首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Potato genetic improvement has been facilitated using new knowledge of potato reproductive biology and new techniques. Many wild diploid species as well as landrace cultivars have been used in breeding at the diploid level, a strategy which is supported by 1) 2n gametes and 2) haploids from tetraploid cultivars. Different categories of wild species which have been under-utilized are now being exploited further in more systematic enhancement programmes using semi-conventional and biotechnological methods. Molecular maps of the potato genome are used actively to achieve marker-assisted introgression and improved selection among the germplasm collections to facilitate the use of valuable wild genetic resources. As an alternative method to incorporate a high level of fesistance, genetic engineering has been employed to facilitate the initial breeding process using various gene constructs for controlling major biotic stresses in the world.  相似文献   

2.
3.
中国88个马铃薯审定品种SSR指纹图谱构建与遗传多样性分析   总被引:44,自引:0,他引:44  
为对马铃薯品种鉴别、优良杂交组合选配提供分子水平上的依据,利用SSR标记构建了中国2000-2007年审定的88个马铃薯品种的指纹图谱并进行了遗传多样性分析。以138对SSR引物对16份遗传差异较大的马铃薯材料的基因组DNA进行了扩增,筛选出10对多态性高、谱带清晰的引物。利用10对SSR引物对全部供试材料进行扩增及电泳检测,共检测到135个等位位点,其中133个为多态性位点,多态性比率达98.52%。每对SSR引物扩增出的等位位点数7~22个,平均13.5个,多态性信息量变化范围为0.7604~0.9375,平均0.8501。通过对电泳检测结果的统计分析,利用S180、S25、S7、S151、S184及S192等6对引物构建了88份供试材料的SSR指纹图谱。聚类分析表明,在相似系数0.620处,所有供试材料被被聚为一类,在相似系数0.652处,81.8%的材料仍然聚在一起,从分子水平上表明供试材料遗传基础非常狭窄。聚类分析结果与供试材料系谱来源有较好一致性,同一栽培区域育成的品种在不同程度上聚在一类。  相似文献   

4.
Potato virus Y (PVY) and Potato mop-top virus (PMTV) are viruses whose geographical distribution is expanding and economic losses are increasing, in contrast to most of other viruses infecting potato crops. Most potato cultivars lack broad-spectrum resistance to the new, genetically complex strains of PVY, and no efficient resistance to PMTV is known in potato. Control of the vectors of these viruses is not an efficient or possible strategy to prevent infections. Studies on molecular virus-host interactions can discover plant genes that are important to viral infection or antiviral defence. Both types of genes may be utilized in resistance breeding, which is discussed in this paper. The advanced gene technologies provide means to fortify potato cultivars with effective virus resistance genes or mutated, non-functional host factors that interfere with virus infection.  相似文献   

5.
Potato has a variety of reproductive uniquenesses besides its clonal propagation by tubers. These traits are controlled by a different kind of genetic control. The reproductive information has been applied to enable interspecific hybridization to enhance valuable traits, such as disease and pest resistances, from the tuber-bearing Solanum gene pool. While progress has been made in potato breeding, many resources have been invested due to the requirements of large populations and long time frame. This is not only due to the general pitfalls in plant breeding, but also due to the complexity of polyploid genetics. Tetraploid genetics is the most prominent aspect associated with potato breeding. Genetic maps and markers have contributed to potato breeding, and genome information further elucidates questions in potato evolution and supports comprehensive potato breeding. Challenges yet remain on recognizing intellectual property rights to breeding and germplasm, and also on regulatory aspects to incorporate modern biotechnology for increasing genetic variation in potato breeding.  相似文献   

6.
Utilisation of the Commonwealth Potato Collection in potato breeding   总被引:1,自引:0,他引:1  
Summary The use of the Commonwealth Potato Collection in potato breeding is set in the context of the evolution of the crop and the need to widen its genetic base by introgression and base broadening. The introduction of the potato to Europe and its subsequent worldwide spread is described. An introduction is given to the world's major potato genebanks, and the current status of the Commonwealth Potato Collection is presented. Material from this genebank has been extensively used to improve the potato. Work on wild species as sources of resistance to late blight started before the genebank was initiated, and since then CPC accessions have provided major R-genes and durable resistance to breeders, greatly benefiting growers and consumers of the potato. Progress identifying and exploiting resistance to viruses and potato cyst nematodes is described. New sources of further pest and disease resistance genes are present in the germplasm in the collection, offering the potential to overcome current and future pests and diseases. Use of the cultivated species in the collection for base broadening is described and discussed. The collection also harbours a wide range of quality traits of use to breeders, including variation for cooking and crisping, anthocyanins, carotenoids, ascorbate metabolism and others. As breeding and genetics become more precise, and as both the knowledge of biochemical pathways and means of analysing chemical composition advance, new ways of accessing this variation become possible. Possible strategies to achieve these goals are discussed.  相似文献   

7.
A Mexican hexaploid wild potato species, Solanum demissum (dms), was only used as a female in previous breeding programs. The resulting clones with dms cytoplasm produced abundant, but non-functional pollen. A 170 bp DNA fragment, named Band 1, was originally detected in the F1 hybrid between dms and S. tuberosum. In this study, the sequenced region was extended to 1,032 bp; nevertheless, it did not show any homology to known sequences. This extended region harboring Band 1 was, without introns, all transcribed to mRNA and was maternally inherited from dms to S. tuberosum through backcrosses. Three dms accessions, 168 accessions of 38 cultivated and closely related wild species, and 158 varieties and breeding lines were surveyed, which demonstrated that Band 1 was specific to dms and varieties and breeding lines with dms cytoplasm. Thus, Band 1 is a useful marker to distinguish dms cytoplasm, which enables us to design efficient mating combinations in breeding programs.  相似文献   

8.
9.
D. A. Odeny    Jayashree  B.  M. Ferguson    D. Hoisington    J. Crouch    C. Gebhardt 《Plant Breeding》2007,126(2):130-136
Pigeonpea is a major legume of the semi‐arid tropics that has been neglected in terms of molecular breeding. The objectives of this study were to develop microsatellite markers and evaluate their potential for use in pigeonpea genetics and breeding. Two hundred and eight microsatellite loci were isolated by screening a non‐enriched partial genomic library. Primers were designed for 39 microsatellite loci, 20 of which amplified polymerase chain reaction products of the expected size. Nineteen of the primer pairs were polymorphic amongst 15 cultivated and nine wild pigeonpea accessions providing evidence for cross‐species transferability within the genus Cajanus. A total of 98 alleles were detected at the 19 polymorphic loci with an average of 4.9 alleles per locus. The observed heterozygosity ranged from 0.17 to 0.80 with a mean of 0.42 per locus. Less allelic variation (31 alleles) was observed within the cultivated species than across the wild species (92 alleles). The diversity analysis readily distinguished all wild relatives from each other and from the cultivated germplasm. Development of more microsatellites is recommended for future genomic studies in pigeonpea.  相似文献   

10.
Random amplified polymorphic DNA (RAPD) markers were used to develop genetic fingerprints and analyse genetic relationships among 29 Ipomoea accessions from different geographical locations around the world, including unique wild species, and reproducible profiles were obtained for all accessions using random decamer primers. The primers generated 46 polymorphic markers, one primer alone having 10 products, enabling the discrimination of all 29 accessions. A high level of genetic variability in sweet potato collections was suggested by the degree of polymorphism. Half of the Japanese land races were closely related while accessions from Papua New Guinea and The Philippines were distinct and exhibited the greatest genetic diversity. The wild species Ipomoea gracilis and Ipomoea tiliacea formed a group distinct from the cultivated sweet potato. The wild tetraploid accession K233 and the species Ipomoea trifida were progressively more related genetically to the cultivated sweet potato and are the probable progenitors of Ipomoea batatas, and may be suitable as germplasm for genetic enhancement. RAPDs proved to be useful for sweet potato systematics and should be valuable for germplasm management, gene tagging and efficient choice of parents in breeding programmes.  相似文献   

11.
12.
Overcoming hybridization barriers in potato   总被引:3,自引:0,他引:3  
The cultivated potato is a major crop worldwide. It is a high input crop with complex quality requirements at harvest and during storage. Potato breeders are fortunate to have access to a very diverse and accessible germplasm resource. Wild Solanum relatives provide genetic diversity as well as genes for valuable production and quality traits. In most cases, crossing success can be predicted based on endosperm balance number (EBN), or effective ploidy, of the parents. Crossing barriers between most wild species and the cultivated potato are the consequence of differences in EBN and can be easily overcome using ploidy manipulations and bridge crosses. The most common ploidy manipulations include haploid extraction to reduce EBN and 2n gamete production to increase EBN. Additional methods to produce fertile interspecific hybrids include mentor pollination, embryo rescue, hormone treatments, reciprocal crosses, selection of cross‐compatible genotypes and somatic fusion. Knowledge of crossing barriers and mechanisms to overcome them allows potato breeders access to the rich gene pool in the genus Solanum.  相似文献   

13.
Aegilops tauschii Coss. is the D-genome donor to hexaploid bread wheat (Triticum aestivum) and is the most promising wild species as a genetic resource for wheat breeding. To study the population structure and diversity of 81 Ae. tauschii accessions collected from various regions of its geographical distribution, the genomic representation of these lines were used to develop a diversity array technology (DArT) marker array. This Ae. tauschii array and a previously developed DArT wheat array were used to scan the genomes of the 81 accessions. Out of 7500 markers (5500 wheat and 2000 Ae. tauschii), 4449 were polymorphic (3776 wheat and 673 Ae. tauschii). Phylogenetic and population structure studies revealed that the accessions could be divided into three groups. The two Ae. tauschii subspecies could also be separately clustered, suggesting that the current taxonomy might be valid. DArT markers are effective to detect very small polymorphisms. The information obtained about Ae. tauschii in the current study could be useful for wheat breeding. In addition, the new DArT array from this Ae. tauschii population is expected to be an effective tool for hexaploid wheat studies.  相似文献   

14.
An effective method of incorporating germplasm of wild 2x Solanum species into the cultivated potato is through hybridization with haploids of 4x S. tuberosum Group Tuberosum. This procedure provides for the introduction of desirable traits and genetic diversity from wild species into potato. Haploid and wild species genotypes can be evaluated for parental value based on the presence of good tuberization, desirable traits, fertility, and 2n gametes in their hybrid progeny. Haploid-wild species hybrids may be intercrossed and evaluated at the 2x level to take advantage of diploid genetic ratios. Selected 2x genotypes may then be brought to the 4x level through sexual polyploidization with 2n gametes.  相似文献   

15.
具有野生棉外源基因的陆地棉特异种质创造与利用进展   总被引:7,自引:3,他引:4  
总结了优质纤维、自然抗虫、抗病、高衣分等具有野生棉外源基因的陆地棉种质的创造,及其在棉花常规育种、杂种优势利用、分子生物学等方面的研究进展,并分析了该类种质资源的利用前景,以期促进该类种质在棉花育种改良中发挥更大的作用。  相似文献   

16.
概述了马铃薯种质资源基本情况和我国马铃薯遗传育种现状,分析了目前主要存在的问题与对策,提出野生种、原始栽培种与地方品种针对性筛选与鉴定工作的重要性与迫切性,指出加强资源的基础研究与优良抗性基因的利用,丰富育种材料的遗传基础,同时加强常规育种与现代生物技术结合,是促进种质资源创新研究使品种选育跨上新台阶的关键。  相似文献   

17.
In Brassicaceae crop breeding programs, wild relatives have been evaluated as genetic resources to develop new cultivars with biotic and abiotic stress resistance. This has become necessary because of the diversification of ecotypes of diseases and pests, changing food preferences, advances in production technology, the use of new approaches such as in vitro breeding programs, and the need for economical production of F1 seed. To produce potential new cultivars, interspecific and intergeneric hybridizations have been performed between cultivated species and between cultivated species and their wild relatives. Furthermore, interspecific and intergeneric hybrids have been successfully produced using embryo rescue techniques. In this paper, we review the interspecific and intergeneric incompatibilities between Brassicaceae crops and their wild relatives, and the production, characterization, and improvement of synthetic amphidiploid lines, alien gene introgression lines, alloplasmic lines, monosomic alien chromosome addition lines, and monosomic alien chromosome substitution lines. The goal is to provide useful materials to support practical breeding strategies and to study the genetic effects of individual chromosomes on plant traits, the number of genes that control a trait, their linkage relationships, and genetic improvement in Brassicaceae crops.  相似文献   

18.
利用SSR标记分析野生小豆及其近缘野生植物的遗传多样性   总被引:1,自引:0,他引:1  
利用28对SSR引物对96份野生小豆资源、小豆近缘野生植物及栽培小豆品种进行遗传多样性分析,共检测到255个等位变异,平均每对SSR引物9.10个,多态信息含量的变异范围从0.374到0.865,平均为0.722。野生小豆材料和近缘植物Vigna minima遗传变异丰富。来自不同地域的野生小豆材料具有大量特异等位变异,基于非加权成组配对算术平均法的聚类分析可将不同地理来源的野生小豆单独分群,且与主坐标分析的结果相一致。4份栽培小豆材料与日本野生小豆遗传距离较近,表明目前国内小豆育种中较多使用了含有日本血缘的小豆材料,以及国内野生小豆资源的搜集和利用工作落后于日本。本研究对国内野生小豆资源的搜集和保存具有指导意义,并可以为这些资源的评价、利用和优异基因的发掘提供参考。  相似文献   

19.
Drought tolerance in plants is a complex trait involving morphological, physiological, and biochemical mechanisms. Hundreds of genes underlie the response of plants to the stress. For crops, selecting cultivars that can produce economically significant yields under drought is a priority. Potato (Solanum tuberosum L.) is considered as drought sensitive crop, although cultivar-dependent differences in tolerance have been described. Cultivar ‘Katahdin’ possesses many appropriate characteristics and is widely used for breeding purposes worldwide; it also has enhanced tolerance to drought stress. In this study, we evaluated cv. ‘Katahdin’ and a half-sib family of 17 Katahdin-derived cultivars for leaf relative water content (RWC) and tuber yield under drought stress. The yields of cultivars ‘Wauseon’, ‘Katahdin’, ‘Magura’, ‘Calrose’, and ‘Cayuga’ did not significantly decline under drought stress. Among these five, Wauseon exhibited the lowest reduction in both tuber yield and relative water content under water shortage. The data showed that ‘Wauseon’ is the most attractive cultivar for studies of molecular and physiological processes under drought and for potato breeding due to low yield losses that correspond with high RWC values. This cultivar can serve as a reservoir of potentially useful genes to develop cultivars with enhanced tolerance to this abiotic stress.  相似文献   

20.
An accurate and simple evaluation method is crucial for identifying whitefly resistance in tomato breeding. We developed an in vitro method for evaluating resistance of tomato leaves and tested this on wild and cultivated tomato varieties. We found that young leaves observed for whitefly oviposition after 8 hours provided appropriate comparative conditions. This method effectively distinguished resistance among tomato cultivars and wild species and also demonstrated significant difference in oviposition rates among leaf positions on susceptible cultivars. The in vitro test was as precise as in vivo test using intact plants and had advantages over in vivo test, and can be used for evaluating resistance in large populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号