共查询到20条相似文献,搜索用时 0 毫秒
1.
Antioxidant activity in common beans (Phaseolus vulgaris L.) 总被引:4,自引:0,他引:4
Cardador-Martínez A Loarca-Piña G Oomah BD 《Journal of agricultural and food chemistry》2002,50(24):6975-6980
Beans were pearled to evaluate the feasibility of increasing antioxidant activity and phenolic antioxidants. Phenolics were concentrated mostly in the hull fraction at about 56 mg of catechin equivalents per gram of sample. The methanolic extracts of the pearled bean samples were screened for antioxidant potential using the beta-carotene-linoleate and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) in vitro model systems. The pearled material, also referred to as milled samples, exhibited antioxidant activity that correlated with phenolic content and inhibited DPPH significantly in a dose-dependent manner. Phenolics and antioxidant activities were also examined in chromatographic fractions of methanolic extracts of manually obtained hulls that represented a model used previously to ascertain antimutagenic activity. Fractions extracted with ethyl acetate/acetone and acetone displayed antioxidant activity, which implies potent free radical scavenging activity with antimutagenic activity. 相似文献
2.
It has been shown that thermal processing of tomatoes and sweet corn results in increased antioxidant activities despite the loss of vitamin C. Until now, it is unclear whether this positive effect of thermal processing occurs with all crop produce. Therefore, analysis of a root vegetable (beets) and of a legume (green beans) was undertaken to address this question. Antioxidant activity of beets processed under typical commercial processing conditions remained constant despite an 8% loss of vitamin C, a 60% loss of color, and 30% loss of dietary folate. There was a slight but significant 5% increase in phenolic content of processed beets. In contrast, vitamin C and dietary folate content of green beans remained constant, whereas a 32% reduction in phenolic compounds occurred after typical commercial processing conditions. The antioxidant activity of green beans was reduced by 20%. These findings along with previous works suggest that the effects of thermal processing vary with the respective produce crop type. It also reinforces the concept that optimal health benefits may be achieved when a wide variety of plant foods (fruits, vegetables and whole grains) and preparation methods are incorporated into the diet. 相似文献
3.
Espinosa-Alonso LG Lygin A Widholm JM Valverde ME Paredes-Lopez O 《Journal of agricultural and food chemistry》2006,54(12):4436-4444
The polyphenolic composition of 62 wild and weedy Mexican bean collections from diverse origins, grouped by their seed coat color, was assessed. According to spectrophotometric analysis, the range of total phenols, condensed tannins, and total anthocyanins presented wide differences. Furthermore, the phenolic acid, flavonoid, and anthocyanin profiles were analyzed using HPLC. Ferulic was the main phenolic acid. Kaempferol and quercetin were the main flavonoids, and the isoflavones daidzein and coumestrol were found in only low levels in few collections. Delphinidin was the main anthocyanidin found, followed by petunidin, cyanidin, malvidin, pelargonidin, and peonidin. The wide variation observed in polyphenolic contents was more related to their genotype than to the color factor. These results show that some wild and weedy beans are good sources of phenolic compounds for use in breeding programs focused on nutrition and health. 相似文献
4.
Indrawati I Ludikhuyze LR Van Loey AM Hendrickx ME 《Journal of agricultural and food chemistry》2000,48(5):1850-1859
The kinetics of lipoxygenase (LOX) inactivation in green beans due to high-pressure treatment were studied in the pressure-temperature area of 0.1 up to 650 MPa and -10 up to 70 degrees C for systems with different levels of food complexity, i.e., in green bean juice and intact green beans (in situ study). For both systems, LOX was irreversibly inactivated by high-pressure treatment combined with subzero and elevated temperatures and the inactivation could be described as a first-order reaction. At ambient pressure, in situ LOX was less thermostable than in the juice at temperatures below 68 degrees C whereas the stability ranking was reverse at temperatures above 68 degrees C. At temperatures below 63 degrees C, sensitivity of the inactivation rate constants to temperature changes was on the same order of magnitude in the juice and in situ, while at higher temperature it was lower in situ. The pressure needed to obtain the same rate of LOX inactivation at a given temperature was lower in situ than in the juice. Application of high-pressure treatment at low/subzero temperature resulted in an antagonistic effect on LOX inactivation for both systems, whereas no such effect was found above room temperature. The pressure-temperature dependence of the LOX inactivation rate constants in green beans was successfully modeled. 相似文献
5.
6.
Porres JM Aranda P López-Jurado M Urbano G 《Journal of agricultural and food chemistry》2003,51(17):5144-5149
The effect of natural and controlled fermentation with an inoculum of Lactobacillus plantarum and additional thermal treatment (dry heat at 120 degrees C for 20 min) on the availability of N, P, Fe, Cu, Zn, Ca, and Mg from Phaseolus vulgaris L. var. carrilla was estimated using an in vitro method based on equilibrium dialysis. Natural and controlled fermentations caused significant reductions in the pH and phytate content (36%) of the bean flours, with a concomitant increase in the titratable acidity and free phosphorus content, and had no effect on the other nutrients studied. The percentage of dialyzable N, P, Cu, and Mg was significantly improved by both types of fermentation, whereas Zn dialyzability was significantly reduced. The greatest reduction was observed for the bean flour fermented with an inoculum of L. plantarum. The percentage of dialyzable Fe improved significantly as a result of natural fermentation but was not affected by controlled fermentation. The application of dry heat at 120 degrees C for 20 min caused a significant increase in Fe dialyzability and a further reduction in the percentage of dialyzable Zn in fermented bean flours but did not affect the dialyzability of the other nutrients studied. 相似文献
7.
A.P. Rodiño M. Santalla I. Montero P.A. Casquero A.M. De Ron 《Genetic Resources and Crop Evolution》2001,48(4):409-417
Common bean (Phaseolus vulgarisL.) is a traditional crop in Portugal, where farmers growvarieties selected and maintained by themselves. A collection of 88landraces of common bean was evaluated for 17 quantitative andqualitative traits and the biochemical marker phaseolin to displaythe degree of variation of this germplasm. Agronomic data weresubjected to cluster analysis and several groups were identified,with three groups clustering most of the landraces. Regardingphaseolin variation the C and T banding patterns are the mostfrequent ones, so the origin of the Portuguese beans is thus probablythe Andean region of South America. These results give informationabout the origin, diversity and breeding value of the Portuguesegermplasm, that could be useful to widen the genetic base ofcurrently cultivated bean varieties in Europe. 相似文献
8.
Influence of critical storage temperatures on degradative pathways of pigments in green beans (Phaseolus vulgaris cvs. Perona and boby) 总被引:1,自引:0,他引:1
In this work a study of critical storage temperatures on pigment degradation of green beans (Phaseolus vulgaris, cvs. Perona and Boby) was conducted. In this way, green beans kept better quality at 4 degrees C than either 8 or 12 degrees C, maintaining a bright green color and good texture. Nevertheless, temperatures of 4 degrees C induced chilling injury (CI) after eight days of storage, which became evident when the pods were transferred to 20 degrees C. Cold storage temperatures, 12, 8, and 4 degrees C, produced different changes on the green beans chlorophyll profile. Green beans of both cultivars, Perona and Boby, stored at 4 and 12 degrees C showed a continuous degradation of chlorophyll pigments during storage, while samples stored at 8 degrees C showed an increase of chlorophyll content at the first 15 days. Carotenoid pigments also suffered different changes during cold storage. Perona was the green beans cultivar which maintained the higher level of lutein, mainly when samples were stored at the most suitable temperature (8 degrees C). 相似文献
9.
Macz-Pop GA González-Paramás AM Pérez-Alonso JJ Rivas-Gonzalo JC 《Journal of agricultural and food chemistry》2006,54(2):536-542
It has long been considered that the pigments resulting from direct condensation between anthocyanins and flavanols were formed exclusively during storage and processing, both in plant-derived foods and in drinks. Recently, however, the minor presence of this type of pigment has been shown in different plant extracts, among them beans. In this work we have studied this family of pigments in beans from Guatemala belonging to two distinct species of the genus Phaseolus, confirming the presence of (epi)gallocatechin carbon-carbon linked to the aglycone of delphinidin and (epi)catechin-cyanidin-3-glucoside. Furthermore, for the first time in this foodstuff another three flavanol-anthocyanin condensed pigments formed by the linkage of (epi)catechin with the corresponding aglycones of cyanidin, petunidin, and peonidin have been described. Also, the natural occurrence of anthocyanidins in this matrix has been confirmed in some of the samples analyzed in this work, the majority being components of their anthocyanin composition. The corresponding aglycones of delphinidin, cyanidin, petunidin, pelargonidin, and malvidin have been identified as well as two aglycones with identical mass to those of peonidin and petunidin, but with different retention times, which leads to the supposition that they are probably methylated derivatives of cyanidin and delphinidin, respectively. 相似文献
10.
M A Martín-Cabrejas L Jaime C Karanja A J Downie M L Parker F J Lopez-Andreu G Maina R M Esteban A C Smith K W Waldron 《Journal of agricultural and food chemistry》1999,47(3):1174-1182
The objective of this work was to evaluate extrusion cooking as a means to improve the nutritional properties of Phaseolus vulgaris L. that had been stored either at 42 degrees C and 80% relative humidity for 6 weeks or for periods >1 year in cereal stores in tropical conditions. Storage under these conditions resulted in an increase in cooking time increased (7.7- and 12-fold, respectively) as a result of development of the hard-to-cook (HTC) defect. Single-screw extrusion of the milled beans was carried out at four barrel temperatures and two moisture contents. The extrudate bulk density and water solubility index decreased with increasing temperature, whereas the water absorption index increased due to the higher proportion of gelatinized starch in the extruded samples. Both fresh and HTC beans contained nutritionally significant amounts of lectins, trypsin, and alpha-amylase inhibitors, which were mostly inactivated by extrusion. Extrusion also caused a considerable redistribution of insoluble dietary fiber to soluble, although the total dietary fiber content was not affected. Changes in solubility involved pectic polysaccharides, arabinose and uronic acids being the main sugars involved. Stored beans subjected to extrusion cooking showed physical and chemical characteristics similar to those of extrudates from fresh beans. 相似文献
11.
Marconi E Ruggeri S Cappelloni M Leonardi D Carnovale E 《Journal of agricultural and food chemistry》2000,48(12):5986-5994
Microwave cooking of legumes such as chickpeas and common beans was evaluated by assessing the cooking quality (cooking time, firmness, cooking losses, and water uptake) and the physicochemical, nutritional, and microstructural modifications in starch and nonstarch polysaccharides. Compared to conventional cooking, microwave cooking with sealed vessels enabled a drastic reduction in cooking time, from 110 to 11 min for chickpeas and from 55 to 9 min for common beans. The solid losses, released in the cooking water, were significantly less after microwave cooking than after conventional cooking (6.5 vs 10.6 g/100 g of dry seed in chickpeas and 4.5 vs 7.5 g/100 g of dry seed in common beans). Both cooking procedures produced a redistribution of the insoluble nonstarch polysaccharides to soluble fraction, although the total nonstarch polysaccharides were not affected. Increases in in vitro starch digestibility were similar after both cooking processes, since the level of resistant starch decreased from 27.2 and 32.5% of total starch in raw chickpeas and beans, respectively, to about 10% in cooked samples and the level of rapidly digestible starch increased from 35.6 and 27.5% to about 80%. SEM studies showed that the cotyledons maintained a regular structure although most of the cell wall was broken down and shattered by both cooking procedures. In addition, the ultrastructural modifications in the cotyledon's parenchima and cells are consistent with the chemical modifications in NSP and the increase in starch digestibility after cooking. 相似文献
12.
Martín-Cabrejas MA Sanfiz B Vidal A Mollá E Esteban R López-Andréu FJ 《Journal of agricultural and food chemistry》2004,52(2):261-266
The effect of fermentation on antinutritional factors and also on total dietary fiber (TDF), insoluble (IDF) and soluble (SDF) dietary fiber fractions was studied in beans (Phaseolus vulgaris L.). The processes studied were two types of fermentation (lactic acid and natural), and a portion of the obtained flours were processed by autoclaving. The dietary fiber (DF) content and its components were determined using the enzymatic-gravimetric and enzymatic-chemical methods. The TDF content ranged from 24.5% dry matter (DM) in the raw to 25.2% DM in the processed beans. All the processing treatments significantly decreased the SDF content, and irrelevant changes were noticed in the IDF content of processed beans. Cellulose content of all samples was reduced by the processing treatments. Correspondingly, higher amounts of resistant starch was observed in the processed beans, except in the lactic acid fermented ones. However, the levels of pectic polysaccharides and Klason lignin were higher in the samples fermented by Lactobacillus plantarum. The action of microorganisms was determinant for the different degradation of the bean cell wall, disrupting the protein-carbohydrate integration, thus reducing the solubility of DF. 相似文献
13.
Beninger CW Gu L Prior RL Junk DC Vandenberg A Bett KE 《Journal of agricultural and food chemistry》2005,53(20):7777-7782
Proanthocyanidins and flavonoids were isolated and identified from seed coats of two aged and nonaged pinto bean lines: 1533-15 and CDC Pintium. The seed coat of 1533-15 darkens slowly and never darkens to the same extent as CDC Pintium. Analysis of the overall level of proanthocyanidins using a vanillin assay demonstrated that aged and nonaged seed coats of CDC Pintium had significantly higher levels of proanthocyanidins than aged and nonaged 1533-15 seed coats. Aged and nonaged seed coats of both lines were found to contain one main flavonol monomer, kaempferol, and three minor flavonols, kaempferol 3-O-glucoside, kaempferol 3-O-glucosylxylose, and kaempferol 3-O-acetylglucoside. These compounds were identified by NMR and ESI-MS analysis (except for kaempferol 3-O-acetylglucoside, which was tentatively identified only by ESI-MS analysis) and quantified using HPLC-DAD. The combined concentrations of all the kaempferol compounds in seed coats of CDC Pintium were significantly higher than in seed coats of 1533-15, and the combined contents did not change after aging. The content of kaempferol decreased nearly by half in the seed coats of CDC Pintium after aging, whereas no significant change was observed in the seed coats of 1533-15. Proanthocyanidin fractions from both lines, aged and nonaged, were subjected to LC-MS/MS analysis and found to be composed primarily of procyanidins. Procyanidins in the seed coats were predominantly polymers with the degree of polymers higher than 10. The proportion of these polymers decreased after aging, while that of the low-molecular-weight procyanidins increased. A catechin-kaempferol adduct was tentatively identified in both lines by LC-MS/MS, and the concentration increased in the seed coats after aging. 相似文献
14.
Samples of common and biofortified beans ( Phaseolus vulgaris ), both raw and cooked (autoclaved at 120 degrees C for 20 min) were analyzed for their polyphenol composition. Polyphenols were identified via HPLC-UV/diode array detection. Cooking favored the extraction of polyphenols without the need of a hydrolysis step, a fact that is of interest because this is the usual form in which beans are consumed. The main differences between white and colored beans were the presence of free kaempferol (13.5-29.9 microg g(-1)) and derivatives (kaempferol-3-O-glucoside) (12.5-167.5 microg g(-1)), only in red and black beans. An in vitro digestion (pepsin, pH2; pancreatin-bile extract, pH 7) was applied to beans to estimate bioaccessibility of individual polyphenols. Kaempferol from seed coats exhibited high bioaccessibility (45.4-62.1%) and a potent inhibitor effect on Fe uptake at concentrations ranging from 0.37 to 1.30 microM. Caco-2 cell ferritin formation was used to evaluate Fe uptake. Cell Fe uptake was significant only from white beans. 相似文献
15.
Eszter Nemeskéri Krisztina Molnár Lajos Helyes 《Archives of Agronomy and Soil Science》2018,64(9):1222-1239
Four snap bean varieties (green and yellow-podded) were grown in three water supplies (regularly irrigated, deficit-irrigated and non-irrigated) in order to examine the spectral reflectance at leaf and canopy levels, leaf area index (LAI) and their relationships with the yield and nutritional quality at the University of Debrecen, Debrecen, Hungary from 2011 to 2013. Under non-irrigated condition, the plant height decreased, SPAD values were high but LAI and normalized difference vegetation index (NDVI) were low. The difference in SPAD values was higher between the varieties during flowering under non-irrigated condition and it was more pronounced during pod development using deficit irrigation. In dry years, non-irrigated condition SPAD did not correlate with the yield but during pod development it was correlated with the dry matter content of the pods. The relationship of SPAD with protein and crude fiber content of pods was strongly dependent on the cropping years. Under deficit-irrigated condition, NDVI measured during flowering and pod development correlated closely with the yield where a higher NDVI (0.85) predicted either 6 or 9.5 t ha?1 of yield depending on the variety. Under this condition Serengeti variety with green pods was prominent based on the studied traits among the varieties. 相似文献
16.
The effect of dual inoculation on three local cultivars (Miss Kelly, Portland Red, Round Red) of red kidney beans (Phaseolus vulgaris, L.) with four strains of Rhizobium leguminosarum bv. phaseoli and three species of vesicular-arbuscular mycorrhizal (VAM) fungi was examined in a clay loam soil. Rhizobial strains B 17 and B 36, each paired with Glomus pallidum or G. aggregatum, were the most effective pairings for cv. Miss Kelly. Inoculation of Miss Kelly with any of these pairings significantly (P=0.05) increased growth, number of nodules, nodule dry weight, mycorrhizal colonization, and shoot N and P content than other pairings. The growth response by cv. Portland Red was significantly improved by pairings of B 36 or B 17 with any of the three VAM fungi. For both cultivars (Miss Kelly and Portland Red), CIAT 652 or T 2 paired with VAM fungi did not give a positive growth response. In contrast, for cv Round Red the T 2 rhizobial strain in combination with any of the three VAM fungi showed a significant (P=0.05) growth improvement in all parameters. Our results suggest that while dual inoculation of VAM fungi and rhizobia significantly improves the growth response by red kidney beans, the best pairings of VAM fungus and rhizobia for each cultivar need to be carefully selected. 相似文献
17.
We examined the competitiveness of five effective Rhizobium leguminosarum biovar phaseoli strains in the nodulation of kidney beans (Phaseolus vulgaris L.), either alone or in pairwise combination, against the indigenous strains. The results showed that the introduced Rhizobium sp. strains (B2, B17, B36, T2, or CIAT 652) occupying 64–79% of the total nodules (as single inocula) were more competitive in nodulation than the native rhizobia. However, the competitiveness of the individual Rhizobium sp. strain either increased or decreased when used in a pairwise combination of double-strain inocula. For example, strain B17, although quite competitive against the indigenous population (68% nodule occupancy), became poorly competitive in the presence of strain B2 (reduced from 68 to 2.5%). A similar reduction in nodule occupancy by strain B17 was observed in the presence of B36 or CIAT 652, indicating that two competitive strains may not always be compatible. These results suggest that it is important to co-select competitive as well as compatible rhizobia for multistrain inoculant formulation. 相似文献
18.
Fábio Luís Maciel Sergio Echeverrigaray Lee Tseng Sheng Gerald Felipe Gobbi Grazziotin 《Genetic Resources and Crop Evolution》2003,50(8):887-893
The genetic variation and relationships among 31 accessions of Phaseolus vulgaris L., and two representatives of Vigna unguiculata L., were evaluated by AFLP analysis. A total of 263 DNA fragments across all materials were scored using nine primer combinations, averaging 32 per primer. More than 95% of the amplification products showed polymorphism, indicating high variation at the DNA level among these accessions. Pair-wise genetic similarity (Jaccard's coefficient) ranged from 0.553 to 0.840, with a mean of 0.765. Twenty-three accessions (70%) clustered into three groups. A majority of the commercial cultivars (91%) clustered within a single group, whereas the landraces were distributed along all the variation. An apparent correlation with phaseolin types was detected. Results of this study suggest that Brazilian landraces truly represent the overall genetic variability of Phaseolus vulgaris, confirming the multiple origins of these materials, and their potential as a source of variation for breeding programs. 相似文献
19.
Choung MG Choi BR An YN Chu YH Cho YS 《Journal of agricultural and food chemistry》2003,51(24):7040-7043
This investigation was conducted to determine the structures and amounts of anthocyanins obtained from seed coats of kidney bean (Phaseolus vulgaris L.) cultivated in Korea. Anthocyanins in the seed coat of kidney bean were extracted with 1% HCl/20% CH(3)OH, and the crude anthocyanin extracts were purified by semipreparative HPLC. Five major anthocyanins were isolated, and their chemical structures were identified by spectroscopic methods (UV-vis, LC/ES-MS, and 1H and 13C NMR). The structures of these five anthocyanins were elucidated as cyanidin 3,5-diglucoside, delphinidin 3-glucoside, cyanidin 3-glucoside, petunidin 3-glucoside, and pelargonidin 3-glucoside. Using RP-HPLC with photodiode array detection, each of the five anthocyanins was separated within 12 min by using a gradient elution. It was proved that the application of RP-HPLC could be an excellent method for determining the composition and contents of anthocyanins in kidney bean. The preponderance of pelargonidin 3-glucoside and delphinidin 3-glucoside are observed in red and black kidney beans, respectively. However, in this study, it is reported for the first time that the contents and composition of anthocyanins in speckled seed depend on the classes of speckle color. The contents of cyanidin 3,5-diglucoside, delphinidin 3-glucoside, cyanidin 3-glucoside, petunidin 3-glucoside, pelargonidin 3-glucoside, and total anthocyanins in seed coats of 16 kidney beans cultivated in Korea were in the ranges of 0-0.04, 0-2.61, 0-0.12, 0-0.17, 0-0.59 and 0-2.78 mg/g of dried seed coats, respectively. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(3):367-381
The primary factor that influences release of zinc (Zn) for plants is the rhizosphere. However, information about Zn-desorption characteristics in the rhizosphere is limited. A greenhouse experiment was performed to determine Zn-release characteristics in the bulk and the rhizosphere soils using a rhizobox. The kinetics of Zn release was determined by successive extraction with diethylenetriaminepentaacetic acid (DTPA)– triethanolamine (TEA) in a period of 1 to 504 h at 25 ± 1 °C in the bulk and the rhizosphere soils. Moreover, Zn extracted by using three extractants [DTPA-TEA, ammonium bicarbonate (AB)-DTPA, and Mehlich 3] in the bulk and the rhizosphere soils. The results showed that Zn extracted in the rhizosphere soils were significantly (P < 0.01) lower than the bulk soils. The mean of Zn release in the bulk and the rhizosphere soils were 5.31 and 4.91 mg kg?1, respectively. Release kinetics of Zn conformed fairly well to power function, first order, parabolic diffusion, and simplified Elovich equations. The results of kinetics study indicated that release-rate coefficients decreased in the rhizosphere soils compare to the bulk soils. The correlation studies showed that Zn release after 504 h was significantly correlated (P < 0.05) with Zn extracted by using DTPA-TEA, AB-DTPA, and Mehlich 3 in the bulk and the rhizosphere soils. The results of this research showed that Zn-release characteristics in the bean rhizosphere soils were different from the bulk soils. 相似文献