首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathotype-specific and broad-spectrum resistance to turnip mosaic virus (TuMV) have been identified in the diploid A genome brassica species Brassica rapa. The pathotype-specific resistance is effective against pathotype 1 isolates of TuMV, which are the most common in Europe. It is almost identical in its specificity to that of a mapped resistance gene (TuRB01) present in the A genome of the amphidiploid species Brassica napus. A mutant of a pathotype 1 isolate of TuMV (UK 1M) that is able to overcome TuRB01 also overcame the B. rapa resistance. This, combined with the fact that a single-nucleotide mutation in the cylindrical inclusion gene of TuMV that has been shown to induce a change from avirulence to virulence against TuRB01, had an identical effect on the B. rapa resistance, suggest that the two resistances are conditioned by the same gene. A second source of resistance in B. rapa prevented systemic spread of all TuMV isolates tested. A third source of resistance that appears to provide immunity to, or severely restrict replication of most isolates of TuMV has been characterised. This resistance source also prevented systemic spread of all TuMV isolates tested. Prior to this study, no resistance to pathotype 4 or pathotype 12 isolates of TuMV had ever been identified. For each of these three resistance sources, plant lines that are not segregating for some of the resistance phenotypes and that are presumably homozygous for the genes controlling these phenotypes have been generated. Strategies for further characterising and deploying these resistances in different Brassica species are described.  相似文献   

2.
Serotypic variation in turnip mosaic virus   总被引:7,自引:0,他引:7  
Jenner  Keane  Jones  & Walsh 《Plant pathology》1999,48(1):101-108
A panel of 30 monoclonal antibodies (MAbs) was produced against four isolates of turnip mosaic virus (TuMV). The panel was tested in plate-trapped antigen ELISA tests against 41 TuMV isolates (with different host and geographical origins and of differing pathotypes). The antibodies were also tested against four other potyviruses (bean common mosaic virus, bean common mosaic necrosis virus, lettuce mosaic virus and zucchini yellow mosaic virus). The reactions were assessed quantitatively (using multivariate analysis) and qualitatively (using the standard deviation obtained against healthy leaf material). The MAbs recognized 16–17 TuMV epitopes that were not present in the other potyviruses and a further two potyvirus epitopes. The isolates were grouped into three serotypes. Only one isolate did not fit this grouping. The classification of seven isolates in coat protein amino acid sequence homology groups correlated with serotypes. There was no correlation between serotype and pathotype, or between reactions to individual MAbs and single lines. There was therefore no evidence that the epitopes recognized by the MAbs are elicitors for the resistance genes present in the Brassica napus lines. However, the sensitivity and specificity of the MAbs will be useful for both routine detection of TuMV and fundamental studies on plant–virus interactions.  相似文献   

3.
Eight provinces of Iran were surveyed during 2003–2008 to find Brassicaceae reservoir weed hosts of Turnip mosaic virus (TuMV). A total of 532 weed samples were collected from plants with virus-like symptoms. The samples were tested for the presence of TuMV by enzyme-linked immunosorbent assay using specific antibodies. Among those tested, 340 samples (64%) were found to be infected with TuMV. Rapistrum rugosum, Sisymberium loeselii, S. irio and Hirschfeldia incana were identified as the Brassicaceae weed hosts of TuMV, and the former two plant species were found to be the most important weed hosts for the virus in Iran. The full-length sequences of the genomic RNAs of IRN TRa6 and IRN SS5 isolates from R. rugosum and S. loeselii were determined. No evidence of recombination was found in both isolates using different recombination-detecting programmes. Phylogenetic analyses of the weed isolates with representative isolates from the world showed that the IRN TRa6 and IRN SS5 isolates fell into an ancestral basal-Brassica group. This study shows for the first time the wide distribution and phylogenetic relationships of TuMV from weeds in the mid-Eurasia of Iran.  相似文献   

4.
A putative virus-induced disease showing chlorotic spots on leaves of Phalaenopsis orchids was observed in central Taiwan. A virus culture, phalaenopsis isolate 7-2, was isolated from a diseased Phalaenopsis orchid and established in Chenopodium quinoa and Nicotiana benthamiana. The virus reacted with the monoclonal antibody (POTY) against the potyvirus group. Potyvirus-like long flexuous filament particles around 12–15 × 750–800 nm were observed in the crude sap and purified virus preparations, and pinwheel inclusion bodies were observed in the infected cells. The conserved region of the viral RNA was amplified using the degenerate primers for the potyviruses and sequence analysis of the virus isolate 7-2 showed 56.6–63.1% nucleotide and 44.8–65.1% amino acid identities with those of Bean yellow mosaic virus (BYMV), Beet mosaic virus (BtMV), Turnip mosaic virus (TuMV) and Bean common mosaic virus (BCMV). The coat protein (CP) gene of isolate 7-2 was amplified, sequenced and found to have 280 amino acids. A homology search in GenBank indicated that the virus is a potyvirus but no highly homologous sequence was found. The virus was designated as Phalaenopsis chlorotic spot virus (PhCSV) in early 2006. Subsequently, a potyvirus, named Basella rugose mosaic virus isolated from malabar spinach was reported in December 2006. It was found to share 96.8% amino acid identity with the CP of PhCSV. Back-inoculation with the isolated virus was conducted to confirm that PhCSV is the causal agent of chlorotic spot disease of Phalaenopsis orchids in Taiwan. This is the first report of a potyvirus causing a disease on Phalaenopsis orchids.  相似文献   

5.
G. Li  H. Lv  S. Zhang  S. Zhang  F. Li  H. Zhang  W. Qian  Z. Fang  R. Sun 《Plant pathology》2019,68(6):1035-1044
Turnip mosaic virus (TuMV), the only potyvirus known to infect brassicas, is a devastating virus threatening many economically important brassica crops, including cabbage, Chinese cabbage, oilseed rape and mustard. TuMV disease, which was first discovered in the United States, is now found worldwide, especially in Europe, Asia and North America. TuMV results in a yield loss of up to 70% and has a wide host range, infecting most cruciferous plants, as well as many non-cruciferous species. This virus is also characterized by high pathotype diversity because of its highly variable genome structure and has been divided into 12 pathotypes. These characteristics, as well as its nonpersistent transmission mode by as many as 89 aphid species, mean the disease is difficult to prevent through traditional methods such as the application of chemicals, prompting researchers to seek host resistance for effective control. During the last decade, extensive studies have been conducted to investigate inheritance, mapping and cloning of the TuMV resistance genes, and several NB-LRR- or eIF-encoding loci with divergent molecular mechanisms have been uncovered. These studies have greatly facilitated resistance breeding for brassica crops and have advanced our understanding of virus−host interactions.  相似文献   

6.
The 3026 nucleotides upstream of the 3-polyadenylated tract of a mite transmitted virus fromHordeum murinum L. were cloned and sequenced, and portions of the sequence were expressed inEscherichia coli. Sequence comparisons with wheat streak mosaic virus (WSMV), Agropyron mosaic virus (AgMV) and Hordeum mosaic cirus (HoMV), three mite transmitted potyviruses, and potato virus Y (PVY), the type member of the genusPotyvirus, revealed that the virus is probably a potyvirus, but distinct from WSMV, AgMV, HoMV, and PVY. Serological tests further demonstrated these differences and that the virus is serologically related to another potyvirus, brome streak mosaic virus (BrSMV). We conclude that the virus should be named as the Hordeum isolate of BrSMV.  相似文献   

7.
Brassica rapa can be infected with Turnip mosaic virus (TuMV) as a result of manual inoculation or aphid transmission, but infected plants have not been found in the field. In this study, B. rapa plants grown from seed collected from two field sites in southern England were mechanically inoculated with one of two distinct isolates (pathotypes) of TuMV under glasshouse conditions. These had either been isolated from Brassica oleracea growing wild in Wales, (GBR 83, pathotype 3) or Dorset (GBR 98, pathotype 1). Use of ELISA as an index of infection in manually inoculated B. rapa showed that although seed provenance had a small effect on the proportion of plants infected, the biggest factor was the virus isolate. Both virus isolates infected both lines of B. rapa , but invaded at different rates, although both resulted in easily discernible symptoms. The severity of symptoms was not related to amounts of virus in the infected plants. A significantly greater proportion of plants were infected with GBR 83 at 45 days post-inoculation (d.p.i.) than GBR 98. but GBR 98 caused significantly more severe and obvious symptoms as well as greater mortality at 119 d.p.i., in plants from both sites than GBR 83.  相似文献   

8.
Two potyvirus isolates from endive, originating from southern France (Ls252) and from the Netherlands (Ls265), that were highly and poorly pathogenic on lettuce, respectively, were compared with a common isolate (Ls1) of lettuce mosaic virus (LMV) and with two highly deviant Greek isolates fromHelminthia (Picris) echioides (Gr4) and endive (Gr5), earlier recognized as LMV. The isolates could not be distinguished by particle morphology and serology, and were all identified as LMV. Leaf curling, plant stunting and necrosis were more characteristic of the virus than mosaic. The isolates studied varied considerably on differential host species and a range of lettce cultivars including pathotype differentials of Pink et al. [1992b]. Ls1 and Ls265 reacte largely as pathotype II, including the common strain of the virus, but Ls265 was least pathogenic on lettuce. Ls252 fitted pathotype IV and was very similar to LMV-E (the Spanish strain). The Greek isolates were very similar to each other in causing very severe symptoms on some non-lettuce hosts and a number of lettuce cultuvars. In lettuce variectal reaction Gr4 resembled pathotype I, but Gr5 severely affected Salinas 88, resistant to pathotypes I, II and III, and it appears to be a novel pathotype. Genetic interaction between lettuce and LMV is not following a simple yes-or-no pattern, and it is not a mere matter of resistance versus susceptibility. Adoption of a more realistic resistance terminology is proposed. None of the lettuce cultivars tested was resistant to the most pathogenic isolate Ls252, but resistance to it was found in 2 out of 12 wildLactuca species tested (Lactuca perennis andL. tatarica) while the symptomless plants ofL. perennis clearly reacted in ELISA.  相似文献   

9.
Alstroemeria mosaic virus (AlMV) is one of the viruses known to occur inAlstroemeria spp. Its detection in DAS-ELISA needed improvement. The often simultaneous presence of a second potyvirus has been mentioned by various authors. The recently detected virus inAlstroemeria, tentatively namedAlstroemeria streak virus [AlSV; Wong, 1992] was multiplied in indicator plants and had a host range similar to that of AlMV, although the symptoms in these hosts were less severe. Both viruses reacted with antisera prepared in the Netherlands and in Great Britain to AlMV-isolates purified from infectedAlstroemeria plants, and fromNicotiana clevelandii, respectively. Where AlSV occurs separately, distinction from AlMV is possible by its negative reaction with potyvirus group-specific monoclonal antibodies.  相似文献   

10.
In April 2001, stunted barley plants bearing mosaic symptoms were observed in a field in France (Marne Department, 51). Rod-shaped and flexuous particles were visualized by electron microscopy and positive serological reactions were detected by ELISA with Barley yellow mosaic virus (BaYMV) and Soil-borne cereal mosaic virus (SBCMV) polyclonal antisera. The tubular virus which was soil transmissible to barley cv. Esterel was separated from BaYMV by serial mechanical inoculations to barley cv. Esterel. This furo-like virus, in contrast to a French isolate of SBCMV, could be transmitted to Hordeum vulgare, Avena sativa, Beta vulgaris and Datura stramonium. RT-PCR was used to amplify the 3′-terminal 1500 nucleotides of RNA1 and the almost complete sequence of RNA2. Nucleotide and amino acid sequence analyses revealed that the French virus infecting barley is closely related to a Japanese isolate of Soil-borne wheat mosaic virus (SBWMV-JT) which was originally isolated from barley. This French isolate was named SBWMV-Mar. The 3′ UTRs of both RNAs can be folded into tRNA-like structures which are preceded by a predicted upstream pseudoknot domain with seven and four pseudoknots for RNA1 and RNA2, respectively. The four pseudoknots strongly conserved in RNAs 1 and 2 of SBWMV-Mar show strong similarities to those described earlier in SBWMV RNA2 and were also found in the 3′ UTR of Oat golden stripe virus RNAs 1 and 2 and Chinese wheat mosaic virus RNA2. Sequence analyses revealed that the RNAs 2 of SBWMV-Mar and -JT are likely to be the product of a recombination event between the 3′ UTRs of the RNAs 2 of SBWMV and SBCMV. This is the first report of the occurrence of an isolate closely related to SBWMV-JT outside of Japan.  相似文献   

11.
A strain of Cucumber mosaic virus (CMV-D8) systemically infects Japanese radish (Raphanus sativus), but the Y strain of CMV (CMV-Y) only infects the inoculated leaves. Both of these strains cause severe systemic mosaic on the plants after dual infection with Turnip mosaic virus (TuMV). Synergistic interactions on long-distance transport of CMV-Y and CMV-D8 with TuMV were analyzed using an immunobinding assay. Direct tissue blots probed with either anti-CMV-Y or anti-TuMV antiserum clearly showed that CMV-Y efficiently spread and accumulated in the tissues of noninoculated upper leaves and roots when co-inoculated with TuMV, and that long-distance movement of CMV-D8 was enhanced by the presence of TuMV. Received 16 September 1999/ Accepted in revised form 5 February 2000  相似文献   

12.
Programmed cell death (PCD) pathways caused by Turnip mosaic virus (TuMV) infection before symptom appearance were studied by light microscopy and electrolyte leakage following sap inoculation of Brassica carinata (Ethiopian mustard) TZ‐SMN‐44‐6 plants. Leaf responses to inoculation with avirulent (TuMV‐avir) and virulent (TuMV‐vir) isolates, and mock‐inoculation, were compared at 2, 20 and 52 h after inoculation (hai). The phenotypes induced were localized resistance (TuMV‐avir) and systemic susceptibility (TuMV‐vir). No visible TuMV symptoms were recorded in any inoculated plants during the 2–52 hai sampling period, but appeared as chlorotic spots in inoculated leaves at 5 days after inoculation. With TuMV‐vir alone, they were followed by systemic infection (mosaic). Dead cell number, deformation, percentage area and percentage integrated intensity, and conductivity of electrolyte leakage data, were analysed to examine their possible roles in stimulating cell death pathways. At 2 hai, dead cell number and percentage area were significantly greater for TuMV‐avir than TuMV‐vir infection or mock‐inoculation. Overall, isolate TuMV‐vir caused significantly greater cell deformation than TuMV‐avir, whereas wounding by mock‐inoculation had negligible effects. By 52 hai, isolate TuMV‐avir caused significantly greater electrolyte leakage than isolate TuMV‐vir or mock‐inoculation. This suggests both isolates triggered morphological changes consistent with apoptotic‐like PCD and necrosis‐like PCD that depended upon isolate virulence and stage of infection, respectively. These findings highlight how quantification of dead cell deformation and electrolyte leakage offer a new understanding of compatible and incompatible plant responses to early virus infection in plants.  相似文献   

13.
为明确侵染紫丁香Syringa oblata并引起褪绿花叶症状的病毒种类及其基因组分子特征,利用透射电子显微镜对分离自呼和浩特市和哈尔滨市的紫丁香病样中的病毒粒子进行观察,并通过小RNA高通量测序和RT-PCR技术对其进行检测分析。结果表明,在紫丁香显症叶片的病毒粗提液中观察到长约600 nm、宽约13 nm的线状病毒粒子。利用小RNA高通量测序和RT-PCR技术从病样中检测到水蜡A病毒(Ligustrum virus A,LVA),发病率为3.7%。呼和浩特市紫丁香分离物LVA-Sob的基因组序列全长8 525 nt,包含6个开放阅读框,分别编码Rep(1 968 aa)、TGB1(229 aa)、TGB2(107 aa)、TGB3(60 aa)、CP(294 aa)和NABP(119 aa)共6个蛋白。序列一致性分析表明,分离物LVA-Sob与韩国水蜡树分离物LVA-SK的基因组序列一致率高达97.9%,而与我国辽宁省暴马丁香分离物LVA-DX的基因组序列一致率仅为73.6%。在这3个LVA分离物基因组中没有检测到重组事件;基于基因组和cp基因序列的系统发育树显示这3个LVA分离物形成一个分支,并与瑞香S病毒(daphne virus S,DVS)有较近的亲缘关系。  相似文献   

14.
Turnip mosaic virus (TuMV) causes crop losses worldwide. Eight Australian TuMV isolates originally obtained from five different species in two plant families were inoculated to 14 plant species belonging to four families to compare their host reactions. They differed considerably in virulence in Brassicaceae crop species and virus indicator hosts belonging to three other families. The isolates infected most Brassica species inoculated, but not Raphanus sativus, usually causing systemic mosaic symptoms, so they resembled TuMV biological host type [B]. Whole genome sequences of seven of the Australian isolates were obtained and had lengths of 9834 nucleotides (nt). When they were compared with 37 non‐recombinant TuMV genomes from other continents and another whole genome from Australia, six of them formed an Australian group within the overall world‐B phylogenetic grouping, while the remaining new genome sequence and the additional whole genome from Australia were part of the basal‐B grouping. When the seven new Australian genomes and the additional whole genome from Australia were subjected to recombination analysis, six different recombination events were found. Six genomes contained one or two recombination events each, but one was non‐recombinant. The non‐recombinant isolate was in the Australian grouping within the overall world‐B group while the remaining recombinant isolates were in the basal‐B and world‐B phylogenetic groups.  相似文献   

15.
ABSTRACT Eight turnip mosaic potyvirus (TuMV) isolates from the Campania region of Italy were characterized. Experiments based on host range and symptomatology indicated that the isolates were biologically different. In addition, the isolates, with the exception of ITA1 and ITA3, were distinguished from each other by using a combination of monoclonal antibodies recognizing the coat protein. Single-strand conformation polymorphism (SSCP) analysis of the coat protein gene revealed that each isolate produced a specific SSCP profile, except for isolates ITA1 and ITA3. This study indicates that (i) even in a small geographical region, there is a great deal of variation in TuMV isolates; (ii) the use of a set of four differential hosts does not always specify the same pathotype in different environments; (iii) the TuMV isolates with the same pathotype on Brassica napus test lines can still differ in host range, symptoms, serology, and SSCP; and (iv) there was perfect correlation between the panel of antibodies and SSCP in differentiating among the isolates; ITA1 and ITA3 were indistinguishable by either assay.  相似文献   

16.
Alstroemeria plants were surveyed for viruses in Japan from 2002 to 2004. Seventy-two Alstroemeria plants were collected from Aichi, Nagano, and Hokkaido prefectures and 54.2% were infected with some species of virus. The predominant virus was Alstroemeria mosaic virus, followed by Tomato spotted wilt virus, Youcai mosaic virus (YoMV), Cucumber mosaic virus (CMV), Alstroemeria virus X and Broad bean wilt virus-2 (BBWV-2). On the basis of nucleotide sequence of the coat protein genes, all four CMV isolates belong to subgroup IA. CMV isolates induced mosaic and/or necrosis on Alstroemeria. YoMV and BBWV-2 were newly identified by traits such as host range, particle morphology, and nucleotide sequence as viruses infecting Alstroemeria. A BBWV-2 isolate also induced mosaic symptoms on Alstroemeria seedlings.  相似文献   

17.
Cucumber mosaic virus (CMV) was isolated fromYucca flaccida. The isolate was identified as CMV by host range, ways of transmission, physical properties and serology. No symptoms appeared on healthyYucca seedlings inoculated with purified virus or virus-containing sap, neither could the virus be recovered from these plants.  相似文献   

18.
19.
潍坊萝卜红心病病原鉴定   总被引:6,自引:0,他引:6  
 本文用生物学、血清学和分子生物学证据证明,引起潍坊萝卜红心病的病原为芜菁花叶病毒(Turnip mosaic virus,TuMV).该病毒可系统侵染曼陀罗、油菜、咸阳黄瓜、丝瓜、大白菜和普通烟,局部侵染苋色藜和假酸浆,不侵染豌豆.病毒粒体弯曲线状,长约700 nm,可由蚜虫传播,在红心病组织内形成风轮状和片层凝集状内含体,它在SDS-琼脂糖凝胶免疫双扩散试验中可与TuMV的抗血清形成明显的沉淀线.该病毒的CP基因共867个核苷酸,编码288个氨基酸,分子量为32.98 kD.该序列与国内外20个TuMV分离物的CP氨基酸序列比较结果表明,这些分离物可以分为5组,其中引起萝卜红心病的病毒与日本的H1J、KYD8lJ、意大利的ITA7同属一组.  相似文献   

20.
重庆市萝卜芜菁花叶病毒的检测与序列分析   总被引:1,自引:0,他引:1  
为明确重庆市萝卜感染芜菁花叶病毒(Turnip mosaic virus,TuMV)的情况,在重庆市巴南区、九龙坡区、北碚区等14个区县共采集了146份萝卜病毒病样品,采用酶联免疫吸附试验法(enzymelinked immunosorbent assay,ELISA)对病样进行TuMV检测,并通过PCR、克隆和测序等技术获得13个TuMV分离物CP核苷酸序列,利用软件分析重庆市TuMV CP基因序列的相似性,利用系统进化树分析CP基因遗传变异与系统进化。结果表明,共有105份样品的TuMV检测为阳性,检出率为71.9%;所得13个分离物CP基因均为864 bp,测序的13个分离物CP核苷酸相似性为89.1%~99.2%,与国内已报道的TuMV各分离物CP核苷酸相似性在88.3%~99.4%之间;所得的13个分离物均分布在basal-BR和world-B组中,在Asian-BR和basal-B组中均无分布,进一步分析发现有9个分离物属于word-B组,仅4个分离物属于basal-BR组。研究表明,TuMV在重庆市萝卜各种植区普遍发生,且word-B组为重庆市萝卜的优势毒源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号