首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In their pioneering work, Leighton and Murray argued that the Mars atmosphere, which at present is 95% carbon dioxide, is controlled by vapor equilibrium with a much larger polar reservoir of solid carbon dioxide. Here we argue that the polar reservoir is small and cannot function as a long-term buffer to the more massive atmosphere. Our work is based on modeling of the circular depressions commonly found on the south polar cap. We argue that a carbon dioxide ice layer about 8 meters thick is being etched away to reveal water ice underneath. This is consistent with thermal infrared data from the Mars Odyssey mission.  相似文献   

2.
Oppo DW  Lehman SJ 《Science (New York, N.Y.)》1993,259(5098):1148-1152
Holocene and glacial carbon isotope data of benthic foraminifera from shallow to mid-depth cores from the northeastern subpolar Atlantic show that this region was strongly stratified, with carbon-13-enriched glacial North Atlantic intermediate water (GNAIW) overlying carbon-13-depleted Southern Ocean water (SOW). The data suggest that GNAIW originated north of the polar front and define GNAIW end-member carbon isotope values for studies of water-mass mixing in the open Atlantic. Identical carbon isotope values in the core of GNAIW and below the subtropical thermocline are consistent with rapid cycling of GNAIW through the northern Atlantic. The high carbon isotope values below the thermocline indicate that enhanced nutrient leakage in response to increased ventilation may have extended into intermediate waters. Geochemical box models show that the atmospheric carbon dioxide response to nutrient leakage that results from an increase in ventilation rate may be greater than the response to nutrient redistribution by conversion of North Atlantic deep water into GNAIW. These results underscore the potential rule of Atlantic Ocean circulation changes in influencing past atmospheric carbon dioxide values.  相似文献   

3.
Ground ice on Mars probably consists largely of carbon dioxide hydrate, CO(2) . 6H(2)O. This hydrate dissociates upon release of pressure at temperatures between 0 degrees and 10 degrees C. The heat capacity of the ground would be sufficient to produce up to 4 percent (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near surface temperature was in this range would have produced chaotic terrain and flood channels.  相似文献   

4.
The results of two of the three biology experiments carried out on the Viking Mars landers have been simulated. The mixture of organic compounds labeled with carbon-14 used on Mars released carbon dioxide containing carbon-14 when reacted with a simulated martian surface and atmosphere exposed to ultraviolet light (labeled release experiment). Oxygen was released when metal peroxides or superoxides were treated with water (gas exchange experiment). The simulations suggest that the results of these two Viking experiments can be explained on the basis of reactions of the martian surface and atmosphere.  相似文献   

5.
Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO(2)) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO(2) volatile release. If released into the atmosphere at times of high obliquity, the CO(2) reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.  相似文献   

6.
The variation in carbon dioxide abundances detected in the 1.05-micron band over small, discrete areas on Mars indicates that larger-scale topographical differences are present than had previously been believed. Spectroscopic mapping of the surface also indicates no apparent correlation between albedo and height; the results are in good agreement with topographical data derived from the range-gated rodar scan along +21 degrees N. High and low areas are found in both the major equatorial maria and the bright deserts in the northern hemisphere.  相似文献   

7.
Mars was once wet but is now dry, and the fate of its ancient carbon dioxide atmosphere is one of the biggest puzzles in martian planetology. We have measured the current loss rate due to the solar wind interaction for different species: Q(O+) = 1.6.10(23) per second = 4 grams per second (g s(-1)), Q(O+2) = 1.5.10(23) s(-1) = 8 g s(-1), and Q(CO+2) = 8.10(22) s(-1) = 6 g s(-1) in the energy range of 30 to 30,000 electron volts per charge. These rates can be propagated backward over a period of 3.5 billion years, resulting in the total removal of 0.2 to 4 millibar of carbon dioxide and a few centimeters of water. The escape rate is low, and thus one has to continue searching for water reservoirs and carbon dioxide stores on or beneath the planetary surface and investigate other escape channels.  相似文献   

8.
The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen [69.3 parts per million (ppm)], argon (18.6 ppm), neon (4.31 ppm), and sulfuir dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the clould tops to their bottoms, as implied by Earth-based observations and these resuilts, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.  相似文献   

9.
Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500 degrees C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts in 10(9) by weight in our samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.  相似文献   

10.
Fully resolved intensity profiles of various lines in the carbon dioxide band at 10.4 micrometers have been measured on Mars with an infrared heterodyne spectrometer. Analysis of the line shapes shows that the Mars atmosphere exhibits positive gain in these lines. The detection of natural optical gain amplification enables identification of these lines as a definite natural laser.  相似文献   

11.
Laboratory experiments show that solid carbon dioxide is an effective trap for ozone at temperatures as high as 156 degrees K. Ultraviolet reflection-absorption spectra of ozone in solid carbon dioxide at 127 degrees K indicate that the ozone observed over the polar cap of Mars may be trapped in solid carbon dioxide.  相似文献   

12.
The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) investigation, on board the European Space Agency Mars Express mission, is mapping the surface composition of Mars at a 0.3- to 5-kilometer resolution by means of visible-near-infrared hyperspectral reflectance imagery. The data acquired during the first 9 months of the mission already reveal a diverse and complex surface mineralogy, offering key insights into the evolution of Mars. OMEGA has identified and mapped mafic iron-bearing silicates of both the northern and southern crust, localized concentrations of hydrated phyllosilicates and sulfates but no carbonates, and ices and frosts with a water-ice composition of the north polar perennial cap, as for the south cap, covered by a thin carbon dioxide-ice veneer.  相似文献   

13.
Global distributions of thermal, epithermal, and fast neutron fluxes have been mapped during late southern summer/northern winter using the Mars Odyssey Neutron Spectrometer. These fluxes are selectively sensitive to the vertical and lateral spatial distributions of H and CO2 in the uppermost meter of the martian surface. Poleward of +/-60 degrees latitude is terrain rich in hydrogen, probably H2O ice buried beneath tens of centimeter-thick hydrogen-poor soil. The central portion of the north polar cap is covered by a thick CO2 layer, as is the residual south polar cap. Portions of the low to middle latitudes indicate subsurface deposits of chemically and/or physically bound H2O and/or OH.  相似文献   

14.
A synthesis of organic matter from atmospheric carbon monoxide or carbon dioxide, or both, appears to take place in the surface material of Mars at a low rate. The synthesis appears to be thermolabile and to be inhibited by moisture.  相似文献   

15.
High-resolution altimetric data define the detailed topography of the northern lowlands of Mars, and a range of data is consistent with the hypothesis that a lowland-encircling geologic contact represents the ancient shoreline of a large standing body of water present in middle Mars history. The contact altitude is close to an equipotential line, the topography is smoother at all scales below the contact than above it, the volume enclosed by this contact is within the range of estimates of available water on Mars, and a series of extensive terraces parallel the contact in many places.  相似文献   

16.
The infrared spectra recorded by Mariner 6 and 7 show reflections at 4.3 microns. which suggest the presence of solid carbon dioxide in the upper atmosphere of Mars.  相似文献   

17.
Topography and gravity measured by the Mars Global Surveyor have enabled determination of the global crust and upper mantle structure of Mars. The planet displays two distinct crustal zones that do not correlate globally with the geologic dichotomy: a region of crust that thins progressively from south to north and encompasses much of the southern highlands and Tharsis province and a region of approximately uniform crustal thickness that includes the northern lowlands and Arabia Terra. The strength of the lithosphere beneath the ancient southern highlands suggests that the northern hemisphere was a locus of high heat flow early in martian history. The thickness of the elastic lithosphere increases with time of loading in the northern plains and Tharsis. The northern lowlands contain structures interpreted as large buried channels that are consistent with northward transport of water and sediment to the lowlands before the end of northern hemisphere resurfacing.  相似文献   

18.
The thermal energy emitted by Mars was measured in the 8- to 12- and 18- to 25-micrometer bands. The minimum temperature derived for the southern polar cap is 150 degrees K, an indication that the cap is formed by frozen carbon dioxide. No significant temperature fluctuations were detected with a 100-kilometer scale.  相似文献   

19.
Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.  相似文献   

20.
In outer space, high-energy irradiation of cryogenic ice mixtures of abundant water and carbon dioxide is expected to form solid carbonic acid. Experiments and thermodynamic analyses show that crystalline carbonic acid sublimates without decomposition. Free-energy considerations based on highly accurate molecular quantum mechanics, in combination with vapor pressures resulting from experimental sublimation rates, suggest that in the gas phase, a monomer and dimer of carbonic acid are in equilibrium, comparable to that of formic acid. Gaseous carbonic acid could be present in comets, on Mars and outer solar system bodies, in interstellar icy grains, and in Earth's upper atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号