared. Prostaglandin E2 (PGE2) concentrations in culture medium were measured, using radioimmunoassay. RESULTS: The highest concentrations of hyaluronan and PSGAG tested inhibited PGE2 production. CONCLUSIONS AND CLINICAL RELEVANCE: Clinically achievable concentrations of hyaluronan and PSGAG inhibited PGE2 synthesis by cultured equine synoviocytes. This anti-inflammatory action may be a mechanism through which these agents exert anti-arthritic effects. The effect was obtained at concentrations that can be achieved by use of intra-articular, but not systemic, administration of hyaluronan or PSGAG.  相似文献   

4.
OBJECTIVE: To assess the effects of supraphysiologic concentrations of insulin-like growth factor-1 (IGF-1) on morphologic and phenotypic responses of chondrocytes. SAMPLE POPULATION: Articular cartilage obtained from 2 young horses. PROCEDURE: Chondrocytes were suspended in fibrin cultures and supplemented with 25, 12.5, or 0 mg of IGF-1/ml of fibrin. Chondrocyte morphology and phenotypic expression were assessed histologically, using H&E and Alcian blue stains, immunoreaction to collagen type I and II, and in situ hybridization. Proteoglycan content, synthesis, and monomer size were analyzed. The DNA content was determined by bisbenzimide-fluorometric assay, and elution of IGF-1 into medium was determined by IGF-1 radioimmunoassay. RESULTS: Both 12.5 and 25 kg of IGF-1/ml enhanced phenotypic expression of chondrocytes without inducing detrimental cellular or metabolic effects. Highest concentration of IGF-1 (25 microg/ml) significantly increased total DNA content, glycosaminoglycan (GAG) content, GAG synthesis, and size of proteoglycan monomers produced, compared with cultures supplemented with 12.5 microg of IGF-1/ml or untreated cultures. Histologic examination confirmed these biochemical effects. Matrix metachromasia, type-II collagen in situ hybridization and immunoreaction were increased in cultures treated with 25 microg of IGF-1/ml, compared with cultures supplemented with 12.5 microg of IGF-1/ml or untreated cultures. CONCLUSIONS AND CLINICAL RELEVANCE: Chondrocytes exposed to high concentrations of IGF-1 maintained differentiated chondrocyte morphology and had enhanced synthesis of matrix molecules without inducing apparent detrimental effects on chondrocyte metabolism. These results suggest that application of such composites for in vivo use during cartilage grafting procedures should provide an anabolic effect on the grafted cells.  相似文献   

5.
Loss of articular cartilage, which is the most important pathological lesion occurring in osteoarthritis, has been shown to be enzymatically mediated. The matrix metalloproteinases (MMPs) are a group of enzymes which have been implicated in this degradation of articular cartilage matrix. The use of pharmacological agents to inhibit this catabolic process in the joint is a potential route for therapeutic intervention.
  The gelatinase MMPs, MMPs-2 and 9, were purified by affinity chromatography from equine cell cultures. The ability of phenylbutazone, flunixin, betamethasone, dexamethasone, methylprednisolone acetate (MPA), hyaluronan, pentosan polysulphate and polysulphated glycosaminoglycan (PSGAG) to inhibit equine MMPs-2 and 9 were assessed by two degradation assays. Whilst some agents did have direct effects on MMP activity, these effects were only obtained at concentrations which were unlikely to be achieved for any length of time in vivo . It is improbable that any pharmacological agent, currently used in the horse, has a significant effect on gelatinase MMP activity.  相似文献   

6.
OBJECTIVE: To study in vitro (1) the dose-response relationships between proteoglycan metabolism in normal and corticosteroid-treated articular cartilage; (2) long-term proteoglycan metabolism after treatment of articular cartilage with corticosteroids; and (3) the effect of corticosteroids on proteoglycan metabolism in articular cartilage treated with monocyte-conditioned medium (MCM). STUDY DESIGN: Equine and canine articular cartilage explants were treated with corticosteroids and MCM. Proteoglycan synthesis and degradation were measured by radioactive labeling in short-term culture, and the long-term effect of corticosteroid treatment on proteoglycan metabolism was studied in normal explants. ANIMALS: Two young cross-breed horses and 3 young Labrador retrievers. METHODS: Equine articular cartilage explants were incubated in medium containing methylprednisolone sodium succinate (MPS) at 0, .001, .01, .1, 1, and 10 mg/mL (final concentration) for 1 day and then in fresh medium without MPS. Proteoglycan synthesis was measured by incorporation of sodium [35S]sulfate at 1, 3, 7, 10, and 13 days after initial treatment with MPS. Proteoglycan release was measured from separate explants prelabeled with sodium [35S]sulfate and treated similarly. Equine articular cartilage explants were treated with equine MCM simultaneously with, and 24 hours before MPS, at 0, 0.01, 0.1, 1, or 5 mg/mL for 72 hours. Proteoglycan synthesis and degradation in these explants was compared. Proteoglycan synthesis and degradation were measured similarly in canine articular cartilage explants treated simultaneously with canine MCM and MPS at 0, 0.001, 0.01, 0.1, 1 and 10 mg/mL for 72 hours. Equine articular cartilage explants treated with 0, 0.01, 0.1, 1, and 5 mg/mL of MPS for 72 hours were evaluated histologically. RESULTS: Proteoglycan synthesis in normal equine articular cartilage was severely depressed by 10 mg/mL MPS for 24 hours, and proteoglycan synthesis failed to recover after 13 days of culture in medium without MPS. Cartilage treated with 5 mg/mL MPS had pyknotic chondrocyte nuclei and empty lacunae. Concentrations of 1 and 0.1 mg/mL MPS depressed proteoglycan synthesis in normal equine cartilage explants. For these 2 concentrations, proteoglycan synthesis recovered 2 days after MPS removal and increased significantly (P < .05) 7 days after treatment with MPS compared with controls without MPS. Concentrations of 0.001 and 0.01 mg/mL MPS did not significantly affect proteoglycan synthesis in normal equine cartilage explants. Cumulative proteoglycan loss over 13 days in culture from normal equine explants treated for 24 hours with different concentrations of MPS was not significantly different between treatment groups at any time point. MCM significantly depressed proteoglycan synthesis in both canine and equine articular cartilage explants and significantly increased proteoglycan release. These effects were prevented in the canine explants by simultaneous treatment with MPS at 1 and 0.1 mg/mL, and proteoglycan release induced by MCM in equine articular cartilage was inhibited by 1 mg/mL MPS. CONCLUSIONS: Concentrations of 1.0 and 0.1 mg/mL MPS alleviated articular cartilage degradation in MCM-treated articular cartilage in vitro. These concentrations of MPS in contact with normal cartilage explants for 24 hours are unlikely to be detrimental in the long term to proteoglycan synthesis. The response of articular cartilage to MPS was affected by treatment with MCM so that results of experiments with normal articular cartilage explants may not reflect results obtained with abnormal cartilage. CLINICAL RELEVANCE: It may be possible to find an intraarticular concentration of corticosteroid that protects articular cartilage against cytokine-induced matrix degradation yet not have prolonged or permanent detrimental effects on chondrocyte matrix synthesis.  相似文献   

7.
The ability of polysulfated glycosaminoglycans (PSGAG) to inhibit the complement cascade was evaluated. The role of complement in inflammation and infection has been well documented. Inhibition of the complement cascade by PSGAG could explain why intra-articularly administered PSGAG diminish diarthrodial joint inflammation and potentiate septic arthritis in horses. Hemolytic complement testing was performed to evaluate the effect of PSGAG on the equine classical and alternate pathways of complement, using rabbit erythrocytes as the target cells. Concentration of PSGAG between 0.2 mg/ml and 0.6 mg/ml significantly (P less than 0.05) inhibited equine complement in dose-related fashion. Further increase in complement inhibition was not observed at PSGAG concentration greater than 0.6 mg/ml. Difference was not apparent in the extent of inhibition of complement from each of the 4 horses tested. Polysulfated glycosaminoglycans appeared to inhibit the classical and alternate complement pathways equally, indicating possible effect on complement components common to both pathways. Heat inactivation of complement function completely inhibited (P less than 0.01) the hemolytic activity of the serum from all horses.  相似文献   

8.
Explant cultures were set up, using articular cartilage obtained from metatarsophalangeal joints of 11 horses. Explants from 2 horses were used to determine culture conditions appropriate for tissue viability. The cartilage explants maintained steady-state metabolism of proteoglycans during a 13-day evaluation period. The metabolic response of equine articular cartilage to incubation with recombinant human interleukin 1 (0.01 to 100 ng/ml) was studied, using cartilage obtained from the remaining 9 horses, age of which ranged from 3 months to 20 years. Interleukin 1 induced a dose-dependent release of glycosaminoglycan from the matrix during a 3-day incubation period. It also caused dose-dependent inhibition of glycosaminoglycan synthesis during a 3-hour pulse-labeling period. Explants obtained from older horses were significantly (P < 0.05) less responsive to interleukin 1, with respect to synthesis and release of glycosaminoglycan.  相似文献   

9.
Articular cartilage explants from 3 horses were maintained in tissue culture to test the effects of a polysulfated glycosaminoglycan on proteoglycan biosynthesis. Cultures were exposed to concentrations of 0, 50, or 200 micrograms of the drug/ml for either 2 days or 6 days, and labeled with 35S, before measuring the content of sulfated proteoglycan in the culture media and in extracts of cartilage. In a second experiment, the explants were incubated with the isotope and subsequently exposed to the same concentrations of the polysulfated glycosaminoglycan for 4 days. Subsequently, the amount of remaining labeled proteoglycan was determined. Gel filtration chromatography was used to compare the hydrodynamic size of proteoglycans from the cartilage explants in each experiment. Polysulfated glycosaminoglycan caused a dose-dependent depression of sulfated proteoglycan synthesis, which was statistically significant after 6 days of exposure. Radioactive proteoglycan content in explants was similar in the experiment involving isotopic labeling prior to exposure to the drug. Proteoglycan monomer size was similar in all treatment groups. It was concluded that polysulfated glycosaminoglycan caused a modest depression in proteoglycan synthesis, had little effect on endogenous proteoglycan degradation, and did not influence the size of sulfated proteoglycans synthesized by normal equine chondrocytes in explant culture.  相似文献   

10.
OBJECTIVES: To evaluate the effects of equine recombinant interleukin-1alpha (rEqIL-1alpha) and recombinant interleukin-1beta (rEqIL-1beta) on proteoglycan metabolism and prostaglandin E2 (PGE2) synthesis by equine articular chondrocytes in explant culture. SAMPLE POPULATION: Near full-thickness articular cartilage explants (approx 50 mg) harvested from stifle joints of a 3-year-old and a 5-year-old horse. PROCEDURE: Expression constructs containing cDNA sequences encoding EqIL-1alpha and EqIL-1beta were generated, prokaryotically expressed, and the recombinant protein purified. Near full-thickness articular cartilage explants (approx 50 mg) harvested from stifle joints of a 3-year-old and a 5-year-old horse were separately randomized to receive rEqIL-1alpha or rEqIL-1beta treatments 10 to 500 ng/ml). Proteoglycan release was evaluated by 1,9-dimethylmethylene blue spectrophotometric analysis of explant media glycosaminoglycan (GAG) concentration and release of 35S-sulfate-labeled GAG to explant media. Proteoglycan synthesis was assessed by quantification of 35S-sulfate incorporation into proteoglycan. Explant media PGE2 concentrations were evaluated using a PGE2-specific enzyme-linked immunoassay. Data were collected at 48-hour intervals and normalized by DNA content. RESULTS: Proteoglycan release was induced by rEqIL-1alpha and rEqIL-1beta at concentrations > or =0.1 ng/ml, with 38 to 76% and 88 to 98% of total GAG released by 4 and 6 days, respectively. Inhibition of proteoglycan synthesis (42 to 64%) was observed at IL-1 concentrations > or = 0.1 ng/ml at 2 and 4 days. Increased PGE2 concentrations were observed at IL-1 concentrations > or = 0.1 ng/ml at 2 and 4 days. CONCLUSIONS AND CLINICAL RELEVANCE: The rEqIL-1 induced potent concentration-dependent derangement of equine chondrocyte metabolism in vitro. These findings suggest this model may be suitable for the in vitro study of the pathogenesis and treatment of joint disease in horses.  相似文献   

11.
This study was carried out to investigate the effect of two enzymes (collagenase and chondroitinase) and two cytokines/metabolites (interleukin-1beta and retinoic acid) of known catabolic activity on the expression of cartilage metabolism/phenotype in equine articular cartilage. Articular cartilage explants from 11 horses (5-13 years old) were treated for 48 h and assayed for total sulphated glycosaminoglycan (GAG), the incorporation of 35S-sulphate, collagen degradation and mRNA expression of the proteoglycans collagen II, collagen IIA, collagen III, collagen IX, collagen X, collagen XI and glyceraldehyde-3-phosphate (GAPDH). Purified collagenase and retinoic acid were responsible for increased GAG loss from the tissues. Chondroitinase, responsible for catalysing the elimination of glucuronate residues from chondroitin A, B and C (Chondroitinase ABC) and retinoic acid treatment induced an inhibition of proteoglycan synthesis, whereas collagenase treatment did not. Collagenase activity was correlated with increased appearance of the CB11B epitope and type II collagen denaturation. By RT-PCR there was evidence of expression of altered collagen type IIA in purified collagenase treated tissues.  相似文献   

12.
Eight mature horses were administered a single intramuscular injection of 500 mg polysulfated glycosaminoglycan (PSGAG) labeled with 2.044 mCi tritium. Synovial fluid samples were collected from the antebrachiocarpal (carpal), metacarpophalangeal (fetlock), tibiotarsal (hock) and coronopedal (coffin) joints prior to injection and at 2, 4, 8, 12, and 24 hours after injection. The samples were subjected to scintillation counting in decays per minute and were converted to μg PSGAG per ml. The levels achieved in the synovial fluid of the various joints were compared to levels of PSGAG described as adequate to inhibit enzymes which degrade articular cartilage matrix components and hyaluronic acid and adequate to stimulate production of new matrix components and hyaluronic acid in diseased joints.Mean synovial fluid 3H-PSGAG levels indicated that peak concentrations of 3H-PSGAG were achieved 2 hours post injection in all joints and that these concentrations were within the therapeutic range for PSGAG. The peak concentrations were not significantly different among the joints except between the antebrachiocarpal and the metacarpophalangeal joints. The areas under the concentration-time curves (AUC) for each joint were computed by the trapezoidal method from hour 0 through hour 24 and by empirical exponential decay beyond hour 24. These values were subjected to an analysis of variance (ANOVA). The overall multivariate test of AUC among all joints was not significant.The data from this study indicate that a single intramuscular 500 mg injection of PSGAG provided therapeutic levels of the drug in the equine antebrachiocarpal, metacarpophalangeal, tibiotarsal, and coronopedal joints within 2 hours of injection. While there were differences in levels between joints at certain time points, the AUC values suggest similar distribution of the drug in all joints tested.  相似文献   

13.
The effect of exogenous hyaluronate on normal cartilage metabolism and interleukin-1 (IL-1)-induced cartilage matrix degradation was investigated in a bovine cartilage explant culture system. Addition of hyaluronate at a concentration of 1.5 mg/ml to cartilage culture explants consistently decreased normal proteoglycan release from the matrix to a value less than that found in control cultures. Addition of 1.5 mg of hyaluronate/ml to IL-1 stimulated cartilage culture systems reduced proteoglycan release from the matrix by 83 to 113%. The reduction in control and IL-1-stimulated proteoglycan degradation by hyaluronate had a concentration-dependent trend. Evaluation of alterations in protein (enzyme) release by IL-1-stimulated chondrocytes after introduction of hyaluronate was evaluated by use of sodium dodecyl sulfate agar gel electrophoresis of cartilage-conditioned media. The quantity or the molecular weight profile of IL-1-induced proteins did not differ after introduction of hyaluronate into the culture system. Results indicate that introduction of high molecular weight hyaluronate into cartilage culture systems results in a decrease in proteoglycan release from the matrix in control systems, as well as in cultures incubated with IL-1. Because IL-1-stimulated protein synthesis by chondrocytes remains unchanged after addition of exogenous hyaluronate, the mechanism of inhibition of matrix degradation does not appear to be interference with binding of IL-1 to chondrocytes or to be inhibition of the production of neutral metalloproteases, including stromelysin.  相似文献   

14.
OBJECTIVE: To evaluate the effects of dimethyl sulfoxide (DMSO) on equine articular cartilage matrix metabolism. STUDY DESIGN: Using a cartilage explant culture system, proteoglycan (PG) synthesis, PG release, lactate metabolism, chondrocyte viability, and metabolism recovery were determined after cartilage exposure to DMSO. SAMPLE POPULATION: Cartilage harvested from metacarpophalangeal and metatarsophalangeal joints of 12 horses (age range, 1 to 10 years). METHODS: Explants were exposed to concentrations of DMSO (1% to 20%) for variable times (3 to 72 hours). PG synthesis and release were determined by a radiolabel incorporation assay and dimethylmethylene blue (DMMB) dye assay, respectively. Lactate released into culture media was measured, and chondrocyte viability was assessed using the Formizan Conversion Assay and a paravital staining protocol. Metabolism recovery was assessed in explants that were allowed to recover in maintenance media after exposure to DMSO. RESULTS: PG synthesis and lactate metabolism were inhibited in a dose- and time-dependent manner after exposure to DMSO concentrations > or = 5%; there was no significant alteration in PG release. No change in chondrocyte viability was detected after incubation with DMSO. PG synthesis and lactate metabolism returned to baseline rates when allowed a recovery period after exposure to DMSO. CONCLUSIONS: DMSO concentrations > or = 5% suppress equine articular cartilage matrix metabolism. Suppression of PG synthesis and lactate metabolism is reversible and does not appear to be the result of chondrocyte death. CLINICAL RELEVANCE: Equine clinicians adding DMSO to intraarticular lavage solutions should be aware that DMSO may have deleterious effects on equine articular cartilage matrix metabolism.  相似文献   

15.
OBJECTIVE: To investigate the effects of enrofloxacin and magnesium deficiency on explants of equine articular cartilage. SAMPLE POPULATION: Articular cartilage explants and cultured chondrocytes obtained from adult and neonatal horses. PROCEDURE: Full-thickness explants and cultured chondrocytes were incubated in complete or magnesium-deficient media containing enrofloxacin at concentrations of 0, 1, 5, 25, 100, and 500 microg/ml. Incorporation and release of sulfate 35S over 24 hours were used to assess glycosaminoglycan (GAG) synthesis and degradation. An assay that measured binding of dimethylmethylene blue dye was used to compare total GAG content between groups. Northern blots of RNA from cultured chondrocytes were probed with equine cDNA of aggrecan, type-II collagen, biglycan, decorin, link protein, matrix metalloproteinases 1, 3, and 13, and tissue inhibitor of metalloproteinase 1. RESULTS: A dose-dependent suppression of 35S incorporation was observed. In cartilage of neonates, 35S incorporation was substantially decreased at enrofloxacin concentrations of 25 mg/ml. In cartilage of adult horses, 35S incorporation was decreased only at enrofloxacin concentrations of > or =100 microg/ml. Magnesium deficiency caused suppression of 35S incorporation. Enrofloxacin or magnesium deficiency did not affect GAG degradation or endogenous GAG content. Specific effects of enrofloxacin on steady-state mRNA for the various genes were not observed. CONCLUSION AND CLINICAL RELEVANCE: Enrofloxacin may have a detrimental effect on cartilage metabolism in horses, especially in neonates.  相似文献   

16.
Arthroses are debilitating diseases of articular joints which result in erosion of the cartilage extracellular matrix. Nitric oxide (NO) is a major component of the inflammatory response, and has been implicated as a mediator of some of the effects of the proinflammatory cytokine, interleukin-1 (IL-1). In this study, we investigated the role of NO in the regulation of proteoglycan degradation in equine articular cartilage. NO fully mediated the suppressive effect of IL-1 on proteoglycan synthesis. However, NO was also antagonistic to proteoglycan degradation, irrespective of whether degradation was initiated by 10 ng/ml IL-1 or 1 micromol/l all-trans retinoic acid (RA) which (unlike IL-1) does not elevate NO production. This was confirmed using the NO donor 2,2'-(hydroxynitrosohydrazono) bis-ethanamine (DETA-NONOate) and the iNOS inhibitor L-N5-iminoethyl ornithine (dihydrochloride) (L-NIO). The G1 fragments of aggrecan were detected in the media and extracts of cartilage explant cultures treated with all-trans RA, DETA-NONOate and L-NIO. The presence of exogenous NO in culture resulted in a decrease in the appearance of the 'aggrecanase' cleavage epitope. Therefore, changes in the appearance of the G1 fragment expressing the 'aggrecanase' cleavage epitope in the media emulated the glycosaminoglycan loss from the tissue. These results lend further support to the hypothesis that NO has an anticatabolic role in equine cartilage proteoglycan degradation, and suggest that this may be mediated by the regulation of 'aggrecanase' activity. Therefore, any pharmacological intervention using NO as a target must take into account both its catabolic and anticatabolic roles in joint tissue turnover.  相似文献   

17.
REASONS FOR PERFORMING STUDY: Osteoarthritis is a frequent sequela of joint disease, especially with severe injuries or if attempts at therapy are unsuccessful. Negative and positive effects of corticosteroid treatment of articular cartilage have been demonstrated by in vitro and in vivo studies. OBJECTIVES: To assess the metabolic effects of varying dosages of methylprednisolone acetate (MPA) and triamcinolone acetonide (TA) on interleukin-1alpha (IL-1) conditioned equine cartilage explants. Our hypothesis was that lower dosages of corticosteroids would be less detrimental to cartilage metabolism than higher dosages. TA would be less detrimental to cartilage metabolism than MPA. METHODS: Treatment groups included articular cartilage explants with no IL-1 (control), IL-1 alone, and IL-1 plus 10, 5, 1 and 0.5 mg/ml MPA or 1.2, 0.6, 0.12 and 0.06 mg/ml TA. Explants were labelled with 35SO4 prior to the beginning and end of the experiment to assess glycosaminoglycan (GAG) degradation and synthesis, respectively. Total GAG content in media and explants and total cartilage DNA were also analysed. RESULTS: MPA and TA reduced GAG synthesis compared to control and IL-1 alone. The highest dosage of MPA (10 mg/ml) reduced GAG synthesis less than lower dosages of MPA and all dosages of TA. Compared to IL-1 alone, all dosages of TA and lower dosages of MPA increased GAG degradation. MPA at 10 mg/ml reduced GAG degradation. Both MPA and TA increased media GAG content compared to control and IL-1 explants. Total cartilage GAGs were unchanged with MPA, but reduced with TA, compared with IL-1 alone. Total cartilage DNA was decreased with MPA and increased with TA compared to IL-1 and control explants. CONCLUSIONS: MPA and TA did not counteract the negative effects of IL-1 and did not maintain cartilage metabolism at control levels. Lower dosages of MPA and TA were not less detrimental to cartilage metabolism than higher dosages. TA did not appear to be less harmful than MPA on cartilage metabolism. The results of this study differ from the findings of comparable in vivo studies. POTENTIAL RELEVANCE: The low numbers of horses used in this study limits extrapolation of these findings to the equine population; however, this study also questions the clinical relevance of this in vitro model.  相似文献   

18.
Polysulfated glycosaminoglycan (PSGAG) recently have been reported to potentiate the infectivity of Staphylococcus aureus in horses with experimentally induced septic arthritis. Four groups of 8 horses each had 1 midcarpal joint injected with approximately 33 viable colony-forming units (CFU) of S aureus plus either 1 ml of saline solution (group 1), 250 mg of PSGAG (group 2), 250 mg of PSGAG passed through a 0.6-microns filter (group 3), or 250 mg of PSGAG plus 125 mg of amikacin (group 4). Horses that developed clinical signs consistent with sepsis were euthanatized, and samples were collected at necropsy. Horses that survived had samples obtained by use of arthroscopy at days 13 and 14 after injection. Staphylococcus aureus was isolated from 1 group-1 horse, 8 group-2 horses, and 7 of 7 group-3 horses that met protocol, but was not isolated from any group-4 horses. All 16 aforementioned horses had clinical signs, results of synovial fluid analysis, and gross pathologic and synovial membrane histopathologic findings that were consistent with septic arthritis. Polysulfated glycosaminoglycan (250 mg) increased the infectivity of 33 CFU of S aureus (P = 0.001); filtering the PSGAG had no effect. Intra-articular injection of 125 mg of amikacin immediately after inoculating the joint with 33 CFU of S aureus significantly (P = 0.001) decreased potentiation of infection by the PSGAG.  相似文献   

19.
Articular chondrocytes are phenotypically unique cells that are responsible for the maintenance of articular cartilage. The articular chondrocytic phenotype is influenced by a range of soluble factors. In particular, members of the bone morphogenetic protein (BMP) family support the articular chondrocytic phenotype and stimulate synthesis of cartilaginous matrix. This study was carried out to determine the importance of BMPs in supporting the differentiated phenotype of articular chondrocytes in vitro. Exogenous BMP-2 supported expression of collagen type II and aggrecan in monolayer chondrocyte cultures, slowing the dedifferentiation process that occurs under these conditions. In contrast, BMP-2 had little effect on expression of these genes in three-dimensional aggregate cultures. Endogenous BMP-2 expression was lost in monolayer cultures, coincident with the down-regulation of collagen type II and aggrecan mRNAs, whereas BMP-2 mRNA levels were stable in aggregate cultures. Antagonism of endogenous BMP activity in aggregate cultures by Noggin or a soluble form of the BMP receptor resulted in reduced expression of collagen type II and aggrecan mRNAs, reduced collagen type II protein and sulfated glycosaminoglycan (GAG) deposition into the aggregate matrices and reduced secretion of GAGs into the culture media. These results indicate that endogenous BMPs are required for maintenance of the differentiated articular chondrocytic phenotype in vitro. These findings are of importance to cell-based strategies designed to repair articular cartilage. Articular chondrocytes require conditions that will support endogenous expression of BMPs to maintain the specialized phenotype of these cells.  相似文献   

20.
Objective: To characterize the impact of age, gender, location and individual animal variation on the composition of articular cartilage from the metacarpophalangeal joint of horses. Design: Cartilage specimens were obtained from the metacarpophalangeal joints of 28 male, female and castrated male horses ranging in age from one day to 27 years of age. Cartilage samples from the distal metacarpus, proximal first phalanx and proximal sesamoids were analyzed separately. Chondrocyte number, DNA content, proteoglycan concentration and total collagen content were determined for each animal and joint location. Results: Age and joint location had a significant effect on chondrocyte number and DNA content with higher cell counts and DNA content detected in cartilage from the youngest age groups and in cartilage from the metacarpus and proximal sesamoids. The influence of age on chondrocyte numbers was not significant in horses over two years of age. Both age and joint location also influenced total proteoglycan and collagen content. Lower proteoglycan and collagen concentrations were detected in younger horses, and cartilage from the metacarpus had lower proteoglycan and collagen concentrations than that from other joint locations. Gender did not appear to influence chondrocyte number or matrix content of equine articular cartilage. However, there was significant residual variation in cellularity, proteoglycan levels and collagen content between individual animals that could not be explained by the signalment factors considered in this study. Conclusions: Future studies examining equine articular cartilage should avoid direct morphologic comparisons between animals of different ages, and any comparisons made between individuals should be interpreted cautiously. In addition, in vitro tissue culture models should avoid the use of cartilage pooled from different animals or from different locations within the same joint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号