首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To determine blood glucose clearance in 2 species of New World camelids after IV challenge and to examine mechanisms of this clearance. ANIMALS: 5 adult female llamas and 5 adult gelded alpacas. PROCEDURE: After food was withheld for 12 hours, camelids received 0.5 g of glucose/kg of body weight by rapid IV infusion. Serum concentrations of glucose, nonesterified fatty acids, cortisol, and insulin, and plasma concentrations of lactate were determined before and 0, 1, 2, 3, 4, 5, 15, 30, 60, 90, 120, 180, and 240 minutes after infusion. Ratios of insulin to glucose and insulin to cortisol were calculated for each time point. RESULTS: Postinfusion glucose concentrations were significantly higher in llamas than alpacas for the first 15 minutes and remained significantly higher than baseline values in both species for 180 minutes. Lactate and cortisol concentrations did not change significantly; nonesterified fatty acid concentrations decreased in both species 30 minutes after infusion. Baseline insulin concentrations were < 6 microU/ml in both species and increased only to 10.1 +/- 0.7 microU/ml in llamas. Insulin concentrations did not change significantly in alpacas. CONCLUSIONS AND CLINICAL RELEVANCE: Llamas and alpacas clear glucose more slowly than other domestic species after challenge, mainly because of a weak insulin response and slow cellular uptake. This response may impair the assimilation of exogenous glucose as well as make llamas and alpacas prone to diabetes-like disorders when an abundance of endogenous or exogenous glucogenic agents are present.  相似文献   

2.
Glucose tolerance and insulin response in normal-weight and obese cats   总被引:2,自引:0,他引:2  
Glucose tolerance and insulin response were evaluated in 9 normal-weight and 6 obese cats after IV administration of 0.5 g of glucose/kg of body weight. Blood samples for glucose and insulin determinations were collected immediately prior to and 2.5, 5, 7.5, 10, 15, 30, 45, 60, 90, and 120 minutes after glucose infusion. Baseline glucose concentrations were not significantly different between normal-weight and obese cats; however, mean +/- SEM glucose tolerance was significantly impaired in obese vs normal-weight cats after glucose infusion (half time for glucose disappearance in serum--77 +/- 7 vs 51 +/- 4 minutes, P less than 0.01; glucose disappearance coefficient--0.95 +/- 0.10 vs 1.44 +/- 0.10%/min, P less than 0.01; insulinogenic index--0.20 +/- 0.02 vs 0.12 +/- 0.01, P less than 0.005, respectively). Baseline serum insulin concentrations were not significantly different between obese and normal-weight cats. Insulin peak response after glucose infusion was significantly (P less than 0.005) greater in obese than in normal-weight cats. Insulin secretion during the first 60 minutes (P less than 0.02), second 60 minutes (P less than 0.001), and total 120 minutes (P less than 0.0003) after glucose infusion was also significantly greater in obese than in normal-weight cats. Most insulin was secreted during the first hour after glucose infusion in normal-weight cats and during the second hour in obese cats. The impaired glucose tolerance and altered insulin response to glucose infusion in the obese cats was believed to be attributable to deleterious effects of obesity on insulin action and beta-cell responsiveness to stimuli (ie, glucose).  相似文献   

3.
Five mature Holstein cows and 6 first-lactation Holstein cows were administered 100 mg of glucose/kg of body weight, IV, over a 20-minute period on postpartum day 30. A series (preinfusion, glucose infusion, and postinfusion) of blood samples was collected at -15, -10, -5, 5, 10, 15, 20, 30, 45, 60, 75, 90, 105, and 120 minutes from the start of the infusion. Serum was obtained and was assayed for glucose, immunoreactive insulin (IRI), growth hormone (GH), and free fatty acid concentrations. Baseline glucose and free fatty acid concentrations were similar in cattle of both groups throughout the sample collection period. Both groups of cattle disposed of the infused glucose in a similar manner. The first-lactation cows secreted significantly (P less than 0.0001) more IRI to utilize the glucose load than did the mature cows, 71 +/- 13 microU/ml vs 38 +/- 7 microU/ml, respectively (mean +/- SEM). Preinfusion and glucose infusion GH concentrations were similar in cattle of both groups. In the postinfusion period, GH values were significantly (P less than 0.0002) higher in the first-lactation cows (8.7 +/- 1.8 ng/ml) than in the mature cows (5.8 +/- 1.6 ng/ml). Compared with that in the mature cows, the higher IRI concentration required by the first-lactation cows to utilize approximately the same glucose load suggested that first-lactation cows were insulin resistant. The increased insulin response to increased glucose concentration may be one reason first-lactation cows produce less milk than do mature cows. Other factors, such as variation in the ability of the mammary gland to synthesize milk cannot be excluded.  相似文献   

4.
OBJECTIVE: To evaluate the effects of exogenous insulin on clearance of exogenous glucose in alpacas. ANIMALS: 7 adult castrated male alpacas. PROCEDURE: Prior to each of 2 trials, food was withheld for 8 hours. Glucose (0.5 g/kg of body weight) was then administered by rapid IV infusion. During 1 of the trials, regular insulin (0.2 U/kg, IV) was also administered 15 minutes later. Blood was collected immediately before (0 minutes) and 15, 20, 25, 30, 45, 60, 90, 120, 180, and 240 minutes after glucose administration. Plasma concentrations of glucose and lactate were determined, and glucose fractional turnover rate and plasma half-life were calculated. RESULTS: Insulin treatment caused a significant increase in fractional turnover rate of glucose and plasma lactate concentration. Plasma glucose concentrations were less in insulin-treated alpacas from 30 minutes after glucose administration (15 minutes after insulin administration) until the conclusion of each trial, compared with nontreated alpacas. In addition, plasma glucose concentration in insulin-treated alpacas returned to baseline values 1 hour sooner than in the nontreated group. CONCLUSIONS AND CLINICAL RELEVANCE: Glucose uptake in alpacas improves after insulin treatment, suggesting that administration of exogenous insulin will increase the therapeutic and decrease the pathologic effects of exogenous glucose administered to hypoglycemic alpacas. However, alpacas and other New World camelids should be monitored carefully during treatment with glucose or insulin, because these species appear to be partially insulin resistant.  相似文献   

5.
OBJECTIVE: To investigate glucose tolerance and insulin sensitivity in llama crias. ANIMALS: 7 llamas (age range, 14 to 30 days). PROCEDURE: On each of 2 sequential days, crias were administered glucose (0.5 g/kg) via rapid i.v. injection. On 1 day (randomly determined for each cria), regular insulin (0.2 U/kg) or 0.9% NaCl solution (0.002 mL/kg) was administered i.v. 15 minutes after glucose administration. Blood samples were collected before (baseline) and at 5, 15, 30, 45, 60, 90, 120, 180, and 240 minutes after glucose administration for determination of plasma glucose and insulin concentrations; fractional turnover rates and plasma half-life of glucose were calculated. The data were compared over time and between days (ie, between glucose treatments with and without insulin administration). RESULTS: A peak plasma glucose concentration of 342 +/- 47 mg/dL was detected at 5 minutes after glucose administration and llamas cleared glucose from plasma within 60 minutes; at 15 minutes, plasma insulin concentration attained a peak value of 33 +/- 13 microU/mL (ie, triple the baseline value). During the 15- to 45-minute interval, fractional turnover rate of glucose was 1.10 +/- 0.24%/min and plasma half-life was 65.7 +/- 13.4 minutes. Insulin significantly increased glucose turnover and resulted in hypoglycemia within 75 minutes of administration. CONCLUSIONS AND CLINICAL RELEVANCE: Healthy immature llamas have glucose tolerance and insulin sensitivity superior to that of adults. However, whether sick crias retain the pancreatic sufficiency and tissue responsiveness that are likely responsible for the rapid glucose clearance in healthy individuals is not known.  相似文献   

6.
OBJECTIVE: To investigate the effects of administration of acepromazine on IV glucose tolerance tests (IVGTTs) in dogs. ANIMALS: 8 male mixed-breed dogs. PROCEDURE: With a 1-week interval between tests, each dog underwent (in random order) an IVGTT with or without pretest administration of acepromazine maleate (0.1 mg/kg, SC, 30 minutes prior to the start of the IVGTT). Food was withheld from the dogs for 14 hours prior to each test. Blood samples were obtained at 20, 10, and 1 minute prior to and at 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, and 180 minutes after administration of glucose. RESULTS: There were no significant differences in the baseline (ie, after food was withheld) plasma glucose, lactate, and insulin concentrations between dogs undergoing the IVGTT and acepromazine-IVGTT; however, lower baseline free fatty acid concentration was observed in acepromazine-treated dogs. Analysis of data via the application of Bergman's minimal model of glucose kinetics revealed no differences in insulin sensitivity, acute insulin response to glucose, disposition index, or glucose effectiveness between dogs treated or not treated with acepromazine before testing. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that in dogs undergoing IV glucose tolerance testing, pretest administration of small doses of acepromazine can be used as a means of chemical restraint without interfering with results of the glucose metabolism assessment.  相似文献   

7.
Serum insulin and plasma glucose concentrations were determined in 8 mares. Four IV treatments were studied: xylazine (1.1 mg/kg of body weight); yohimbine (0.125 mg/kg); yohimbine (0.125 mg/kg) followed 5 minutes later by xylazine (1.1 mg/kg); and 5 ml of isotonic saline solution as a control. Blood samples were collected before (time 0) and at 5, 15, 30, 60, 120, and 180 minutes after drug administration. Serum insulin concentration decreased and plasma glucose concentration increased in mares given xylazine. Plasma glucose concentration was unchanged in control mares and in mares given yohimbine or yohimbine followed by xylazine. Serum insulin concentration was unchanged in mares given saline solution, but transiently increased in mares given yohimbine alone. Treatment with yohimbine prevented xylazine-induced hypoinsulinemia and hyperglycemia.  相似文献   

8.
OBJECTIVE: To assess the effects of prolonged feed deprivation on glucose tolerance, insulin secretion, and lipid homeostasis in llamas. ANIMALS: 9 adult female llamas. PROCEDURE: On each of 2 consecutive days, food was withheld from the llamas for 8 hours. Blood samples were collected before and 5, 15, 30, 45, 60, 120, and 240 minutes after IV injection of dextrose (0.5 g/kg) for determination of plasma insulin and serum glucose, triglyceride, and nonesterified fatty acid concentrations. Between experimental periods, the llamas received supplemental amino acids IV (185 mg/kg in solution). The llamas were then fed a limited diet (grass hay, 0.25% of body weight daily) for 23 days, after which the experimental procedures were repeated. RESULTS: Feed restriction decreased glucose tolerance and had slight effects on insulin secretion in llamas. Basal lipid fractions were higher after feed restriction, but dextrose administration resulted in similar reductions in serum lipid concentrations with and without feed restriction. Insulin secretion was decreased on the second day of each study period, which lessened reduction of serum lipid concentrations but did not affect glucose tolerance. CONCLUSIONS AND CLINICAL RELEVANCE: Despite having a comparatively competent pancreatic response, feed-restricted llamas assimilated dextrose via an IV bolus more slowly than did llamas on full rations. However, repeated administration of dextrose reduced insulin secretion and could promote hyperglycemia and fat mobilization. These findings suggested that veterinarians should use alternative methods of supplying energy to camelids with long-term reduced feed intake or consider administering agents to improve the assimilation of glucose.  相似文献   

9.
The absorption kinetics of porcine regular insulin following IV, IM, and SC administration were evaluated in 10 dogs with alloxan-induced diabetes mellitus. Plasma immunoreactive insulin (IRI) concentrations were evaluated immediately prior to and at 10, 20, 30, 45, 60, 90, 120, 180, and 240 minutes following IV administration; and immediately prior to and every 30 minutes for 2 hours and then every hour for 6 hours following IM and SC administration of 0.55 U of porcine regular insulin/kg of body weight. Model-independent pharmacokinetic analysis was performed on each data set. Plasma IRI concentration declined rapidly after IV administration of regular insulin and then returned to baseline IRI concentration by 3.2 +/- 0.8 hours. The absorption kinetics following IV administration of regular insulin were similar to those found in earlier studies in healthy dogs and human beings. The IM and SC routes of regular insulin administration resulted in a pharmacologic concentration of IRI at 30 minutes. The peak mean (+/- SD) plasma IRI concentration was significantly (P less than 0.05) greater following SC administration than it was following IM administration of regular insulin (263 +/- 185 and 151 +/- 71 I microU/ml, respectively). The time of the peak plasma IRI concentration (68 +/- 31 minutes and 60 +/- 30 minutes) and the time to return to baseline plasma IRI concentration (5.8 +/- 1.2 hours and 5.8 +/- 1.3 hours) were not significantly different following SC and IM administration of regular insulin, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of weight gain and subsequent weight loss on glucose tolerance and insulin response were evaluated in 12 healthy cats. Intravenous glucose tolerance tests (IVGTT) were performed at entry into the study, after a significant gain of body weight induced by feeding palatable commercial cat food ad libitum, after a significant loss of body weight induced by feeding a poorly palatable purified diet to discourage eating and promote fasting, and after recovery from fasting when body weight had returned to pre-study values and cats were eating commercial foods. A complete physical examination with measurement of body weight was performed weekly, a CBC and serum biochemistry panel were evaluated at the time of each IVGTT, and a liver biopsy specimen obtained 2 to 4 days after each IVGTT was evaluated histologically for each cat. Mean serum glucose and insulin concentrations after glucose infusion and total amount of insulin secreted during the second 60 minutes and entire 120 minutes after glucose infusion were significantly (P > .05) increased after weight gain, as compared with baseline. At the end of weight loss, cats had hepatic lipidosis and serum biochemical abnormalities consistent with feline hepatic lipidosis. There was a significant (P > .05) increase in mean serum glucose concentration and t1/2, and a significant (P > .05) decrease in mean serum insulin concentration and the glucose disappearance coefficient (K) after glucose infusion for measurements obtained after weight loss, compared with those obtained after weight gain and at baseline. Insulin peak response, insulino-genic index, and total amount of insulin secreted during the initial 10 minutes, 20 minutes, and 60 minutes after glucose infusion were decreased markedly (P > .05), compared with measurements obtained after weight gain and at baseline. In addition, the total amount of insulin secreted for 120 minutes after glucose infusion was decreased markedly (P > .05) in measurements obtained after weight loss, compared with those obtained after weight gain. At the end of recovery, all cats were voluntarily consuming food, serum biochemical abnormalities identified after weight loss had resolved, the number and size of lipid vacuoles in hepatocytes had decreased, and results of IVGTT were similar to those obtained at baseline. These findings confirmed the reversibility of obesity-induced insulin resistance in cats, and documented initial deterioration in glucose tolerance and insulin response to glucose infusion when weight loss was caused by severe restriction of caloric intake.  相似文献   

11.
OBJECTIVE: To describe the pharmacokinetics of phenylbutazone and oxyphenbutazone after IV administration in miniature donkeys. ANIMALS: 6 clinically normal miniature donkeys. PROCEDURE: Blood samples were collected before and 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300, 360, and 480 minutes after IV administration of phenylbutazone (4.4 mg/kg of body weight). Serum was analyzed in triplicate by use of high-performance liquid chromatography for determination of phenylbutazone and oxyphenbutazone concentrations. The serum concentration-time curve for each donkey was analyzed separately to estimate model-independent pharmacokinetic variables. RESULTS: Serum concentrations decreased rapidly after IV administration of phenylbutazone, and they reached undetectable concentrations within 4 hours. Values for mean residence time ranged from 0.5 to 3.0 hours (median, 1.1 hour), whereas total body clearance ranged from 4.2 to 7.5 ml/kg/min (mean, 5.8 ml/kg/min). Oxyphenbutazone appeared rapidly in the serum; time to peak concentration ranged from 13 to 41 minutes (mean, 26.4 minutes), and peak concentration in serum ranged from 2.8 to 4.0 mg/ml (mean, 3.5 microg/ml). CONCLUSION AND CLINICAL RELEVANCE: Clearance of phenylbutazone in miniature donkeys after injection of a single dose (4.4 mg/kg, IV) is rapid. Compared with horses, miniature donkeys may require more frequent administration of phenylbutazone to achieve therapeutic efficacy.  相似文献   

12.
OBJECTIVE: To describe the metabolic effects of epinephrine administration in New World camelids and investigate whether these effects are influenced by administration of insulin. ANIMALS: 6 llamas and 8 alpacas (all adult castrated males). PROCEDURE: Prior to each experiment, food was withheld from camelids for 8 hours. On each of 2 consecutive days, alpacas were administered epinephrine (10 mg/kg, IM; time 0); alpacas were randomly assigned to receive regular insulin (0.2 U/kg, IV) immediately after epinephrine administration on one of those days. In llamas, the experiment was performed once after administration of epinephrine only. At 0, 30, 60, 90, 120, 150, 180, 210, and 240 minutes after treatment, blood samples were collected and several serum or plasma biochemical variables were assessed; in addition, plasma samples from llamas were assessed for insulin concentrations. Data were compared between days (alpacas only) and between time points. RESULTS: Administration of epinephrine induced mobilization of glucose, triglycerides, nonesterified fatty acids, and beta-hydroxybutyrate. A small increase in endogenous insulin concentration was detected in epinephrine-treated llamas, compared with baseline values. Overall, insulin administration decreased, negated, or delayed the epinephrine-associated increases in serum or plasma concentrations of circulating energy substrates, except that it augmented the epinephrine-associated increase in concentration of triglycerides. CONCLUSIONS AND CLINICAL RELEVANCE: Epinephrine appeared to mobilize energy substrates in camelids and hence may be involved in the pathogenesis of disorders of glucose and fat metabolism. Insulin appeared to antagonize most of these effects, and its administration may have therapeutic value in camelids.  相似文献   

13.
With the recent identification of non-insulin-dependent diabetes mellitus (NIDDM) in cats, new possibilities arise for the use of oral hypoglycaemic agents in the treatment of feline NIDDM, similar to their use in humans. To identify the future applicability of the oral hypoglycaemic agent, glipizide, in the treatment of feline NIDDM, its effects on serum insulin and glucose concentrations in healthy cats was examined. In addition, adverse effects seen clinically or on bloodwork following short-term use of the drug were looked for. Serum insulin and glucose concentrations were evaluated after the oral administration of 2.5, 5.0 and 10.0 mg glipizide and placebo in 10 healthy cats. For each drug trial, blood was obtained five minutes before, immediately before, and 7.5, 15, 30, 45, 60, 90 and 120 minutes after glipizide or placebo administration. Mean serum insulin concentration increased after glipizide administration, with peak mean serum insulin concentration occurring 15 minutes after administration and declining to baseline by 60 minutes. There was no significant difference in peak mean serum insulin concentration, mean serum insulin concentration at 60 minutes after glipizide administration, or mean total insulin secretion between the three glipizide dosages. Mean serum glucose concentration decreased within 15 minutes of glipizide administration, with the glucose nadir occurring 60 minutes after glipizide administration. Placebo trials showed no significant change in mean serum insulin or glucose concentrations from baseline concentrations.  相似文献   

14.
Alterations in Carbohydrate Metabolism in Canine Lymphoma   总被引:2,自引:1,他引:1  
Following an overnight fast, blood samples were obtained from 14 dogs with previously untreated lymphoma before and 5, 15, 30, 45, 60, and 90 minutes following an intravenous challenge with 500 mg/kg dextrose. Samples were assayed for glucose, lactate, and insulin concentrations and compared statistically with ten control dogs of similar weight and age undergoing an identical dextrose challenge. Dogs with lymphoma had similar glucose tolerance curves when compared with controls. Lactate concentrations were significantly higher (P less than 0.001) at baseline and all time periods of the glucose tolerance test in dogs with lymphoma when compared with controls. Rise in lactate concentrations over baseline levels in the first 30 minutes of the glucose tolerance test were significantly higher in dogs with lymphoma (P = 0.011). Insulin concentrations were significantly higher (P less than 0.001) at baseline and at the 5-, 45-, 60-, and 90-minute time periods of the glucose tolerance test in dogs with lymphoma. Rise in insulin concentrations over baseline in the first 5 minutes of the glucose tolerance test were also significantly greater in dogs with lymphoma (P = 0.021). These results indicate carbohydrate metabolism is altered in dogs with lymphoma. Many of these alterations parallel those observed in human patients suffering from cancer cachexia making canine lymphoma a potential model for further study of the pathogenesis and therapy of cancer cachexia.  相似文献   

15.
OBJECTIVE: To characterize the effect of general anesthesia and minor surgery on renal function in horses. ANIMALS: 9 mares with a mean (+/- SE) age and body weight of 9+/-2 years and 492+/-17 kg, respectively. PROCEDURE: The day before anesthesia, urine was collected (catheterization) for 3 hours to quantitate baseline values, and serum biochemical analysis was performed. The following day, xylazine (1.1 mg/kg, IV) was administered, and general anesthesia was induced 5 minutes later with diazepam (0.04 mg/kg, IV) and ketamine (2.2 mg/kg, IV). During 2 hours of anesthesia with isoflurane, Paco2 was maintained between 48 and 52 mm Hg, and mean arterial blood pressure was between 70 and 80 mm Hg. Blood and urine were collected at 30, 60, and 120 minutes during and at 1 hour after anesthesia. RESULTS: Baseline urine flow was 0.92+/-0.17 ml/kg/h and significantly increased at 30 and 60 minutes after xylazine administration (2.14+/-0.59 and 2.86+/-0.97 ml/kg/h respectively) but returned to baseline values by the end of anesthesia. Serum glucose concentration increased from 12+/-4 to 167+/-8 mg/dl at 30 minutes. Glucosuria was not observed. CONCLUSIONS AND CLINICAL RELEVANCE: Transient hyperglycemia and an increase in rine production accompanies a commonly used anesthetic technique for horses. The increase in urine flow is not trivial and should be considered in anesthetic management decisions. With the exception of serum glucose concentration and urine production, the effect of general anesthesia on indices of renal function in clinically normal horses is likely of little consequence in most horses admitted for elective surgical procedures.  相似文献   

16.
Background: The combined glucose‐insulin test (CGIT) is helpful for evaluating insulin sensitivity. A continuous glucose monitoring system (CGMS) reports changes in interstitial glucose concentrations as they occur in the blood. Use of the CGMS minimizes animal contact and may be useful when performing a CGIT. Hypothesis: Results obtained using a CGMS are useful for the evaluation of glucose responses during the evaluation of insulin sensitivity in equids. Animals: Seven mature, obese ponies. Methods: Ponies were equipped with CGMS for determination of interstitial glucose concentrations. Glucose (150 mg/kg, IV) and insulin (0.1 U/kg, IV) were administered and blood glucose concentrations determined at (minutes after time zero) 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, and 120 with a hand‐held glucometer. Blood chemistry results were compared with simultaneously obtained results using CGMS. Results: Concordance coefficients determined for comparison of blood glucose concentrations determined by a hand‐held glucometer and those determined by CGMS after the zero time point were 0.623, 0.764, 0.834, 0.854, and 0.818 (for delays of 0, 5, 10, 15, and 20 minutes, respectively). Conclusions and Clinical Importance: Interstitial glucose concentrations obtained by the CGMS compared favorably to blood glucose concentrations. CGMS may be useful for assessment of glucose dynamics in the CGIT.  相似文献   

17.
OBJECTIVE: To evaluate the effects of long-acting insulin on glucose clearance in alpacas. ANIMALS: 8 adult castrated alpacas. PROCEDURE: On 2 days, food was withheld from alpacas for 8 hours. Alpacas were randomly allocated to receive an SC injection of long-acting insulin (0.4 U/kg) or saline (0.9% NaCI) solution 1 hour before the first of 3 administrations of glucose (at 60, 480, and 1,200 minutes after treatment) on day 1 and the alternate treatment and procedure on day 2. Plasma glucose concentration was determined before and 15, 45, 120, and 240 minutes after each glucose administration, and fractional turnover rates were calculated. The data were compared between alpacas with and without insulin administration and among the 3 glucose administrations for each day. RESULTS: Compared with sham-treated alpacas, insulin-treated alpacas had significantly lower blood glucose concentrations from 180 to 600 minutes after treatment; they also had glucose concentrations significantly below baseline values from 120 to 480 minutes, at which time the mean glucose concentration was in the hypoglycemic range. Also, mean fractional turnover of glucose was significantly higher in insulin-treated alpacas from 105 through 300 minutes. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with known effects of regular insulin in alpacas, the action of long-acting insulin was of slower onset but longer lasting; its administration may induce hypoglycemia, even in alpacas that receive glucose. To maintain the hypoglycemic effect, long-acting insulin may have to be administered more than once daily and blood glucose concentration should be monitored to avoid hypoglycemic complications in alpacas.  相似文献   

18.
This study determined if the insulin and glucose responses to glucose infusion in obese (n = 4) and lean (n = 4) Holstein heifers were affected by stage of the estrous cycle. Glucose (.35 g/kg) was infused within 2 min into the jugular veins of heifers during diestrus (d 15) and at the subsequent estrus (d 0). Concentrations of insulin and glucose were determined in jugular venous serum obtained from blood samples collected at 60, 45, 30, 15 and 1 min before and at 2.5, 5, 10, 15, 20, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 210 and 240 min after glucose. Mean (+/- SE) pretreatment concentrations of glucose (mg/100 ml) in obese (68 +/- 1.9) and lean (71 +/- 2.5) heifers were unaffected by body condition and stage of the cycle. Mean (+/- SE) pretreatment concentrations of insulin (microU/ml) were unaffected by stage of the cycle but were higher (P less than .05) in obese (33 +/- 3.6) than in lean (18 +/- 2.7) heifers. Body condition affected the insulin response with greater absolute concentrations (P less than .01) and total (P less than .005) response areas of insulin in obese than in lean heifers. Kinetics of the injected glucose were unaffected by body condition and stage of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Changes in serum concentrations of glucose and insulin after iv injection of a low (20 mU/kg) and high (200 mU/kg) dose of bovine insulin were used to quantify insulin resistance and calculate kinetic variables of injected insulin, respectively, in four obese and four lean heifers. Serum samples from jugular venous blood were collected 60, 45, 30, 15 and 1 min before and 2.5, 5, 10, 20, 30, 40, 60, 80, 100, 120, 150, 180, 210 and 240 min after each treatment. Mean (+/- SE) pretreatment concentration of insulin (microU/ml) was higher (P less than .01) in obese (50 +/- 6.6) than lean (20 +/- 1.8) heifers, even though glucose concentrations were similar in both groups (71 +/- 2.9 mg/100 ml). Concentrations of insulin after each treatment were similar in both groups and returned to pretreatment values by 60 and 120 min after injection of the low and high doses, respectively. Glucose concentrations during the first 40 min after treatment with the low dose were lower (P less than .05) in lean than obese heifers, but were similar in both groups during the first 40 to 60 min after the high dose of insulin. The high insulin dose decreased (P less than .05) glucose concentrations below those of the low dose in each group, but the difference was greater (P less than .01) in obese than lean heifers. These results indicated that obese heifers were insensitive to the glucoregulatory effects of exogenous insulin, although the maximum responses to insulin were similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Eight mature idle gelding horses (mean body weight [BW], 558 ± 45 kg) were used in a replicated 2 × 2 Latin square design study. Horses received either two or three meals per day (MPD) for 7 days, of either a high (H; 43%; 215 g/100 kg BW) or low (L; 18%; 90 g/100 kg BW) nonstructural carbohydrate (NSC) concentrate feed to achieve four treatment groups: low NSC in two MPD (L2), low NSC in three MPD (L3), high NSC in two MPD (H2), and high NSC in three MPD (H3). On day 7 of the treatments, blood was collected before (baseline) and for 5 hours after feeding the morning meal (10, 20, 30, 40, 50, 60, 90, 120, 150, 180, 210, 240, 270, and 300 minutes after feeding). Baseline insulin concentrations tended (P = .093) to be higher for horses fed high NSC than low NSC, and horses fed two MPD tended (P = .092) to have higher baseline insulin concentrations than horses fed three MPD. In addition, baseline glucose-to-insulin ratio (GIR) was higher in horses fed high NSC compared with low NSC (P < .001). Horses fed high NSC had higher area under the curve of insulin and higher peak insulin after feeding than those fed low NSC. These findings suggest that NSC content of a concentrate feed has an impact on baseline insulin and GIRs and on postprandial insulin concentrations. Meanwhile, the number (and therefore size) of MPD had fewer impacts on glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号