首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a Fixed Spray Plate Sprinkler (FSPS) and two Rotating Spray Plate Sprinklers (RSPS) were compared in terms of wetted diameter, wind drift and evaporation losses (WDEL), static water precipitation pattern and dynamic water application profile. An experimental irrigation machine reproducing a pivot section was constructed and used to perform experiments in static and dynamic (linear displacement) modes. Water application from FSPS often resulted in a bi-modal pattern, while RSPS produced bell-shaped or triangular patterns. At a nozzle elevation of 2.4 m and an operating pressure of 140 kPa the wetted diameter was 1.6 m larger for the RSPS than for the FSPS. The differences between the two RSPS amounted to 0.5 m on the average. Reducing the nozzle elevation from 2.4 to 1.0 m resulted in a 2.6 m decrease in the wetted diameter. The use of RSPS may result in reduced surface runoff losses, due to the increased wetted diameter and the reduced peak precipitation rate. WDEL for RSPS were statistically related to wind speed, although no significant differences were found between both types of RSPS or between the two nozzle elevations. According to the experimental results, reducing the nozzle elevation will not result in reduced WDEL, but will increase the chances for runoff.  相似文献   

2.
The objective of this paper is to study evaporation and drift losses (EDLs) with two types of sprinklers: rotating spray plate sprinklers (RSPS) and fixed spray plate sprinklers (FSPS), both installed at two different heights (1 and 2.5 m above the ground). A field test was carried out during three seasons at an irrigated plot with a centre pivot, in Albacete (Spain). The results show that EDLs were significantly higher with the FSPS placed 2.5 m above the ground (FSPS 2.5) than with the RSPS placed 1 m above the ground (RSPS 1). The EDLs obtained for the FSPS 2.5 combination were 8% for night irrigation events and 13.7% for daytime irrigation events. The lowest EDL values were registered with RSPS 1, ranging from 3.3 to 8.2% under night and day operation conditions, respectively. These results were obtained for an average wind speed of 1.3 m/s at night and 3.5 m/s during the day, and were normally below 5 m/s.  相似文献   

3.
As sources of irrigation water are decreasing, efficient use of surface irrigation is essential. The purpose of this study is to determine if partially-wetted furrow irrigation has more efficient water storage and infiltration than traditional border irrigation in an alluvial clay soil under cultivated grape production. The two irrigation components considered were wet (WT) and dry (DT) treatments, at which water was applied when available soil water reached 65 % and 50 %, and the traditional border irrigation control. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. Coefficient of variation (CV) was 5.2 and 9.5 % for WT and DT under furrow irrigation system comparing with 7.8 % in border, respectively. Water was deeply percolated as 11.9 and 19.2 % for wet and dry furrow treatments respectively, compared with 12.8 % for control, with no deficit in the irrigated area. Partially-wetted furrow irrigation had greater water-efficiency and grape yield than dry furrow and traditional border irrigation, where application efficiency achieved as 88.1 % for wet furrow irrigation that achieved high grape fruit yield (30.71 Mg /ha). The infiltration (cumulative depth, Z and rate, I) was functioned to opportunity time (t 0 ) in minute for WT and DT treatments as: Z WT ?=?0.528?t 0 0.6, Z DT ?=?1.2?t 0 0.501, I WT ?=?19?t 0 ?0.4, I DT ?=?36?t 0 ?0.498. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. The irrigation parameters and coefficients, and soil water distribution have been also evaluated.  相似文献   

4.
A field experiment was conducted for 3 years to evaluate the effect of deficit irrigation under different soil management practices on biomass production, grain yield, yield components and water productivity of spring wheat (Triticum estivum L.). Soil management practices consisted of tillage (conventional and deep tillage) and Farmyard manure (0 and 10 t ha?1 FYM). Line source sprinkler laterals were used to generate one full- (ETm) and four deficit irrigation treatments that were 88, 75, 62 and 46 % of ETm, and designated as ETd1, ETd2, ETd3, and ETd4. Deep tillage significantly enhanced grain yield (14–18 %) and water productivity (1.27–1.34 kg m?3) over conventional tillage. Similarly, application of FYM at 10 t ha?1 significantly improved grain yield (10–13 %) and water productivity (1.25–1.31 kg m?3) in comparison with no FYM. Grain yield response to irrigation varied significantly (5,281–2,704 kg ha?1) due to differences in soil water contents. Water productivity varied from 1.05 to 1.34 kg m?3, among the treatments in 3 years. The interactive effect of irrigation × tillage practices and irrigation × FYM on grain yield was significant. Yield performance proved that deficit irrigation (ETd2) subjected to 75 % soil water deficit had the smallest yield decline with significant water saving would be the most appropriate irrigation level for wheat production in arid regions.  相似文献   

5.
This study was designed to evaluate the yield response of low-energy precision application (LEPA) and trickle-irrigated cotton grown on a clay-textured soil under the arid Southeast Anatolia Project (GAP) area conditions during the 1999 growing season at Koruklu in Turkey. The effects of four different irrigation levels (100, 75, 50, and 25% of cumulative Class-A pan evaporation on a 6-day basis) for LEPA, and two irrigation intervals (3-day and 6-day) and three different levels (100, 67, and 33% of cumulative Class-A pan evaporation on a 3-day and 6-day basis) for the trickle system on yield were investigated. Water was applied to alternate furrows through the double-ended Fangmeier drag-socks in the LEPA system. Trickle irrigation laterals were laid out on the soil surface at a spacing of 1.40 m. A total of 814 mm of water was applied to the full-irrigation treatments (100%) for both irrigation systems. Seasonal water use ranged from 383 to 854 mm in LEPA treatments; and 456 to 868 mm in trickle treatments. Highest average cotton yield of 5850 kg/ha was obtained from the full-irrigation treatment (100%) in trickle-irrigated plots with 6-day intervals. The highest yield in LEPA plots was obtained in LEPA-100% treatment with an average value of 4750 kg/ha. Seed cotton yields varied from 2660 to 5040 kg/ha and 2310 to 5850 kg/ha in trickle irrigation plots with 3-day and 6-day intervals, respectively, and from 2590 to 4750 kg/ha in LEPA plots. Irrigation levels both in LEPA and trickle-irrigated plots significantly increased yield. However, there was no significant yield difference between 100 and 67% irrigation levels in trickle-irrigated plots. Maximum irrigation water use efficiency (IWUE) and water use efficiency (WUE) were found as 0.813 and 0.741 kg/m3 in trickle-irrigated treatment of 67% with 6-day interval. Both IWUE and WUE values varied with irrigation quantity and frequency. The research results revealed that both the trickle and LEPA irrigation systems could be used successfully for irrigating cotton crop under the arid climatic conditions of the GAP area in Turkey.  相似文献   

6.
Matlab software named PRESUD (Pressurized Subunit Design) was developed to identify the optimum microirrigation subunit design using the annual water application cost per unit of irrigated area (C T). This is defined as the cost per cubic meter of water applied to the soil for crop use, calculated as the sum of investment, maintenance, energy, and water (C w) costs. In this study, only rectangular subunits are considered, using an iterative method for calculating the lateral and manifold pipelines. The infrastructure necessary for water delivery to the subunit inlet was taken into account in the price of water. The results indicate that C w is the most important factor in C T, which includes the investment and energy costs for moving water from the source to the subunit inlet. Other important factors, in order of importance, are the emission exponent (x), coefficient of variation of emitter manufacturer (CVqmf), and emitter spacing (s e). The minimum water application cost for a typical subunit to irrigate vegetable crops such as pepper is obtained with a subunit of 0.3–0.5 ha, with 80 m of paired lateral pipe length of 16 (13.6 mm) PE 0.25 MPa diameter, and 50 (44 mm) PE 0.4 MPa of manifold pipe diameter. The cost of a typical drip irrigation subunit design for a crop, such as grapevines on trellises, is equivalent to 25 % of the C T of a typical subunit to irrigate vegetable crops, such as pepper.  相似文献   

7.
A field study was conducted at North Platte, Nebraska in 2007–2009, imposing eight irrigation treatments, ranging from dryland to fully irrigated. Four of the eight treatments allowed for various degrees of water stress only after tasseling and silking. In 2007, corn yield ranged from 8.9 Mg ha?1 with a season total of 41 mm of irrigation water to 11.5 Mg ha?1 for the fully irrigated treatment (264 mm of irrigation water). The treatment with the greatest reduction in irrigation water after tasseling and silking (158 mm) had a mean yield of 10.9 Mg ha?1, only 0.6 Mg ha?1 less than the fully irrigated treatment. In 2009, yields ranged from 12.6 to 13.5 Mg ha?1. There were no significant yield differences between the irrigation treatments for several possible reasons: more in-season precipitation and cooler weather required less irrigation water; much of the irrigation water was applied after the most water-stress sensitive stages of tasseling and silking; and lower atmospheric demand allowed for soil water contents well below 50 % management allowed depletion (MAD) not to cause any yield losses.  相似文献   

8.
This study was conducted to determine the effect of different supplemental irrigation rates on chickpea grown under semiarid climatic conditions. Chickpea plots were irrigated with drip irrigation system and irrigation rates included the applications of 0 (I 0) 25 (I 25), 50 (I 50), 75 (I 75), 100 (I 100), and 125 % (I 125) of gravimetrically measured soil water deficit. Plant height, 1,000 seed weight, yield, biomass, and harvest index (HI) parameters were determined in addition to yield-water functions, evapotranspiration (ET), water use efficiency (WUE), and irrigation water use efficiency (IWUE). Significant differences were noted for plant height (ranging from 24.0 to 37.5 cm), 1,000 seed weight (ranging from 192.0 to 428.7 g), and aboveground biomass (ranging from 2,722 to 6,083 kg ha?1) for water applications of I 0 and I 125. Statistical analysis indicated a strong relationship between the amount of irrigation and yield, which ranged from 256.5 to 1,957.3 kg ha?1. Harvest index values ranged between 0.092 and 0.325, while WUE and IWUE values ranged between 1.15–4.55 and 1.34–8.36 (kg ha?1 mm?1), respectively.  相似文献   

9.
The interactions between irrigation rates applied during the oil accumulation stage and crop load were studied in a six-year-old very-high-density Koroneiki (Olea europaea L.) orchard. Five irrigation rates, determined as thresholds of midday stem water potential, were applied from July 1st until harvest in 2008 and 2009 and from July 1st to the end of September in 2010. Oil yield increased with increasing crop load in all the irrigation treatments. Oil yield did not respond to increasing irrigation at very low crop load and the higher the crop load the higher the response to irrigation. There was no response to irrigation at the lowest crop loads, but the higher the irrigation rate the higher the oil yield at high crop loads. The predicted commercial oil yield at common fruit counts increased from 1.99 t/ha at the lowest irrigation rate to 3.06 t/ha at the highest irrigation rate. Stomatal conductance decreased with decreasing stem water potential but leveled off at 30–60 mmol m?2 s?1 at stem water potential values lower than ?4.0 MPa. High crop load increased stomatal conductance and decreased stem water potential relative to low crop load at low and medium irrigation rates. The effect of crop load on water relations became evident by the end of August and was well pronounced at the beginning of October. Physiological and irrigation water management implications related to the interactions between tree water status and crop load are discussed.  相似文献   

10.
A study was carried out in Malawi to compare agronomic and socio-economic aspects of different water management practices for two advanced bean lines. Four irrigation technologies and one control were studied in Chingale Area Development Program in Zomba District in southern Malawi. The technologies encompassed motorized pumps (MP), treadle pumps (TP), water cans, gravity-fed surface irrigation (GR) and a non-irrigated practice that used residual moisture. The study found that technologies that used <2 labour hours m?3 were appropriate for such small-scale irrigation systems. The aggregated bean production labour cost and labourday thresholds were $893 ha?1 and 2,978 LD ha?1, respectively. An irrigation supply in the range of 7,000–10,000 m3 ha?1 for the TP, MP and GR would be adequate. Assuming 20 irrigations season?1, 400–600 m3 irrigation?1 would be adequate, supplying 40–60 mm every 5–7 days. The study found that poor small-scale farmers in Malawi, particularly those using MPs, need fuel subsidies in order to offset operational costs. Basing on the findings in the study, we recommend further research on several bean lines in different agro-ecologies of Malawi using technologies that showed high yields, low labour efficiency and high water use productivity.  相似文献   

11.
The effect of irrigation water quality was investigated in a commercial mandarin orchard during four growing seasons using fresh water (EC ≈ 1 dS m?1), irrigators’ association water (EC = 1–3 dS m?1) and reclaimed water (RW) (EC ≈ 3 dS m?1). RW had higher concentration of macro- and micronutrients, especially potassium, and the phytotoxic elements, boron, sodium and chlorides. The microbiological load in the different irrigation water sources showed a high seasonal variability, and all water sources occasionally exceeded health standards to irrigate fruit trees. In the RW treatment, an increase in soil salinity and leaf boron concentration was observed. The nutritional contribution of RW was high, providing 24 and 15 % of the annual nitrogen and phosphorus (N and P2O5) fertilizer requirement for mandarin oranges, respectively, and RW treatment satisfied the entire potassium requirement (K2O). An important fluctuation in the crop production was observed during the 4 years in the different water quality treatments. In general, quality parameters of mandarins were not affected. The results provide additional evidence that long-term effects must be studied to test sustainability when using RW irrigation on fruit trees.  相似文献   

12.
The applicability of commercially available remote sensing instrumentation was evaluated for site-specific management of abiotic and biotic stress on cotton (Gossypium hirsutum L.) grown under a center pivot low energy precision application (LEPA) irrigation system. This study was conducted in a field where three irrigation regimes (100%, 75%, and 50% ETc) were imposed on areas of Phymatotrichum (root rot) with the specific objectives to (1) examine commercial remote sensing instrumentation for locating areas showing biotic and abiotic stress symptomology in a cotton field, (2) compare data obtained from commercial aerial infrared photography to that collected by infrared transducers (IRTs) mounted on a center pivot, (3) evaluate canopy temperature changes between irrigation regimes and their relationship to lint yield with IRTs and/or IR photography, and (4) explore the use of deficit irrigation and the use of crop coefficients for irrigation scheduling. Pivot-mounted IRTs and an IR camera were able to differentiate water stress among irrigation regimes. The IR camera distinguished between biotic (root rot) and abiotic (drought) stress with the assistance of groundtruthing. The 50% ETc regime had significantly higher canopy temperatures than the other two regimes, which was reflected in significantly lower lint yields when compared to the 75% and 100% ETc regimes. Deficit irrigation down to 75% ETc had no impact on lint yield, indicating that water savings were possible without reducing yield.  相似文献   

13.
Camelina sativa (L.) Crantz is a promising, biodiesel-producing oilseed that could potentially be implemented as a low-input alternative crop for production in the arid southwestern USA. However, little is known about camelina’s water use, irrigation management, and agronomic characteristics in this arid environment. Camelina experiments were conducted for 2 years (January to May in 2008 and 2010) in Maricopa, Arizona, to evaluate the effectiveness of previously developed heat unit and remote sensing basal crop coefficient (K cb ) methods for predicting camelina crop evapotranspiration (ET) and irrigation scheduling. Besides K cb methods, additional treatment factors included two different irrigation scheduling soil water depletion (SWD) levels (45 and 65 %) and two levels of seasonal N applications within a randomized complete block design with 4 blocks. Soil water content measurements taken in all treatment plots and applied in soil water balance calculations were used to evaluate the predicted ET. The heat-unit K cb method was updated and validated during the second experiment to predict ET to within 12–13 % of the ET calculated by the soil water balance. The remote sensing K cb method predicted ET within 7–10 % of the soil water balance. Seasonal ET from the soil water balance was significantly greater for the remote sensing than heat-unit K cb method and significantly greater for the 45 than 65 % SWD level. However, final seed yield means, which varied from 1,500 to 1,640 kg ha?1 for treatments, were not significantly different between treatments or years. Seed oil contents averaged 45 % in both years. Seed yield was found to be linearly related to seasonal ET with maximum yield occurring at about 470–490 mm of seasonal ET. Differences in camelina seed yields due to seasonal N applications (69–144 kg N ha?1 over the 2 years) were not significant. Further investigations are needed to characterize camelina yield response over a wider range of irrigation and N inputs.  相似文献   

14.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

15.
The objectives of this study were to evaluate the performance of the Cropping System Model (CSM)-CERES (Crop-Environment Resource Synthesis)-Rice for simulating growth and yield of rice under irrigated conditions for a semiarid environment in Pakistan and to determine the impact of plant density and irrigation regime on grain yield and economic returns. The crop simulation model was evaluated with experimental data collected in 2000 and 2001 in Faisalabad, Punjab, Pakistan. The experiment utilized a randomized complete block design with three replications and included three plant densities (one seedling hill?1, PD1; two seedlings hill?1, PD2; and three seedlings hill?1, PD3) and five irrigation regimes (625 mm, I1; 775 mm, I2; 925 mm, I3; 1075 mm, I4; and 1225 mm, I5). To determine the most appropriate combination of plant densities and irrigation regimes, four plant densities from one seedling hill?1 to four seedlings hill?1 and 17 irrigation regimes ranging from 0 to 1600 mm, for a total of 68 different scenarios, were simulated for 35 years of historical daily weather data. The evaluation of CSM-CERES-Rice showed that the model was able to accurately simulate growth and yield of rice for irrigated semiarid conditions, with an average error of 11% between simulated and observed grain yield. The results of the biophysical analysis showed that the combination of the two seedlings hill?1 plant density and the 1,300 mm irrigation regime produced the highest yield compared to all other scenarios. Furthermore, the economic analysis through the Mean-Gini Dominance (MGD) also showed the superiority of this treatment compared to the other treatment combinations. The mean monetary return ranged from ?47 to 1,265 $ ha?1 among all 68 scenarios. However, to be able to furnish the demand of rice grain for local consumption and to increase export, there is a need to expand this technology among the rice growers of other rice producing areas in Pakistan through extension workers.  相似文献   

16.
Water conservation strategies for center pivot and furrow irrigation in the Central Platte Valley of Nebraska were evaluated using computer simulation. Irrigation requirements, grain yield, return flow and net depletion (gross irrigation minus return flow) of groundwater were simulated for a period of 29 years for Hord and Wood River silt loam soils. Grain yields were simulated for a typical corn variety for non-limiting water supplies (maximum attainable yield), for two levels of deficit irrigation (irrigation limited to certain growing periods), and for dryland conditions. Additional simulations were performed for a short-season corn, grain sorghum, and soybeans. The impacts of tillage practices on water conservation were also investigated.Center pivot irrigation on the Hord silt loam required 75–125 mm/year less water application than furrow irrigation. For the Wood River silt loam, water applications were the same for both irrigation systems. Applied water depths were reduced by an additional 75–125 mm using deficit irrigation with only a small reduction in yield. Return flow to the groundwater was small for well-managed pivots but high for some furrow irrigation systems based on the assumption that all deep percolation returns to the aquifer in the Central Platte Valley. Net depletion (gross irrigation minus return flow) of the groundwater for a center pivot with LEPA was 50 mm (17%) less than a center pivot with impact sprinklers. Ridge till had a net depletion 50 mm (25%) less than conventional tillage (double disk, plant) for furrow systems.  相似文献   

17.
Evaluation of crop water stress index for LEPA irrigated corn   总被引:6,自引:0,他引:6  
This study was designed to evaluate the crop water stress index (CWSI) for low-energy precision application (LEPA) irrigated corn (Zea mays L.) grown on slowly-permeable Pullman clay loam soil (fine, mixed, Torrertic Paleustoll) during the 1992 growing season at Bushland, Tex. The effects of six different irrigation levels (100%, 80%, 60%, 40%, 20%, and 0% replenishment of soil water depleted from the 1.5-m soil profile depth) on corn yields and the resulting CWSI were investigated. Irrigations were applied in 25 mm increments to maintain the soil water in the 100% treatment within 60–80% of the “plant extractable soil water” using LEPA technology, which wets alternate furrows only. The 1992 growing season was slightly wetter than normal. Thus, irrigation water use was less than normal, but the corn dry matter and grain yield were still significantly increased by irrigation. The yield, water use, and water use efficiency of fully irrigated corn were 1.246 kg/m2, 786 mm, and 1.34 kg/m3, respectively. CWSI was calculated from measurements of infrared canopy temperatures, ambient air temperatures, and vapor pressure deficit values for the six irrigation levels. A “non-water-stressed baseline” equation for corn was developed using the diurnal infrared canopy temperature measurements as T cT a = 1.06–2.56 VPD, where T c was the canopy temperature (°C), Ta was the air temperature (°C) and VPD was the vapor pressure deficit (kPa). Trends in CWSI values were consistent with the soil water contents induced by the deficit irrigations. Both the dry matter and grain yields decreased with increased soil water deficit. Minimal yield reductions were observed at a threshold CWSI value of 0.33 or less for corn. The CWSI was useful for evaluating crop water stress in corn and should be a valuable tool to assist irrigation decision making together with soil water measurements and/or evapotranspiration models. Received: 19 May 1998  相似文献   

18.
In this research, the effects of soil water retention barriers (SWRB) and irrigation levels on soil water content, perennial ryegrass (Lolium perenne c.v Caddieshack) water consumption, fresh clipping yield, visual quality and leaf water content were investigated in 2010 and 2011. Treatments consisted of SWRB application at two different soil depths (30 and 40 cm) and three different irrigation levels (100, 66 and 33 % of available water-holding capacity) in sandy soil. Results showed that placement of SWRB at 40 cm depth (SWRB40) together with 34 % water deficit saved 52 % irrigation water compared with the control (no SWRB) treatment. Additionally, 498 and 653 mm total irrigation water were applied. The mean daily plant water consumption values were 5.94 and 6.51 mm in 2010 and 2011, respectively, in the SWRB40 treatment.  相似文献   

19.
A 2-year experiment was carried out to investigate the effects of different drip irrigation regimes on distribution and dynamics of soil water and salt in north Xinjiang, China. Five treatments—F7 (0.24 dS m?1 + Once every 7 days), B7 (4.68 dS m?1 + Once every 7 days), S7 (7.42 dS m?1 + Once every 7 days), F10 (0.24 dS m?1 + Once every 10 days) and F3 (0.24 dS m?1 + Once every 3 days)—were designed. For all treatments, additional 150-mm fresh water was applied on 10th November in 2009 (winter irrigation) to leach the accumulated salt. The results revealed that irrigation frequency and water quality had significant effects on the spatial distribution and change of soil water content, soil salt and the crop water consumption rate, but had a limited impact on the seasonal accumulative water consumption, and the cotton yield decreased with the decrease in irrigation frequency and water quality on the whole. During the cotton growing season, results showed that the salt mainly accumulated in the 0- to 60-cm soil layer, while the soil salt in 60- to 100-cm layer changed slightly, indicating that the drip irrigation could not leach the soil salt out of the root zone under the irrigation regimes. Therefore, salt leaching was necessary to maintain the soil water–salt balance and to prevent excessive salt accumulation in the root zone. After the 150-mm winter irrigation and subsequent thawing, soil salts were leached into the deeper layers (below 60 cm), and the soil salt content (SSC) (EC1:5) in root zone in the next year was about 0.2 dS m?1. Moreover, compared to 2009 season, the SSC within the root zone did not increase even the EC of the irrigation water was up to 7.42 dS m?1. Additionally, it is important to note that the results were concluded based on the data of the 2-year experiment; further studies are need to optimize winter irrigation amount and assess the sustainability of saline water irrigation since long-term utilization of saline water may lead to soil degradation.  相似文献   

20.
We studied the suitability of empirical crop water stress index (CWSI) averaged over daylight hours (CWSId) for continuous monitoring of water status in apple trees. The relationships between a midday CWSI (CWSIm) and the CWSId and stem water potential (ψ stem), and soil water deficit (SWD) were investigated. The treatments were: (1) non-stressed where the soil water was close to field capacity and (2) mildly stressed where SWD fluctuated between 0 and a maximum allowable depletion (MAD of 50 %). The linear relationship between canopy and air temperature difference (ΔT) and air vapor pressure deficit (VPD) averaged over daylight hours resulted in a non-water-stressed baseline (NWSBL) with higher correlation (?T = ?0.97 VPD – 0.46, R 2 = 0.78, p < 0.001) compared with the conventional midday approach (?T = ?0.59 VPD – 0.67, R 2 = 0.51, p < 0.001). Wind speed and solar radiation showed no significant effect on the daylight NWSBL. There was no statistically meaningful relationship between midday ψ stem and CWSIm. The CWSId agreed well with SWD (R 2 = 0.70, p < 0.001), while the correlation between SWD and CWSIm was substantially weaker (R 2 = 0.38, p = 0.033). The CWSId exhibited high sensitivity to mild variations in the soil water content, suggesting it as a promising indicator of water availability in the root zone. The CWSId is stable under transitional weather conditions as it reflects the daily activity of an apple crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号